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Abstract

This paper introduces a notion of “linear functor” between linearly distribu-
tive categories that is general enough to account for common structure in linear
logic, such as the exponentials (!, ?), and the additives (product, coproduct),
and yet when interpreted in the doctrine of x-autonomous categories, gives the fa-
miliar notion of monoidal functor. We show that there is a bi-adjunction between
the 2—categories of linearly distributive categories and linear functors, and of *-
autonomous categories and monoidal functors, given by the construction of the
“nucleus” of a linearly distributive category. We develop a calculus of proof nets for
linear functors, and show how linearity accounts for the essential coherence structure
of the exponentials and the additives.

Introduction

What is the “appropriate” notion of a functor between linearly (formerly
“weakly”) distributive categories? In [CS92] we were content to think of the
functors between linearly distributive categories as being those which pre-
served all the structure on the nose. However, this very restrictive notion does
not allow the expression of common linear structure such as the exponentials
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and the additives. The purpose of this paper is to present, as a basis for ex-
pressing linear structure, a broader class of functors: the “linear functors” and
their natural transformations.

Of course, one ought not to expect that all structure of interest in linear logic
is described by linear functors. For example, in light linear logic [G95] the tra-
ditional exponential operators are no longer monoidal functors, as pointed out
in [G95,KOS97], and so do not form a linear functor. Also, in full intuistionis-
tic linear logic [HP93] the internal hom is not a linear functor. Nonetheless, it
should be clear from this paper that the notion of a linear functor is a useful
organizational device which does explain basic features of linear logic.

The notion of a linearly distributive category with the exponentials was ex-
plored in [BCS96]. In this paper we show that most of the coherence diagrams
of [BCS96] are a consequence of demanding that the obvious functorial struc-
ture for exponentials be linear, i.e. constructed from linear functors and linear
transformations. That the formulation of the exponentials should have such a
simple genus is not only satisfying but is also a strong confirmation that the
ideas underlying [BCS96] were correct.

In contrast to the situation for the exponentials, where a formulation already
existed, we started this paper with little idea of what extra conditions might
be required for the correct notion of additives (products and coproducts) in
a linearly distributive setting. (Note that in a x-autonomous setting there is
little to worry about: the duality guarantees that if there are products, then
there are also coproducts, and wvice versa, and further, the closed structure
guarantees the obvious distributivity for these.) In keeping with the thesis
that linearity ought to guide one in adding structure to linearly distributive
categories, we let the obvious linear functorial structure suggest the axiom-
atization. The result, which we discuss in the last section of the paper, is
that this turns out to be equivalent to the much simpler structure of appro-
priately distributive products and coproducts. However, the linear structure
is not without purpose: we shall develop a general circuit calculus for linear
functors, using “functor boxes”. Although we do not discuss proof circuits for
the additives in the present paper, it will be clear that the induced calculus in
the case of the additives is equivalent to the additive proof boxes Girard used
in his original description of proof nets for the additives.

Besides allowing the expression of the above structure, a desiderata for these
linear functors is that, when specialized to the x-autonomous case, they be-
come an almost transparently simple notion. This in fact is the case: a linear
functor between x-autonomous categories is simply a monoidal functor: the
additional linear structure is then forced by the setting. This allows one to
rediscover linear functors by backward engineering the full structure implied
by a monoidal functor between x-autonomous categories.



Let X and Y be categories with involutions (for example x-autonomous). Then
any covariant functor F: X — Y induces a “complement” functor

F=(F())"X - Y

and any natural transformation as: F(A) — G(A) induces a natural “com-
plement” transformation

@y = ok (GAY))E — (F(AL)L.

Thus, the morphisms between x-autonomous categories are actually pairs of
functors related by the complementation induced by the involution. But that
is not all: if we demand that the first functor of the pair, say, is monoidal with
respect to the tensor then, this will mean that the second functor is forced
to be comonoidal with respect to the cotensor (or “par”). Furthermore, some
peculiar transformations are introduced:

v:F(A® B) — F(A)® F(B)
and by complementation
7:F(A)® F(B) — F(A® B).

Essentially these are, respectively, a relative costrength and strength as de-
scribed in [BCS96]. Our discussion of linear functors between linearly distribu-
tive categories can be viewed as an abstraction of these ideas.

The relationship between x-autonomous categories and linearly distributive
categories may be viewed as an abstraction of the relationship between Bool-
ean algebras and distributive lattices. Just as any distributive lattice has
a largest sublattice which is Boolean (obtained by considering the comple-
mented elements) so a linearly distributive category has a largest full subcat-
egory which is x-autonomous (also consisting of complemented objects). This
is called the “nucleus” of the linearly distributive category. The extraction of
the nucleus is actually 2-functorial with respect to linear functors and trans-
formations. In fact, the inclusion of the full sub2—category of x-autonomous
categories into the 2—category of linearly distributive categories with linear
functors and transformations has a right bi-adjoint given by formation of the
nucleus.

The ideas behind the formation of the nucleus are of some independent in-
terest and have a considerable history. We include, therefore, a relatively
self-contained appendix which describes the generalization of the work of
Rowe [R88] and Higgs and Rowe [HR89] (which was done in the setting of
monoidal closed categories) to linearly distributive categories. We also show
that nuclear maps are preserved by linear functors.



The paper will have this structure: first we shall give the formal definition
of a linearly distributive (or simply “linear”) functor of linearly distributive
categories, together with the corresponding notion of linear transformation,
so that the resulting structure is a 2-category LDC. Next we introduce a cal-
culus of “functor boxes” which will allow us to use proof circuits to analyze
the structure of linear (and monoidal) functors. Using this calculus of proof
circuits, we show that any monoidal functor between x-autonomous categories
induces a linear functor. This holds in the noncommutative case as well, pro-
vided the functor is “well-behaved” with respect to the two negations present
in that context. This means that there is an inclusion of the 2—-category *-AUT,
of x-autonomous categories and monoidal functors and transformations, into
LDC. To construct a right bi-adjoint to this, we give the definition of nuclearity
for linearly distributive categories and show that linear functors preserve the
nucleus, that the nucleus is x-autonomous (modulo some use of the axiom of
choice), and that this gives the bi-adjunction discussed above.

Next we shall illustrate the conceptual advantage of this definition by showing
that ! and ? may be described by saying that there is a linear cotriple
on a linearly distributive category X whose free coalgebras are comonoids.
Finally, we shall apply these ideas to the matter of adding additive structure:
requiring a linearly distributive category to have “products” (in the sense
of an appropriate adjoint linear functor to the diagonal) will automatically
endow the category with cartesian products and coproducts, which satisfy the
obvious distributivity laws with respect to tensor and par.

A word about terminology and notation. The reader will have already noticed
that we have adopted the term “linearly distributive category” for what pre-
viously we have called “weakly distributive category”, continuing the practice
begun in [CS97]. This we view as a minor matter. More controversial per-
haps is our insistence upon the use of @& for “par” and + for the coproduct
“sum”. As category theorists we are unrepentant upon this point, and there
the matter must rest.

1 Linear functors

For the full definition of a linearly distributive category, we refer the reader to
[CS92,CS92j,BCST] (where the term “weakly distributive category” is used).
Briefly, a linearly distributive category is a category with two tensors ®,®
and two strength natural transformations, making each strong (respectively
costrong) with respect to the other. These two strength transformations shall



be denoted by:

Sl A®(Be(C) — (A®B)aC
B (BoC)® A — B (C®A).

A symmetric linearly distributive category is a linearly distributive category
both of whose tensors are symmetric. In this case there are these additional
induced strength transformations:

kA (BeC) - B (AR ()
F:(BoC)pA— (B A aC.

This data must satisfy standard coherence conditions, discussed in [CS92],
which we shall not repeat here.

Also, recall that for a functor F' to be monoidal there must be natural trans-
formations my: F(A)® F(B) — F(A® B) and mt: T — F(T) satisfying the
equations

Uy = MTRL; Mig; F(“@) (1)
T F(A) — F(A)
Ug; 1®@Mg; Mg = m®®1§m®;F(a®) (2)

(F(A)® F(B))® F(C) —» F(A® (B® ())

(and in the symmetric case, the next equation as well.)

Mi; F(Co) = Co3mg - F(A) @ F(B) = F(B® A) (3)

For a functor G' to be comonoidal, there must be natural transformations
ne:G(A® B) — G(A) ® G(B) and n,: G(L) — L satisfying equations dual
to those above.

Next we introduce a notion of functor between linearly distributive categories;
these ought to be called “linearly distributive functors”, but we have preferred
the shorter “linear functor”.

Definition 1 Given linearly distributive categories X, Y, a linear functor
F:X — Y consists of:

(1) a pair of functors Fy, Fy: X — Y so that F, is monoidal with respect to
®, and F, is comonoidal with respect to @,



(ii) natural transformations (called “linear strengths”)

:Fy(A® B) — Fy(A) @ Fo(B
:Fy(A® B) — F,(A)® F,(B
Py (A) ® Fy(B) — Fy(A® B
1 Fy(A) ® Fy(B) — Fy(A® B

satisfying the following coherence conditions. (These are listed in groups
given by the evident dualities. In each group we illustrate one with a
commutative diagram; only the equations corresponding to these diagrams
are numbered. )

)
)
)
)

R AN
EBTN@:U@@Th@FU

u{; smT @ Livg =Fy(u
ugfl,1®mT; s =Fy(u 71)
Fy(as)
Fo(AeB)a® C) (A@ (Ba (C))
vy vy
Fy(A® B)® Fy (C) Fy(A)e Fy(Ba C)
Ng @ 1 16I97/éz
(Fo(A) ® F(B)) ® Fi (C) —*2— Fy(A) @ (F5(B) ® F5(C))

Fy(as); §;1®VR—V§;%®1'% (5)

F(a®)7 ®,1€Bn®—u®, ®®1 Qg
o @ L Foay) =ag; 1 @ v vl

YT GB’GB

vl ®@ Ll Fylag) =ag; 1 @ mg; vk

y Voo



vy vy
F,(A® B)® F,(C) Fy(A)® Fy(Be ()
I/g@]. 1@Vé’

(Fas(A) ® F5(B)) @ Fs () —22 Fy (A) @ (F5(B) ® F (O))

. R. L_ L. Rn1.
Fyolag);vy; 1@ v, =v v, ®1;a,

VP @ vl Fylag) =ag; 1 @ vl vl

F vk
2(A)® Fy(Ba C) © LFy(A)® (Fy(B) ® Fy(C))
Mg 6/%
Fy(A® (B®0)) (F5(A) ® Fy(B)) @ F (O)
F®(51€) UQEB 1
F,(A®Q B)® C) Vg F,(A® B)® F,(C)

1@ vl vl ®1=mg; F(0]); vE
ué“ Lk 1a u£:m®;F®(5g);l/£
1 ®l/é;5£;l/£ &) 1:V£SF®(5£)377J®
l/§® 1;(5}%; 1® ugzug; F@((Sg);n@

~

F(A) 8 F,(Bo C)—-2Y_.p,(4)® (F,(B) ® F.(C))

Mg, of
Fe(A® (B 0)) (Fo(A) ® Fo(B)) ® Fg, (O)
F,(6%) Mg @ 1

Fo((A®B) @ O)

1®V£;5£;m® EBI:m®;F®(5£);

V§® 135g31®m®:m®3F®(6R )



1®ng; 0k v @ 1=0" F (6F)n,

Ng & 1;55;1 EBUQI;:VQ];;F@@;%);”@

Remark 2 In the commutative case, it is possible to drop the requirement
that the v*’s exist, defining them via the symmetry of the tensor and par.
Equivalently, we could keep the presentation above and add the extra diagrams
that express such definition, namely v%; ¢, = F,(¢y); v2, and its dual.

Next, we address the question of the appropriate notion of natural transfor-
mation. Following the ideas outlined in the Introduction, we are led to the
following definition. Recall that for a natural transformation a to be mon-
oidal, the following equations must be satisfied.

Mme;=a® a;mg:F(A)® F(B) — G(A® B) 9)
Mg =mg: T — G(T) (10)

A comonoidal natural transformation must satisfy the dual conditions.

Definition 3 Given F,G: X — Y, linear functors between linearly distribu-
tive categories, a linear transformation a: F — G consists of a pair of natural
transformations: a monoidal transformation ag: Fy — Gg and a comonoidal
transformation ag: G — F,. These must satisfy the following coherence con-
ditions.

F,(A® B) o Gy (A® B)
[ [
Fy(A) ® Fyo(B) Go(A) ® Gg(B)

g v o, ®1=v810 ay (11)
a®;l/é’;1®a®:l/é’;a®®1
1®a®;yé;a®:a®®1;yé

R

.. R — .
e @ L1y 05 =1Q ag; 1

Proposition 4 Linearly distributive categories, linear functors, and linear
transformations form a 2—category, which we shall denote LDC. If we restrict
to symmetric linearly distributive categories, we obtain a 2-category denoted
SLDC. These 2—categories are closed under products.



Proof. Identity maps are the standard identity functors and transformations.
(These are obviously linear.) Linear functors compose in the obvious way:
(F;G)y = Fy;G, and (F;G)y = Fi;Ge. The strength “¢uf is defined as
Oyl = Gy ("vl); B the other linear strengths are defined similarly. (Here
Fyl indicates the v for the functor F, and so forth.)

For transformations, we have two types of composition. If G, H: X — Y,
a:F — G and :G — H, then (o; )y = g;fe and (o; )y = fo; . If
F,.G:X - Y, HKY —Z, «:F — G, and f: H — K, then (a;3)g =
Be; K(ag) and (a; #)s = K(ay); Bs. (We have used the same symbol for both
vertical and horizontal composition of transformations—the context ought to
make clear which is intended at any time.) Note that naturality implies that
Be; Ko(g) = Hg(ag); Bs, (and similarly for the @ case), so this gives an
alternate definition; this also guarantees the validity of the interchange law.

H, (Fy(A) Lor K, (F, (4))

Now there are several coherence conditions to check here. Three of the dia-
grams needed for F';G are given in Figure 1; we omit two as they are very
similar to other diagrams. The diagrams for vertical and horizontal composi-
tion of transformations are given in Figure 2. The cells marked (in) commute by
the corresponding coherence condition on F, G, «, 3,..., as appropriate. The
cells marked (nat) commute by naturality. Note that in these Figures, we have
abbreviated the functors and transformations using the notation F, = F|
F, = F, and so forth, in order to save space. Using appropriate duality,
this completes the proof that these form 2-categories. As for closure under
products, that is quite trivial (the monoidal and comonoidal components are
constructed pointwise), and shall be left to the reader. O

2 Circuits for linear functors

In [BCST] we developed a calculus of graph rewrites for proof nets (“circuits”)
for linearly distributive categories; in the present note we shall extend that
system to be able to handle functors as well. We shall be most interested
in linear functors, but on the way we shall see how ordinary functors and
how monoidal (and dually comonoidal) functors may be dealt with as well.



GF(A®(B&C)) GF(ag) GF((A®B)aC)
Gl G
G(F(A)@F(BaC)) (lin) G(F(A®B)®F(C))
vE|  (nat) G(levk) G(ned1) (nat) |yR
GE(A)BGF(BaC)GF(Aa(F(B)oF(C)) S99 G(F(a)eF(B)6F(C)GF(ASB)SGF(C)
1eG(vf) 'k h G(ng)o1
® Ve
GE(A)®G(F(B)®F(C)) (lin) G(F(A)®F(B))®GF(C)
IEBVg ng®l
GF(A)@(GF(B)®GF(C) % (GF(A)@GF (B)®GF(C)

ar(lec) — M) | apey
Gwg) ainy  Gug)
aperc) Cre®) gerc) \U
vg (nat) vEl aim
Gi(Lecre) 8L o aapcy "8l | 1 eGF(C)
GP(N)eGaF(BoC)—2°YE), apmea(F(BeF(C) 2 8 ar(A)e(GI(B)SEF(C))
me (nat) me (Si’
' G1evl) A . -
G(F(A)®F(BaC)) —2Y8), q(F(A)e(F(B)®F(C)) (i) (GF(A)®GEF(B)®GF(C)
G(mg) G(Jf) Uég@l
Y UR R R Y
GF(A®(BaC)) (in)  G((F(A)@F(B)@F(C)) —&+(G(F(A)®F(B))®GF(C)
GF((Sf) G(”g) (nat) G’(Vg}g)@l
' G(vE) . vR . '
GF((A®B)®C) ® G(F(A®B)®F(C)) ® G(F(A®B))®GF(C))

Fig. 1. Coherence for F'; G

This treatment of functors is very closely related to the calculus we developed
in [BCS96] to handle ! and 7, and in a sense was almost implicit in that paper.
There are some differences, and it may be instructive to imagine treating !
and ? in the present manner, taking functor boxes as primitive instead of the
traditional storage boxes used in that paper.

To begin with, we suppose F: X — Y is a functor between linearly distributive

10



F(A®B) — @ | G(AeB) — B | H(AeB)

(lin) (lin) )

N NS

F(aeB) — 1@ | gaaeB) B KG(A®B)
H('@)\ (nat) KW
H(vg) (1in) H(G(A)®G(B)) B K(G(A)®G(B))
l/R
®
\ (lin) v
(Wer(B)) L1 ;e EBG(B)) (nat)  HG(A)@HG(B) KG(A)eKG(B)
JR (nat) R / Wi /
®
AF(A)eHF(B M.HF(A HG(B) HG(A)eKG(B)

HE(A)®KG(B)

Fig. 2. Coherence for «; 8 — vertical and horizontal

categories. To be able to handle this with proof nets, we suppose that there is a
“box-construction” on the nets for Y which takes a subnet f in X and produces
a component for Y. This component is represented as box which contains the
net f. Sequentialization proceeds by first checking that f sequentializes and
then treating the boxed f as a component in the larger net. These functor
boxes are represented graphically as shown in Figure 3 on the left. Note that
the box bears a label with the name of the functor. These functor boxes have
one input and one output; if the net f has more, then appropriate use of tensor
and par links must be made before the functor box is applied. (We shall relax
this condition soon in discussing monoidal and linear functors.) The half oval
through which the wire leaves the box is called the “principle port”; its role
will become clear later. Notice also the typing changes the box imposes on a

11



F(A) F(B)
F(A)\ JF(C)
ﬂ A
, [7] ﬂA B/C
Simple - ; Monoidal
functor box =y D functor box
F(B) P
F(D)

Fig. 3. Functor boxes

wire as it passes into or out of a box.

There are two obvious rewrites: an “expansion” which takes an identity wire
of type F(A) and replaces it with an identity wire of type A which is then
“boxed”, and a “reduction” which “merges” two functor boxes one of which
directly “feeds” into the next. As we shall see a generalization of this soon,
we shall leave the picture to the reader.

If we suppose that the functor F' is monoidal, then we can get a more interest-
ing situation, for then we may relax the supposition that the boxed subgraph
is “one-in-one-out” to allow multi-maps, or subgraphs that have many input
wires (but still just one output wire). Then the box rule looks like the circuit
in Figure 3 on the right, (where we take three as a generic number of inputs
for simplicity).

One might expect that we would have to add components representing the
two natural transformations mg, mt that are necessary for F' to be monoidal.
However, it is an easy exercise to show that these can be induced by the
formation rule for monoidal functor boxes: m,, is the case where f is the (® I)
node (two inputs, A, B and one output A ® B), and m~ is the case where f
is the (T I) node (no inputs and one output T).

The necessary reduction rewrite is shown in Figure 4 (we refer to this saying
one box “eats” the other).

In addition, we have the “expansion” rule mentioned before, and in the sym-
metric case we also need a rewrite that allows a “twist” to be brought outside
a box. These are shown in Figure 5

For a functor F' to be monoidal, recall there must be natural transforma-
tions mg: F(A) @ F(B) — F(A® B) and mt: T — F(T) satisfying certain
equations (as in Remark 2). We have already indicated what the nets are
for mg, mr. It is fairly straightforward to show that the equations are conse-
quences of the net rewrites given above, and that the rewrites correspond to

12



F(A)\ )F(C)

P [r i

| JA B/C | F(A) F(B) F(C)
; F(X) F(Z)
g | ||

F(X) F(7) ) a\g e
Riee —

1 f
| X /

Fig. 5. Expansion and twist rules

commutative diagrams, if F' is monoidal. For example, in Figure 6 we show
that equation (2) for monoidal functors, dealing with “reassociation”, is true
for any F' whose functor boxes satisfy the circuit rewrites we have given so far.
The others are similar. So this circuit syntax is indeed sound and complete
for monoidal functors. For comonoidal functors, we just use a dual syntax,
with the corresponding rewrites. Note then that for comonoidal functors, the
principle port will be at the top of the box (this is the role of the principle
port, to distinguish monoidal functors from comonoidal ones).

Finally, we extend the syntax of functor boxes to linear functors; in this case
we find that all that is necessary is to generalize the preceding to allow the
boxed subnet to have arbitrarily many inputs and outputs. So for the monoidal
component F of a linear functor F', the functor boxes will have the formation
rule shown in Figure 7, and the comonoidal component will have the dual rule

13




() ()

® &
& )
| ®

® | = | ® = | ®
& ® ®

® ®
| |

Fig. 6. Functor boxes are monoidal—equation (2)

Linear

functor box

Fig. 7. Linear functor box

(just turn the page upside down). Please note the typing of this formation
rule carefully: at the top of the box, the functor applied is the functor Fj
associated with the box, but at the bottom, only the wire that leaves through
the principal port gets an F, attached to it, the other wires get the comonoidal
F, attached to them. (The dual situation applies for the F, boxes.) This is
the role of the principal port in our notation (and is similar to the notation
used in [BCS96]). There may be only one principal port, though there may be
arbitrarily many other (“auxiliary”) ports.

As suggested, it is then quite easy to represent the v map as a boxed (& E)
node—the right output wire of the node passes through the principal port.
The three other linear strengths are given similarly: v} is the (& E) node
boxed with a F, box, the left output wire passing through the principal port.
The two v maps are given by the (® I') node boxed by the F box, with either
the right or the left input ports being the principal port, as appropriate.

14



Associated with these box formation rules are several rewrites. The expansion
rewrite remains as before, but the reduction rewrite must be generalized to
account for the more general f; this is done in the obvious fashion. Similarly,
in the symmetric case we generalize the rewrites that move a “twist” outside
a box; in fact, in the symmetric case it is convenient to regard the order of
inputs/outputs as irrelevant (as we did in [BCST)), so that these rewrites are
in fact equalities of circuits. In addition, we must account for the interaction
between F, and F boxes, which gives a series of rewrites that allow one box
to “eat” another whenever a non-principal wire of one type of box becomes the
principal wire of the dual type. We give an example of this in Table 1, along
with the other rules mentioned in this paragraph. The reader may generate the
dual rules. Note that in this Table we have illustrated circuits with crossings
of wires; in the noncommutative case, such crossings must not occur, so some
wires must be absent from these rewrites. The rewrites dealing with pulling
a “twist” out of a box are only relevant in the symmetric case of course. We
have illustrated one, where the “twisted” wires are inputs; it is also possible
that the “twisted” wires are outputs, and one may (or may not) be the wire
through the principle port.

To verify the soundness and completeness of these rules, we must verify that
any F' = (F,, F,) which allows such a calculus is indeed a linear functor,
and conversely, that any linear functor allows such rewrites. The former is
fairly straightforward, involving the reduction of a number of circuits, similar
to the rewrites in Figure 6 for monoidal functors. As for the latter, we must
verify first the existence of maps corresponding to the box formation rules, and
secondly, the commutativity of diagrams corresponding to the circuit rewrites.
To illustrate the first, suppose for example that f: (A B)®C — (X&Y)®Z,
then we can derive the “boxed” map as follows.

(Fy(A) ® Fy(B) ® Fo(C) —— s F,((A® B) & C)
B E (X oY) e 2)
N FaX®Y)®F,(Z)
0 (R(X) @ F(V) @ Fa(2)

The reader can see how using m and n (just as we did at the start of the deriva-
tion above) this may be extended to accommodate any number of auxiliary
ports.

As an illustration of a commutative diagram corresponding to one of the
rewrites, consider the rewrite where a monoidal box eats a comonoidal one,
when an auxiliary wire of the former becomes the principal wire of the latter.
To be specific, suppose each box has two input and two output wires, corre-

15



|| II
2
T
2
R

Table 1

Some reduction and expansion rewrites for functor boxes

sponding to maps f:B® C — D& Z and :A® D — X &Y. The circuit
consisting of the two boxes cut together is the left—lower path in the diagram
in Figure 8, and the circuit obtained when the boxes merge is the top-right
path. The commutativity is shown by the decomposition. The other rewrites
are treated similarly.

16



Fg(4) ® (F(B) ® F(C))

1®my

Y

F,(A) ® F, (BaC) —"e . F, (Ae(BoC)) L8/ . (Ag(De 7))

1®Fy(f) (nat) Fy (97)
Mg

Fy(A)® Fo (D7) F,((A®D)®Z)
1®Vg (lin)

Fig. 8. Validity of one of the box rewrite rules

F(A) Next we consider linear transformations. Given a: FF — G : X — Y,
for an object A of X there is a morphism ay: F/(A) — G(A), which
would be represented as a node in a circuit. We shall use the notation

G(A)  at left, which suppresses reference to the object A. To guarantee this

is a natural transformation we need some rewrites, which we shall leave to
the reader, as our first step will be to generalize them to the case when «
is monoidal, and then linear. In fact, it is sufficient to give the rewrites for
linear transformations, since restricting them to the monoidal syntax will give
the appropriate rewrites for that case, and indeed, restricting to the “one-in-
one-out” general case will give the rewrites for naturality. So let us suppose
a = (g, Q) is a linear transformation; then the rewrite of Figure 9 is an
equivalence, as is the dual one for a4, (and of course variants with other
numbers of auxiliary ports). We shall leave to the reader the simple exercise
of verifying that this characterizes linear transformations.

We can now use this graphical representation to show that a monoidal func-
tor between x-autonomous categories induces a linear functor between those
categories, and similarly that a monoidal transformation between monoidal
functors induces a linear transformation between the induced linear functors.
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Fig. 9. Rewrite rule for linear transformations

In short, the inclusion of x-autonomous categories into the category of linearly
distributive categories extends to an inclusion of 2—categories.

Suppose X, Y are symmetric x-autonomous categories, F: X — Y a mon-
oidal functor. Then F induces a linear functor in the manner described in the
introduction: F, = F, F, = (F((_)*))*.

In the noncommutative case, where there are two negations defined in X, Y,
we can define F, if F satisfies, in addition, that (F(A"1)) = (F(*4))*, in which
case Fy(A) is this common value. We can relax this condition somewhat, only
requiring a natural isomorphism instead of equality, at the extra expense of
explicitly keeping track of this isomorphism. For the moment, however, we
shall not make this additional generalization in order to keep things simple.

We have to define v%: F (A®B) — F,(A)®F,(B), which in this case becomes

R.F(A®B) — T® F(A® B)
T® 1

———Mﬂ%ﬁ@FﬁW@FM@B)

F(i4)' @ (F('4)) ® F(A® B))
’” F(A) @ F(‘A® (Ao B))
iﬁﬁLF&@ F((‘A® A) @ B)
IEBF(’)/GBI F(LA) (J_ @ B)
T B(A) @ F(B)

The other linear strengths are similarly defined.
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Next, if we are given a monoidal natural transformation a between mon-
oidal functors F, G between x-autonomous categories, we can define a linear
transformation o = (ag, o), where ag, = a and (ag)a = (@) (G(HA))*
— (F(H4))*.

Proposition 5 Given a monoidal functor F' and a monoidal natural transfor-
mation « as above, the induced pair Fy, Fy, of functors defines a linear functor,
and the induced pair oy, g of transformations defines a linear transformation.

Proof. All that must be done is to show that the required commutativity
conditions are met. There are essentially six diagrams (five for functors, one
for transformations) that we must verify, using only the monoidal forms of
the functor boxes. First, we give the reduced forms of several key maps below.
As in the Introduction, we shall use the notation F' = F,, F = F, in these
circuits (to save space).

F(A®B) F(A®B)
J_F(AJ_)
4 Ja B vl = | B| 4l AL
L A
®
F(A)®F(B) F(A)eF(B)

=)

Then to show that (Fg, F}) is linear, we could either show how to simulate
the general F; box and the comonoidal F}; box together with their rewrite
rules, or we could use the monoidal rewrites for the boxes above and show
that the essential five diagrams (and their duals) commute using the mon-
oidal boxes alone. The former we shall leave as an exercise (but note that the
comonoidal box is essentially what is illustrated by the circuits above for vy),
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Fig. 10. Validity of equation (5)

instead directly verifying the necessary commutative diagrams. The first dia-
gram (involving the unit 1) is quite simple, and we leave it to the reader. The
next two (involving repeated instances of v) are fairly similar, so we illustrate
only equation (5), which amounts to the equivalences in Figure 10. Equations
(7), (8) are handled in a similar manner, as illustrated by the equivalences in
Figure 11.

Finally, we must show that if a is a monoidal transformation, the induced
(g, @) is linear. The circuit that simulates the ay node is the a node with
negation links before and after to “turn around” the wires. So with this, there
is essentially one diagram to verify (the variants being similar), which amounts
to the equivalences in Figure 12. And with this we complete the proof that
the “de Morgan construction” actually produces linear functors and transfor-
mations. O

Remark 6 In fact, it is also true that a linear functor I between *x-autono-
mous categories is equivalent to the linear functor induced by the monoidal
functor Fy; that is, that F,(A)* is naturally isomorphic to F,(A'). We shall
leave to the reader the simple exercise of constructing the appropriate maps
that characterize linear negation, and showing the necessary coherence for
these maps [CS92].
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Fig. 11. Validity of equation (7)

Fig. 12. Validity of equation (11)

3 Linearly distributive and *-autonomous categories

We may summarize the preceding discussion as follows. Let x-sAUT be the 2—
category of (commutative) x-autonomous categories, monoidal functors, and
monoidal transformations, and let x-AUT be (the noncommutative analogue)
the category of bilinear categories (as defined in [CS97] for instance—these
are just noncommutative *-autonomous categories), monoidal functors F' such
that Y(F(A')) 2 (F(*A))*, and monoidal transformations.

Proposition 7 There is an inclusion of 2-categories U:x-sAUT — SLDC,
and there is an inclusion of 2—categories U: x-AUT — LDC.
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We want to construct right adjoints (or rather bi-adjoints) to these “forgetful”
2-functors U. This is closely related to the development of a generalization
of the notion of “nuclearity” (as defined for compact categories in [R88] and
[HR89]), which may be found in Appendix A below. The basic idea is that by
constructing the full subcategory of a linearly distributive category consisting
of the “complemented objects”, we in fact construct a x-autonomous category,
which is the essence of the desired right bi-adjoint. There is a necessary appeal
to the axiom of choice in this construction, which may be avoided at the
expense of some technical obfuscation; essentially the problem is that even
if every object of a category has a complement, that does not explicitly give
a * functor (nor even a * function, which suffices by [CS92]) without some
use of choice. In the Appendix we shall see that there are several ways of
constructing a x-autonomous category from a linearly distributive category;
these constructions are related, and we refer the reader to the Appendix for
details when necessary.

An object A of a linearly distributive category is said to be complemented if
there is an object B and maps 7: T — B® A, v: A ® B — 1 satisfying the
equations

(ug)’l; 1®7;0070 1;ué:1A

W hreLég1ey;ulf=15
This definition and the connection with nuclearity are described in detail in
the Appendix; see Definition 32 in particular. Then, to a symmetric linearly
distributive category X we assign the full subcategory C'(X) of complemented
objects. Provided sufficient idempotents split this is just the nucleus of the
category X. The category C'(X) is linearly distributive, and since each object
has at least one complement, then we may choose a negation for each object,
making the category x-autonomous. Note the use of the axiom of choice in this
construction. On 1- and 2-cells, C' is just defined by restriction. To verify that
this is well-defined on 1-cells, we need to know that linear functors preserve
complemented objects; this is proved in the Appendix. Then the following is
a routine exercise.

Proposition 8 C:SLDC — *-sAUT is a 2—functor, and moreover is a right
bi-adjoint to U.

The noncommutative case requires some more delicacy. One approach is to
mimic a construction due to M. Barr of the Chu space of a noncommutative -
autonomous (or bilinear) category [Ba95]. We present a simplified version first
in the commutative case, which will avoid the appeal to the axiom of choice
we needed above. Instead of taking C'(X) to be (essentially) the nucleus of X,
we construct it as follows. The objects of C'(X) are pairs (X, X'), where X is a
left complement of X', and so X is a right complement of X . In this case, the
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negation function is simple to define: using the % notation of x-autonomous
categories, we have (X, X")* = (X', X'). Morphisms of the category are pairs
of arrows of X, but contravariant in the second variable, so (f, f'): (X, X') —
Y, YN if f: X — Y and f: Y — X', satisfying the following commutativity
conditions.

!
Yoy B | yex T T X'® X
fel v T 1ef
YV 7 1 vey 19l | yigy

It is straightforward to show that this is indeed a x-autonomous category.

In the noncommutative case, we extend this idea by taking doubly infinite
sequences of objects (---, X 1, Xp, X1, - - -); more precisely, an object is a func-
tion Z — Obj(X) from the integers to the set of objects of X, so that the
0-position is readily identifiable in the sequence. Furthermore, we require of
such sequences that each pair (X;, X;;1) is a complementation pair. We sup-
press the complementation morphisms 7, 7 to keep the notation as simple as
possible, but they are an essential part of the definition of the objects of the
category. An arrow in this category is a doubly infinite sequence of arrows, with
the variance alternating, so as to be covariant at even positions, contravari-
ant at odd positions. These arrows must commute with the complementation
structure in the evident manner:

Xop @ Yo 1® fons| Xop @ Xopp Yon—1 ® Xy, M Xop—1 ® Xop

f2n®1 i 1®f2n Y

YvZn &® Yv2n+1 7 1 Yvanl &® Yv2n 7 1
T T X2n+1 @ X2n T T X2n ® X2n71
T IEBan T anEBl

YVQn—i—l ® YYQn f2n+1®1 X2n+1 ® YVQn YVQn @ YVQn—l ]-@an—l YVQn @ XQn—l

In this category, there are two evident negation functions. Again, we shall use
the * notation (so as not to conflict with the ( )+ notation). Given a sequence
(«++, X_1, X0, X1, ), we define the two objects
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('“7X—17X07X17'“)*:(“'7X07X17X27'“)
*('"7X71;X0;X17'"):("'7X727X71;X07"')

(In each case, just shift the sequence one position, right or left, as appropriate.)

Then it becomes straightforward to show that this category is bilinear, or non-
commutative x-autonomous; in fact, the proof is essentially given in [Ba95].
Moreover, with this construction of C'(X), we can then show the noncommu-
tative version of our main result.

Proposition 9 C:LDC — *-AUT is a 2-functor, and moreover is a right
bi-adjoint to U.

The point of saying this is a bi-adjunction (rather than an adjunction) is that
the triangle equalities required of an adjunction hold in this case only up to
natural equivalence. In both the symmetric and nonsymmetric cases we can
claim a bit more, however: for any A, the unit na of this bi-adjunction is a
natural equivalence, and so this is a bi-coreflection. For example, in the non-
symmetric case, this unit takes an object A of a x-autonomous category A to
the sequence (---,%4, A, A+, --.), and it is clear that any other sequence “cen-
tered” on A must be isomorphic to this one. The counit of the bi-adjunction
evaluates sequences at 0.

4 ! and ? in SLDC

In this section, we shall show that given a linearly distributive category with
storage (in the sense of [BCS96]), the “exponential” functors ! and ? form a
linear functor I, given by I, = !, I, = 7. Then storage may be characterized
by requiring in SLDC that ! be a cotriple whose cofree coalgebras naturally
carry cocommutative comonoid structure.

We begin with some preliminaries. First we note that symmetric linearly dis-
tributive categories may be presented “internally” in SLDC. We recall that
there is a 2—category M, the “2—theory” of symmetric monoidal categories,
whose objects are generated by a single generator, with the property that
a symmetric monoidal category may be represented by a product-preserving
2—functor M — CAT into the 2—category of categories.

Proposition 10 For any X in SLDC, there is a canonical 2—functor X: M
— SLDC (taking the generator of M to X) which preserves products exactly,

and moreover, (-) induces a fully faithful 2—functor SLDC — Lax(M, SLDC).

More elementarily, this means that in SLDC, each object is canonically a mon-
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oidal category; that is, for a symmetric linearly distributive category X, there
is a linear functor @: X x X — X given by @, = ® and @, = @, and a linear
functor T: 1 — X given by Ty, = T and T, = L. Further, functors in SLDC
are “lax”, in the sense that m = (m,n) is a linear transformation (F, F);
— @) F for any linear functor F', where m, n are the natural transformations
expressing the monoidal (comonoidal) property of F, (F}), and similarly for
the units.

Proof. We can define

i
viP=(AeB)@A®B)— A® (B (A @ B))

106L a
— S A®(A®B®B)) — (Ao A)® (B® B

and similarly for the other linear strengths. Note there is a use of symmetry
in the use of the “non-planar” §%. Some generalization of the present result
could be made to the “non-planar weakly distributive categories” of [CS92],
but seems unnecessary in the present context.

There are some diagrams to verify. The simplest approach is to use the nets
described in [BCST]; in the present cases, these diagrams essentially (after
simple reductions) amount to Kelly-Mac Lane graphs, with some variations in
where the crossings occur, and so the necessary equalities hold quite trivially.
The reduced normal forms of three of the nets involved may be found in
Figure 13. (We have omitted two that are very similar to those for D° D7;
only a few nodes need different labels, the wiring remaining the same.) Note
that all the v’s, mg and ng have the same underlying graph, with appropriate
labelling of the nodes. The nets D' refer to the paths of the diagrams from
Definition 1, with the subscript indicating which path (top, bottom, left, or
right) is intended. We leave dual cases to the reader.

The corresponding linear strengths for the units are quite trivial (essentially
being given by unit isomorphisms). To verify that (m, n) is linear involves some
standard circuit rewrites (or some diagram chasing) using functor boxes, which
we shall leave as an exercise. O

Next, we turn to the matter of ! and ? as linear functors. In [BCS96] we
defined a notion of relative tensorial strength, and required that ? be rela-
tively strong, ! relatively costrong. Here, we note that in the presence of the
triple and cotriple structure there is an alternate presentation of the notion
of relative tensorial strength in terms of the linear strengths that we have
introduced in the definition of linear functors.
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Fig. 13. Nets needed to show coherence for &

Lemma 11 Suppose given a monoidal category X (whose tensor is denoted
®) and two endofunctors ! and 7 on X, so that 7 is a triple. Then there
is a bijective correspondence between natural transformations ¢: ' (A @& 7 B)
— 1 A® ? B and natural transformationsv: ! (A®B) — ! A® ? B. Similarly,
suppose given a monoidal category X (whose tensor is denoted ®) and two

endofunctors ! and ? on X, so that ! is a cotriple. Then there is a bijection
between : TAQ !'B — ?(A® !B) andV: 7A® !B — ?7(A® B).

Remark Note that this lemma really does not depend on any special prop-
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Fig. 14. Diagrams verifying the bijection ¢ < v

erties of the monoidal category, and could indeed be stated in terms of any
bifunctor instead of the tensor product or par.

Proof. We prove the first statement; the second is a simple dual. Given a

natural transformation ¢: ! (A® ? B) — ! A® ? B, define a natural transfor-

(1en) ¢
mation vy = ! (A @ B) B (A® ?B) — ! A® ? B, and conversely,

given v: 1 (A® B) — !A® ?B define ¢, = ! (A® ?B) — 4@ 7B
10
s @ ? B. Here, 7 is the unit of the triple 7, and p is its “multipli-

cation”. These constructions are inverse, as may seen from the diagrams of
Figure 14. 0O

Next, we note that this makes ! a linear functor. (We shall use the definitions
and notation of [BCS96] in this section.)

Lemma 12 If X is a linearly distributive category with storage, then ! (as
defined above) is a linear functor. Moreover, (e,n), (J, 1), (e,1), and (d, c) are
linear transformations.

Proof. Again, this is most easily shown using the nets [BCS96]. For the most
part the net rewrites are straightforward; we illustrate only a representative
sample, and just give the common reductions of nets corresponding to equal
maps. (The reader ought to be familiar with the net rewrites of [BCS96].)
To begin with, we note that the condition that all the relevant functors and
transformations are monoidal is part of the definition of a linearly distributive
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Fig. 15. Nets needed to show ! is linear
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(e,7) (6, ) (e,9) (d,c)

Fig. 16. Nets needed to show some transformations are linear

category with storage. So we just have to define the linear strengths, which is
essentially the content of Lemma 11, and show the corresponding coherence
conditions are satisfied. To show ! is linear, there are essentially five diagrams
(and their duals) to verify; the common reductions for three of these are shown
in Figure 15; again D' refers to the i*" diagram from Definition 1. To conserve
space, we have omitted D® which is similar to D° and D?® which is similar
to D7: in each case, the main alteration involves switching the wire carrying
the n node with the wire passing through the principal port. To show that
there are linear transformations given by the pairs (e,7), (4, 1), (e,i), and
(d, c), there are essentially four diagrams to verify (and their duals), one for
each transformation. These are illustrated in Figure 16, where the common
reduced form is shown in each case. O
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Proposition 13 The following are equivalent:

(1) X is a symmetric linearly distributive category with storage [BCS96].
(i1) In SLDC X has a cotriple } carrying a compatible cocommutative comon-
oid structure.

Remark 14

(i) To require of a cotriple ! that it carries a compatible cocommutative
comonoid structure means the following:
(a) for each object A, ! A is naturally a cocommutative comonoid,
(b) the comonoid structure maps are coalgebra maps, and
(c) the coalgebra structure map 6: ! A — ! A is a comonoid map.
This means that the diagrams given below must commute.

A d 1A® 1A

1A & T l(s 5
®
0 m o NA® 1A
m
!
mA—¢ 171 " A 'd 1(1A® ! A)

1A—d 14014

1A € T
) d®06 N\ /

it A
ma—4d . nagna

(ii) These diagrams are part of the definition in [BCS96, pp. 330-332]. In
clause (7i) of the proposition above they are interpreted in the 2—category
SLDC. Thus we automatically obtain the dual version of the diagrams and
the coherence with respect to linear strength.

(iii) Having a monoidal cotriple ! carry a compatible cocommutative comon-
oid structure amounts to having the tensor lift to a cartesian product in
the Eilenberg—Moore category of coalgebras. Hence, considering the two
components of I, and using the evident duality, we can remark that the
Eilenberg-Moore category for ! will have products, and the Eilenberg-
Moore category (of algebras) for ? will have coproducts.

Proof (of Proposition 13) All the basic structure (in both directions) is
assured by the previous lemmas; all that remains to do is to show that the
appropriate diagrams commute. The direction (i)=- (i) is essentially done in
Lemma 12. For the converse, we have some further work, to show that the
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strength of € and the costrength of ¢, likewise the strength of i, ¢ and the
costrength of e, d, follow from the linearity of the various functors and trans-
formations. However, it is easy to check all the diagrams given in [BCS96, pp.
328, 329, 331] that involve strength or costrength, to verify that they commute
when the strength and costrength are induced from the linearity of ! and the
corresponding transformations. There are eight diagrams to check (plus their
duals); we illustrate these in Figure 17 with just four, which show how the
various elements come into play: the various functors and transformations are
(monoidal (mon) and) linear (in), the functor ? is a triple (uip), the algebra
maps must be monoid maps (alg), and so on.

For the rest of the conditions, [BCS96, pp. 325, 326, 330, 331(top), 332] not
involving strength or costrength, those on pp. 325, 326, 330(top) just express
that various transformations are monoidal, which is included in the assumption
of linearity, and the rest are those above which define the “compatibility”
assumption. This completes the proof. O

We can state the content of the previous Proposition in the following fashion,
which internalizes the ! and 7 structure. We note first that there is a 2—
category, Mell, which is the 2-theory of symmetric monoidal categories with !
(or MELL categories), and an inclusion M — Mell, corresponding to the “for-
getful” interpretation which to a MELL category assigns the underlying mon-
oidal category. Furthermore, we shall define a 2—category SLDC, consisting of
symmetric linearly distributive categories with storage (i.e. those X (together
with the specified 1) that satisfy the conditions of the previous Proposition),
and linear functors and transformations that preserve the ! structure.

Corollary 15 For any object (0-cell) (X,1) in SLDC,, there is a canonical
2—functor X:Mell — SLDC (taking the generator of Mell to X and the !
of Mell to 1) which preserves products exactly. Moreover, (:) induces a fully
faithful 2—functor SLDC, — Lax(Mell, SLDC), which is the pullback in CAT of
the 2—functor from Proposition 10 along the forgetful interpretation.

SLDC Lax(M, SLDC)

SLDC, Lax(Mell, SLDC)

Finally, a special case that is worth mentioning:

Corollary 16 A (symmetric) x-autonomous category X with a cotriple ! car-
rying a compatible cocommutative comonoid structure is a linearly distributive
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Fig. 17. Linear implies strong
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category with storage.

This result is almost automatic, in view of the inclusion of x-autonomous
categories into LDC. The only point here is that in x-autonomous categories
the duality guarantees the de Morgan dual structure, so one only need refer
to !, and ? comes along for free. In the next section we shall see a similar
story for cartesian products.

5 Adding the additives

In this section we shall look at the effect of requiring of a linearly distributive
category X that it have a linear functor z: X x X — X, given by %z, = x and
%, = 4+, which acts as a cartesian product in the 2-category SLDC, so that
linear transformations corresponding to diagonal and projections are present.
We shall see that this amounts to having distributive cartesian product and
coproduct, distributive not with respect to each other, but with respect to
tensor and par, as one would expect, for example, in a FILL? and coFILL
category, where the adjoints to tensor and par guarantee such distributivity
because of exactness.

We begin with the simple matter of “linear” terminal objects in linearly dis-
tributive categories. This will give some idea of what to expect when we con-
sider linear products.

Definition 17 X has a linearly presented, or more simply, a “linear”, ter-
minal object if there is a linear constant functor 1:1 — X, 1 = (1,0) and a
linear transformation 5:1dx — 1': X — X, 1 = (). These must satisfy the
usual equation for a terminal object: 14 =idg : 1 —1:1 — X.

1
Here 1’ is the canonical composite X — 1 — X. Note that this is equivalent
to the usual equation for a terminal object (in the monoidal coordinate) and
an initial object (in the comonoidal coordinate).

Notational overload: please note that ! here represents the unique map from
an arbitrary object to the terminal object, and has nothing to do with the
“storage” functor of Section 4. Since the former usage was as a functor and
the current usage is as a transformation, there ought to be no confusion.

Before proceeding, we justify the notation: the proof of the following lemma

3 See the Appendix to recall the meaning of these terms.
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is trivial.

Lemma 18 If X has a linear terminal object, then it has a terminal object
and an initial object in the usual sense, gwen by 1,1, respectively. For an

object A, the unique maps A —) 1 and 0 — A are given by 15(A), 15 (A)
respectively.

More importantly, linear terminal objects are distributive, and indeed, this
gives a simpler equivalent presentation of this notion.

Proposition 19 If X is a linearly distributive category, the following are
equivalent.

(1) X has a linear terminal object 1.
(11) X has a terminal object 1, an initial object 0, and these are “distributive”,
in the sense that 1 is preserved by PAR and 0 is preserved by TENSOR:

00— AR0 A®l—1

are isomorphisms for any object A.

Proof. (i) = (ii) We consider the case with the terminal object (the other
case is dual). First note that the constant linear functor 1 comes equipped
with a map v = 1/ 11— 0@ 1, which induces a map 1 — A@1 for any object

A, namely 1 o1 —> A@ 1. So the only thing we need to verify is that
the composite A®1 — 1 — A @ 1 is the identity; this is then an instance of
the linearity of the transformation I. (Explicitly, this becomes an instance of
equation 11 with B = 1.)

(11)) = (i)  Conversely, it is trivial that 1, is monoidal and 1, is comonoidal.
The linear strengths v are given using the inverses to the terminal morphisms
(which are assumed to be isomorphisms). And the linearity of the functor 1
and of the transformation ! is again trivial, using the fact that all the objects
of the form X @1 are terminal, and all objects of the form X ®0 are initial. O

Remark 20 Note that there is actually some structure involved in demanding
of a “point” 1 — X of X that it be linear. This raises the question “what
are the linear points of a linearly distributive category?” Clearly, such a linear
point is a pair of objects of X, and moreover, this pair must lie in the nucleus
of X. Also, since the (single) object of 1 is both a commutative monoid and a
commutative comonoid, the ® component of the pair must be a commutative
monoid, and the other component must be a cocommutative comonoid. We
may call such pairs “nuclear monoids”, and then it is easy to see that the
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collection of such nuclear monoids is just the collection of linear points. It is
easy to see that the category of linear points has coproducts.

Now we turn to the matter of “linear products”.

Definition 21 A [linearly distributive category X has linearly presented, or
simply “linear”, binary products if there is a linear functor »: X x X — X,
%y = X and zg = +, and linear transformations A:Idx — 2o Ax : X — X,
A= (AV), and 12 — 15 X x X — X, m = (p,b), (i =0,1).
Furthermore, these must satisfy the standard equations for cartesian products

(as in [LS86] for example).

A;mgzrmy =idy i x —zx: X X X — X
Aw=id:id —id : X — X (i=0,1)

Note that given our definition of composition of linear transformations, these
are equivalent to the usual equations for products (in the monoidal coordinate)
and coproducts (in the comonoidal coordinate).

As with terminal and initial objects, the following is evident.

Lemma 22 If X has linear products, then it has cartesian products and co-
products in the usual sense, given by %y, %, respectively. For the products, the
diagonal and the projections are given by Ay, m;, respectively, and for the co-
products the codiagonal and the injections are given by A, m;e respectively.

More importantly, linear products are distributive in the appropriate sense.

Lemma 23 If X has linear products, then the induced cartesian product is
preserved by par, in that there is a natural transformation

R
Ve

(A®B)x (A®C) — (A+ A) @ (Bx ) —s A (B x O)
inverse to the canonical transformation

(1®po, 1®p1)
AGB(BXC)—)(AGBB)X (AGBC).

Dually, the induced cartesian coproduct is preserved by tensor; that s, there
s a natural transformation

Ae(B+0) 225 (Ax A) @ (B+C) — (A@ B) + (A& C)

which s inverse to the canonical transformation

(1®bo|1®b1)
(A®B)+(Ae0) M 1o (B+0).

34



Proof. The proof of this lemma is a fairly routine exercise in diagram chasing.
For example, to show that we have an isomorphism (A® B) + (A® C) —
A® (B + C) we must show the two composites are the identities. For the
identity on (A ® B) + (A ® (), it suffices to show the two components are
bg, b1 respectively. The diagram for by is given below, the one for b; is similar.

R

A®(B+C) A%, (AxA)®[B+C) Yo, (A®B)+(AR®C)
1®b0 1®b0 (lin) bO
A®B — A8l (axA)9B B | 4gB

\ J

For the composite giving the identity on A ® (B + ('), the following diagram
does the trick. (Note the left-hand path is the identity on A ® (B + C') since
+ is a coproduct.)

R
AR (B+C) — ABL | (AxA)@(B+C)— 2 . (A®B)+(A®C)
®(bo+b1) (nat) 1®(bo+b1) (nat) (1®by)+(1®b1)
((B+C)+(B+C))-A8L, (Ax A)®((B+C)+(B+C)) L2s (AR(B+C))+(AR(B+C))

\ (lin) /
(B+C)

Moreover, such distributivity is equivalent to the full linear structure.

Proposition 24 If X is a linearly distributive category, the following are
equivalent.

(i) X has linear binary products.

(11) X has distributive binary products and coproducts, in the sense that X
15 preserved by PAR and + is preserved by TENSOR. In other words, the
canonical maps

35



(1®po, 1®p1)

A® (Bx(C)— (A@B)x (A ()

(1®bo|1®b1)

(A®B)+ (A®(C) ————— > A® (B+ ()

are natural isomorphisms for any objects A, B, C.

Proof. (i) = (ii) has been proved in Lemma 23, so we only need to show
(1) = (i). Given suitably “distributive” products and coproducts, we define
the linear functor z and the corresponding linear transformations in the evi-
dent way. The linear strengths may be defined in terms of distributivity; for

example, the transformation v? is

, , (bod1)x(b101) , , ,
(A®B)x (ADB) — 5 (A+A)® B) x (A+A) & B

A+ A) @ (BxB)

where 0 is the isomorphism given by distributivity.

We must then show that this does indeed make x and the appropriate trans-
formations linear, and moreover, that these two ways of defining cartesian
products and coproducts are equivalent. This means checking a number of
coherence diagrams, which is just a routine diagram chase. Before sketching
some of the details, however, we can verify that at the level of morphisms
things do agree: if we have linear products and use the induced distributivity
to define “new” linear distributions v, then indeed, these are just the origi-
nal v’s we started with. For instance, in the case of Vg, this amounts to the
commutativity of the following diagram.

(AxA") ® (B+B') =- (AxA') ® (B+DB') Vg (A® B) + (A'® B
A®1 (poxp1)®1 (Po®1)+(p1®1)
(Ax A x (Ax A"))® (B + B') Vg (AxA)®B)+ (Ax A')® B')

In the other direction, given a distributivity dx: (A @® B) X (A® C) — A&
(B x ('), then the induced distributivity (via the induced v) is the outer path
in the diagram below. The diagram commutes (so the induced distributivity
equals the original one) because the inner square commutes by naturality, and
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the triangle is the identity on (A ® B) x (A ® C') by the coproduct equalities.

(A®B) x (A®C) —=» (A®B) x (A®C) Ox A® (B xC)
(bo®1) x (by 1) (Vel) x (Vel) vel
((A+A4) ® B) x ((A+A) & C) Ox (A+A) @ (BxO)

The verification of the coherence diagrams for linearity is a straightforward
diagram chase; the key trick is to break the diagrams into smaller ones by
reducing to components. We shall illustrate this with one example, equation 8,
which is the following diagram.

- 1®((1®bo) x (16b1)) N
(AxA®((BaC)x(B'aC")) (AxANR((Be(C+C"))x(B'd(C+C")))
{(Po®po, p1®p1) 180,
(A®(BaC))x(A'®(B'@C")) (AxAN®((BxB"a®(C+C"))
ok x ok ok
(A®B)®C) x (A'®B"®C") (Ax A)®(BxB')®(C+C")
(1@by) x (1) {Po®po, p1®p1)®1
(A®B)®(C+C"))x ((A®B)a&(C+C")) (A®B)x(A'®B"))®(C+C")
N 7 )

The bottom arrow 0/, is inverse to (py @ 1,p; @ 1), and so can be reversed.
Hence we can establish the diagram’s commutativity by looking instead at the
commutativity of the two diagrams corresponding to the two projections into
(A® B)® (C 4+ (') and into (A® B) & (C + C'). We shall illustrate the first
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projection.

(AxAN®((BeC)x(B'@C")) (Ax A ((Be(C+C"))x (B'®(C+C")))
Po®Po Po®Po 1®0
AR(B®C) 1 o(14h (AxANQ((BxB"&(C+C"))
\®( ol ¥ Po®(po®1)
of A®(B&(C+C")) of
(A®B)®C 5L (Ax A" ®(BxB'))e(C+C")
1®bg (po®po) @1 (Po®po, p1®p1) D1
(A®B)®(C+C") ((A®B)x (A'®B"))®(C+C")
N Y,
po®1

We can state the content of the previous Proposition in terms of the 2—theory
Mad of symmetric monoidal “cartesian” (finite product) categories. As before
there is an inclusion M — Mad which allows the evident 2—category SLDC
of cartesian linearly distributive categories to formed by a pullback.

Corollary 25 For any X in SLDC, there is a canonical 2—functor X: Mad
— SLDC (taking the generator of Mad to X ) which preserves products exactly.

Moreover, (-) induces a fully faithful 2-functor SLDC, — Lax(Mad, SLDC),
which is the pullback in CAT of the 2—functor from Proposition 10 along the
forgetful interpretation.

SLDC Lax(M, SLDC)

|

SLDCy— Lax(Mad, SLDC)

Note in this, as well as in Corollary 15, we are in effect showing how this
framework forces the correct definitions once one has the “naive” theory in
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the monoidal context.
Again, the special case of x-autonomous categories is worth mention:

Corollary 26 A x-autonomous category X with finite products is a linearly
distributive category with linear finite products.

Proof. This is automatic, in view of the inclusion of x-autonomous categories
into LDC; again, the duality guarantees the de Morgan dual structure. O

It is worth comparing the semantics for linear logic developed from the current
perspective of linear structure with the semantics defined in [Se89], as clarified
by Bierman [B95]. If one has a s-autonomous category with products and a
cotriple ! carrying a compatible cocommutative comonoid structure, then it is

straightforward to show that there are isomorphisms ! A® ! B ! (Ax B)

and T —s !1. In fact, one does not even need linearity for the products,
and so this result is true in the 2-theory Mellad of monoidal categories with
storage and products. This was first noticed by Bierman [B95]. So these “Seely
isomorphisms” exist in any linearly distributive category with linear storage
and products. Once one knows that, it is routine to verify that the semantics
of the storage rule given in [Se89,B95] (in terms of the “Seely isomorphisms”)
coincides with that given in [BCS96]; since the rest of the semantics in the
two treatments is just the same, this reassures us that in this context, the
semantics of [Se89,B95] and the semantics in terms of linearly distributive
categories with storage and distributive products coincide.

Remark 27 We end with the following observation concerning the existence
of linearly distributive categories with linear products. Hu and Joyal [HJ97,
and other papers therein cited] point out that if one forms the limit—colimit
completion of a linearly distributive category, the result will also be linearly
distributive. But since the linearity of the product follows from distributivity,
and since distributivity clearly follows from their notion of softness, we may
conclude that this bicompletion process will give linear products.
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A Appendix: Nuclearity for linearly distributive categories

In this appendix we wish to show the connection between nuclear objects
and complemented objects, and to prove that linear functors preserve com-
plemented objects, which is the key ingredient in constructing a right adjoint
to U: x-AUT — LDC. First we need some definitions, and to be sure that the
notion we define in linearly distributive categories is a good generalization of
the corresponding notion for symmetric monoidal categories (in particular, in
x-autonomous categories), we shall need some further discussion about nucle-
arity in linearly distributive categories. So we begin with somewhat of a long
digression, before returning to our theme of linear functors.

We shall use the following terminology: a FILL category is a full multiplica-
tive category, in the sense of Hyland and de Paiva [HP93], that is to say, a
linearly distributive category which is also monoidal closed. We shall consider
both symmetric and nonsymmetric FILL categories (as described in [CS97]),
as well as the following variants: a left FILL category is a linearly distributive
category with a “left” internal hom —o, and a right FILL category is a linearly
distributive category with a “right” internal hom o—. The dual notions, where
the closed structure is defined with respect to the cotensor (“par”), will be
referred to as left (with ©) or right (with ©) coFILL categories.

Definition 28 Suppose C is a linearly distributive category; we shall say that
a morphism f: A — B is left nuclear if there are morphisms

7T —=C@&B v A®C — L
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such that the following commutes.

A f B
ukt ug
AR T 1&B
1®7’f ’Yf@l

L
A0lCe Bl (AeCf®B
A left nuclear object A is an object A whose identity map is left nuclear.

Similarly, a morphism f: A — B is right nuclear if there are morphisms
T - B C,v/:C®A — L so that the evident diagram commutes; an
object is right nuclear if its identity map is right nuclear.

We shall refer to the object C' in these definitions as the witness of the nucle-
arity of f. When it is necessary to be more explicit, we shall say the triplet
(C,7p,7y) witnesses the nuclearity of f.

In terms of circuits, this says f is left nuclear if there is an equivalence as
shown at the left below, and right nuclear if an equivalence as on the right
below.

for some vf,rf,vf,Tf.

In the symmetric case, the notions of left and right nuclear coincide, since one
can easily convert witnesses of left nuclearity into witnesses of right nuclearity
via a “twist”.

In a (left) FILL category, where we have an adjoint to - ® X for each X, any
vr: A®C — L can be “curried” to produce curry(ys):C — A —o L, allowing
the re-expression of the definition of nuclearity. In particular, this means that

in place of 7, we can use the evaluation map A® (A — 1) N 1, and adjust
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7r to include the curried ~;:
Treurry(vp) @1: T — (A—o L)@ B

This allows the re-expression of (left) nuclearity in a (left) FILL category as
follows. (As usual, we write A+ for A —o L; note this is an “intuitionistic”
negation, and is not an involution.)

Lemma 29 f is left nuclear in a left FILL category if and only if there is a
ng: T — AL @® B such that the following commutes.

A M L A®(At® B)
7 ¢
B

where ny = ugfl; 1®ny and ¢ = 6f;eved 1; ué.

There is a dual lemma, for right FILL categories, using ‘A = L o— A as the
witness of nuclearity; we shall leave the statement of that to the reader. The
proof of these lemmas is a simple exercise, and is also left to the reader.

This is clearly equivalent to the form used in [CS97], and is the natural gener-
alization of the definition given by Rowe [R88] and by Higgs and Rowe [HR89]
in the symmetric monoidal closed case. Our observation is that the assump-
tion of closedness may be dropped, generalizing the definition to the context
of linearly distributive categories. A basic property of nuclear maps is that
they form a two-sided ideal, which we now establish.

Lemma 30 The left (respectively right) nuclear maps of any linearly distribu-
tive category form a 2-sided ideal.

Proof. We must establish that if f is nuclear (as witnessed by 7¢,7y), then
so is h; f; g for any (suitably “typed”) h,g. This is straightforward: 7,7, =
Tr;1® g and v,y = h®1; 7. That these maps work is immediately apparent
from the following circuits. O
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[ H=H7]
I

Proposition 31 In any linearly distributive category T and L are left and
right nuclear, and if f, g are (left or right) nuclear maps, then so are f®g, f®g.
More precisely:

(i) the left nuclearity of T is witnessed by 7 = (ug) ™ T — L& T and
yr =uk: T ® L — L; the right nuclearity is similar, and the witnesses
for L are dual.

it) In addition, if f,qg are left nuclear, then the left nuclearity of f ® g s

(i) if f.9 , y g
witnessed by Yigg = g; 1 Q07 1® (v, @ 1); 1@ ul;vr and Treg = T4;1 @
(W1 @ (rp ® 1);1 @ 65 a5 Again, right nuclearity witnesses are
stmilar, and the witnesses for f @ g are dual.

Proof. The proofs for | and & are dual to those for T and ®, so we show
only the latter. That the witnesses given above satisfy the required coherence
conditions is obvious from the following circuits. O

Notice that this result does not use the symmetry of the tensors, so it is true
for the noncommutative case.

Definition 32 In a linearly distributive category, an object A is a left com-
plement if there is an object B (a right complement) and complementa-
tion morphisms 75,8 making A left nuclear and B right nuclear. We say
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(A, 78 4% B) is a complementation pair; frequently we shall abuse the no-
tation by dropping reference to some parts of this 4-tuple of entities, referring
to just (A, B) or possibly just (T¥,7%) as a complementation pair.

In circuits, this means we have this pair of figures.

and B =

Lemma 33 If (75,75 and (7§',7%) are complementation pairs witnessing
that A is left complemented, then there is a unique isomorphism h: B — B’
such that the equation below for h holds.

Proof. It suffices to show that A as above is an isomorphism. However it is
clear that k (also as above) is its inverse. 0O

Proposition 34 Complemented objects are closed under ®, ®; T and L form
a complementation pair.

Proof. This is routine and essentially just follows the ideas of the proof of
Proposition 31. We shall give an alternate proof at the end of the Appendix
for the symmetric case (though the routine approach just outlined shows the
result holds in the noncommutative case as well). 0O

The observation we would have liked to make was that the full subcategory of
(left) complemented objects forms a (left) *-autonomous category (and simi-
larly for right). However, there is a problem in the nonsymmetric case: a right
complement may not itself be left complemented. We say, therefore, that an
object is strongly left complemented in case it is left complemented and
its right complement is strongly left complemented. (This is a recursive defi-
nition.) There is another minor matter: we have shown [CS92] that a linearly
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distributive category which has a negation function is x-autonomous, but we
need an appeal to the axiom of choice if we wish to conclude that a linearly
distributive category has this structure if we only know that every object has
a (strong) complement. (The commutativity conditions do follow from one
another; that is not the problem.) In Section 3 we discuss a way around this
matter using sequences of objects, but the simpler approach does have its
appeal, even if the ontological commitments are more severe.

The following result is now obvious.

Theorem 35 In any linearly distributive category the strongly left comple-
mented objects determine a full subcategory which is left x-autonomous.

Of course there are dual “right” notions. In the symmetric case we can drop
the notions “strong”, “left”, and “right” to obtain a x-autonomous category
from the complemented objects.

Now we shall connect these two notions of complemented and nuclear objects.
If A is a left nuclear object, its left nuclearity can be witnessed by several
objects and morphisms. Consider two such objects B and B’, so

These maps, when composed, give idempotents on their source and targets,
namely, the right nuclear maps resulting from reversing the action of the com-

46



plementation:

We call such idempotents right complement idempotents; note that such
an idempotent e: B — B may be decomposed into the maps (ug)™"; 77 ®
;0% 1@ ~5;ul: B — B for a left nuclear object A. In a similar fashion
right nuclear objects induce left complement idempotents (the circuit has the
dual shape U). Note that not all idempotents are of this type; not even all
nuclear idempotents (that is, idempotents that are nuclear maps) are com-
plement idempotents. The essential ingredient that makes these idempotents
special is that they embody witnesses of nuclearity, and so the dual composite
is the identity on the corresponding nuclear object. For example, using the
decomposition above, (uf) 5 1® 756875 @ 1;uk: A — A is the identity on
A.

This class of idempotents may seem somewhat strange and arbitrary (for in-
stance, it is not closed under composition); however, it is just what we need
to compare nuclear objects with complemented ones.

Proposition 36 If C is a linearly distributive category, then left nuclear ob-
jects are left complements if and only if all right complement idempotents split.

Proof. (=) Suppose e is a left complement idempotent (as above), so that
e=(ug) A ®L 05 1@ ug: B — Band (ug) 5 107403y @ Lug: A
— A is the identity on A. Then A is left nuclear, so is a left complement, with
a right complement, C' say. It then is an easy exercise to show that the evident
"U-shape maps “through” C split e: r = (ul)1; 7{®1; 0% 1@+5;ul: C — B
and s = (u) 78 ® 1,681 @ ~5;uf: B — C. (The calculation is similar to
that below in the proof of the converse: place the two MU U shapes together,
cancel the middle, and see the result is e one way, and 1 the other.)

(<) Let (74,74) witness the left nuclearity of A; then form the (by now
familiar MU shape) right complement idempotent h = (u5)™'; 74 ® 1;6%;1 &
7A;ug:C’ — C. This may be split: h = e;;my, and my;e, = 1. Set 7§ =
Taen ® 1 and 7§ = 1 ® my; y4; then the following simple calculation shows
that (7§,79) is a complementation pair. O
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Note that if all left nuclear idempotents split, so that certainly the right com-
plement idempotents split, then the notion of right nuclear and right comple-
mented object coincide. While nuclear idempotents are not generally comple-
ment idempotents, when all nuclear idempotents split these two notions do
coincide.

Lemma 37 In a linearly distributive category, any right nuclear idempotent
whose corresponding left nuclear idempotents split, is a right complement idem-
potent, where a “corresponding idempotent” is obtained by reversing the action
of the witness maps.

Proof. Let e be a right nuclear idempotent. Then we have

@ @
e = and =¢
@® @

is a left nuclear idempotent. ¢’ can then be split: ¢/ = r;s, where s;r = 1¢.
Now, 7.;1® r = 7¢ and s ® 1;79, = v¢ witnesses the left nuclearity of C', by
the argument above. This means e is a right complement idempotent. O

Now we return to the FILL category case. There, the special nature of com-
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plementation simplifies matters.

Proposition 38 If C is a left FILL category, then every left nuclear object is
a left complement.

This is an immediate consequence of the following lemma.

Lemma 39 In a left FILL category, all right complement idempotents split.

Proof. Let e be a right complement idempotent, so that e = (ul)™ 77 ®
1; 08 1@75; ul: B — B for aleft nuclear object A. As we saw in the discussion
before Lemma 29, this means 7% can be curried to give a map ¢: B — A' so
that 7% = 1®c; ev. There is a canonical map A+ — B induced by 7§, and it is
evident that e is the composite of this with ¢. We have to show that the other
composite, viz. the induced right idempotent on A, is the identity. The circuit
equivalences below show this, starting with the circuit for the idempotent on
At and ending with the expanded normal form of the identity on A+. O

Remark A linearly distributive category may have no nontrivial nuclear
objects and yet the category may have nuclear idempotents. These, when
suitably split, will themselves generate a nontrivial x-autonomous category.

Finally, we are ready to return to the main theme of this paper, with the
following proposition.

Proposition 40 Linear functors preserve nuclear morphisms and objects.

Specifically, if F: X — Y is a linear functor of linearly distributive categories,
and if f is (left) nuclear in X, then both F,(f), F,(f) are (left) nuclear in Y,
and similarly for right nuclear maps. Moreover, if the left nuclearity of f is
witnessed by an object C, so that there are maps 7;: T — C@® B and v AQC

oL
— | such that f = A—>A®T—>A®(CEBB) (AC)® B
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Yl u
L 1eB Y B, then the (left) nuclearity of F(f) is witnessed by Fy,(C):

Fg(y) &

T ", F(T) — Fy(C® B) — F,(C) @ Fa(B)

ve Fo(vy)

Fy(4) ® Fy(C) —= Fy(A®C) ——— Fy(l) — L
and dually for Fi,(f), and similarly for right nuclearity.

Proof. We shall do the case of the left nuclearity of F,(f), leaving the other
cases to the reader. We have given the appropriate witness above; we must
check that the appropriate composition gives Fg(f). This amounts to showing
that the outer paths of the rectangle in Figure A.1 commute. Note that the
left-bottom path is just the image under F' of the composite that gives f since
f is nuclear. (We have indicated in the cells whether they commute because
of naturality (nat), because the functor is linear (in), or the functor is monoidal
(mon).) The reader might like to try this using circuits: it is easy to get a simple
“one-line” proof corresponding to the diagram decomposition in Figure A.1.
If one puts a F}, functor box around each side of the defining circuit equation
expressing that f is left nuclear, and then splits the F, box around the U
circuit (involving the 7 and  nodes) using the fourth equivalence from Table 1,
one obtains a new U shape involving a F, box with a 7 node inside, and a
F, box with a v node inside, showing that F,(f) is left nuclear with F,(C)
as witness. With the other cases done dually, this completes the proof. O

Corollary 41 Linear functors preserve complemented objects.

Specifically, if F: X — Y is a linear functor of linearly distributive categories,
and if A is (left) complemented in X, then both F(f), F,(f) are (left) com-
plemented in Y, and similarly for right complements.

Proof. The proof is immediate from the Proposition and proof above; note
that the witness of the left nuclearity of (say) the identity on F,(A) will be
F,(B), where B is the right complement of A. O

Note that this gives another proof, at least in the symmetric case, that com-
plemented objects are closed under ®, @, and that T and L form a comple-
mentation pair, since we just need to apply the preceding Corollary to the
linear functor &.
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