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Abstra
t

This paper introdu
es a notion of \linear fun
tor" between linearly distribu-

tive 
ategories that is general enough to a

ount for 
ommon stru
ture in linear

logi
, su
h as the exponentials ( ! , ? ), and the additives (produ
t, 
oprodu
t),

and yet when interpreted in the do
trine of �-autonomous 
ategories, gives the fa-

miliar notion of monoidal fun
tor. We show that there is a bi-adjun
tion between

the 2{
ategories of linearly distributive 
ategories and linear fun
tors, and of �-

autonomous 
ategories and monoidal fun
tors, given by the 
onstru
tion of the

\nu
leus" of a linearly distributive 
ategory. We develop a 
al
ulus of proof nets for

linear fun
tors, and show how linearity a

ounts for the essential 
oheren
e stru
ture

of the exponentials and the additives.

Introdu
tion

What is the \appropriate" notion of a fun
tor between linearly (formerly

\weakly") distributive 
ategories? In [CS92℄ we were 
ontent to think of the

fun
tors between linearly distributive 
ategories as being those whi
h pre-

served all the stru
ture on the nose. However, this very restri
tive notion does

not allow the expression of 
ommon linear stru
ture su
h as the exponentials
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and the additives. The purpose of this paper is to present, as a basis for ex-

pressing linear stru
ture, a broader 
lass of fun
tors: the \linear fun
tors" and

their natural transformations.

Of 
ourse, one ought not to expe
t that all stru
ture of interest in linear logi


is des
ribed by linear fun
tors. For example, in light linear logi
 [G95℄ the tra-

ditional exponential operators are no longer monoidal fun
tors, as pointed out

in [G95,KOS97℄, and so do not form a linear fun
tor. Also, in full intuistionis-

ti
 linear logi
 [HP93℄ the internal hom is not a linear fun
tor. Nonetheless, it

should be 
lear from this paper that the notion of a linear fun
tor is a useful

organizational devi
e whi
h does explain basi
 features of linear logi
.

The notion of a linearly distributive 
ategory with the exponentials was ex-

plored in [BCS96℄. In this paper we show that most of the 
oheren
e diagrams

of [BCS96℄ are a 
onsequen
e of demanding that the obvious fun
torial stru
-

ture for exponentials be linear, i.e. 
onstru
ted from linear fun
tors and linear

transformations. That the formulation of the exponentials should have su
h a

simple genus is not only satisfying but is also a strong 
on�rmation that the

ideas underlying [BCS96℄ were 
orre
t.

In 
ontrast to the situation for the exponentials, where a formulation already

existed, we started this paper with little idea of what extra 
onditions might

be required for the 
orre
t notion of additives (produ
ts and 
oprodu
ts) in

a linearly distributive setting. (Note that in a �-autonomous setting there is

little to worry about: the duality guarantees that if there are produ
ts, then

there are also 
oprodu
ts, and vi
e versa, and further, the 
losed stru
ture

guarantees the obvious distributivity for these.) In keeping with the thesis

that linearity ought to guide one in adding stru
ture to linearly distributive


ategories, we let the obvious linear fun
torial stru
ture suggest the axiom-

atization. The result, whi
h we dis
uss in the last se
tion of the paper, is

that this turns out to be equivalent to the mu
h simpler stru
ture of appro-

priately distributive produ
ts and 
oprodu
ts. However, the linear stru
ture

is not without purpose: we shall develop a general 
ir
uit 
al
ulus for linear

fun
tors, using \fun
tor boxes". Although we do not dis
uss proof 
ir
uits for

the additives in the present paper, it will be 
lear that the indu
ed 
al
ulus in

the 
ase of the additives is equivalent to the additive proof boxes Girard used

in his original des
ription of proof nets for the additives.

Besides allowing the expression of the above stru
ture, a desiderata for these

linear fun
tors is that, when spe
ialized to the �-autonomous 
ase, they be-


ome an almost transparently simple notion. This in fa
t is the 
ase: a linear

fun
tor between �-autonomous 
ategories is simply a monoidal fun
tor: the

additional linear stru
ture is then for
ed by the setting. This allows one to

redis
over linear fun
tors by ba
kward engineering the full stru
ture implied

by a monoidal fun
tor between �-autonomous 
ategories.
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LetX andY be 
ategories with involutions (for example �-autonomous). Then

any 
ovariant fun
tor F :X �! Y indu
es a \
omplement" fun
tor

F = (F (( )

?

))

?

:X �! Y

and any natural transformation �

A

:F (A) �! G(A) indu
es a natural \
om-

plement" transformation

�

A

= �

?

A

?

: (G(A

?

))

?

�! (F (A

?

))

?

:

Thus, the morphisms between �-autonomous 
ategories are a
tually pairs of

fun
tors related by the 
omplementation indu
ed by the involution. But that

is not all: if we demand that the �rst fun
tor of the pair, say, is monoidal with

respe
t to the tensor then, this will mean that the se
ond fun
tor is for
ed

to be 
omonoidal with respe
t to the 
otensor (or \par"). Furthermore, some

pe
uliar transformations are introdu
ed:

�:F (A�B) �! F (A)� F (B)

and by 
omplementation

�:F (A)� F (B) �! F (A�B):

Essentially these are, respe
tively, a relative 
ostrength and strength as de-

s
ribed in [BCS96℄. Our dis
ussion of linear fun
tors between linearly distribu-

tive 
ategories 
an be viewed as an abstra
tion of these ideas.

The relationship between �-autonomous 
ategories and linearly distributive


ategories may be viewed as an abstra
tion of the relationship between Bool-

ean algebras and distributive latti
es. Just as any distributive latti
e has

a largest sublatti
e whi
h is Boolean (obtained by 
onsidering the 
omple-

mented elements) so a linearly distributive 
ategory has a largest full sub
at-

egory whi
h is �-autonomous (also 
onsisting of 
omplemented obje
ts). This

is 
alled the \nu
leus" of the linearly distributive 
ategory. The extra
tion of

the nu
leus is a
tually 2-fun
torial with respe
t to linear fun
tors and trans-

formations. In fa
t, the in
lusion of the full sub2{
ategory of �-autonomous


ategories into the 2{
ategory of linearly distributive 
ategories with linear

fun
tors and transformations has a right bi-adjoint given by formation of the

nu
leus.

The ideas behind the formation of the nu
leus are of some independent in-

terest and have a 
onsiderable history. We in
lude, therefore, a relatively

self-
ontained appendix whi
h des
ribes the generalization of the work of

Rowe [R88℄ and Higgs and Rowe [HR89℄ (whi
h was done in the setting of

monoidal 
losed 
ategories) to linearly distributive 
ategories. We also show

that nu
lear maps are preserved by linear fun
tors.
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The paper will have this stru
ture: �rst we shall give the formal de�nition

of a linearly distributive (or simply \linear") fun
tor of linearly distributive


ategories, together with the 
orresponding notion of linear transformation,

so that the resulting stru
ture is a 2{
ategory LDC. Next we introdu
e a 
al-


ulus of \fun
tor boxes" whi
h will allow us to use proof 
ir
uits to analyze

the stru
ture of linear (and monoidal) fun
tors. Using this 
al
ulus of proof


ir
uits, we show that any monoidal fun
tor between �-autonomous 
ategories

indu
es a linear fun
tor. This holds in the non
ommutative 
ase as well, pro-

vided the fun
tor is \well-behaved" with respe
t to the two negations present

in that 
ontext. This means that there is an in
lusion of the 2{
ategory �-AUT,

of �-autonomous 
ategories and monoidal fun
tors and transformations, into

LDC. To 
onstru
t a right bi-adjoint to this, we give the de�nition of nu
learity

for linearly distributive 
ategories and show that linear fun
tors preserve the

nu
leus, that the nu
leus is �-autonomous (modulo some use of the axiom of


hoi
e), and that this gives the bi-adjun
tion dis
ussed above.

Next we shall illustrate the 
on
eptual advantage of this de�nition by showing

that ! and ? may be des
ribed by saying that there is a linear 
otriple

on a linearly distributive 
ategory X whose free 
oalgebras are 
omonoids.

Finally, we shall apply these ideas to the matter of adding additive stru
ture:

requiring a linearly distributive 
ategory to have \produ
ts" (in the sense

of an appropriate adjoint linear fun
tor to the diagonal) will automati
ally

endow the 
ategory with 
artesian produ
ts and 
oprodu
ts, whi
h satisfy the

obvious distributivity laws with respe
t to tensor and par.

A word about terminology and notation. The reader will have already noti
ed

that we have adopted the term \linearly distributive 
ategory" for what pre-

viously we have 
alled \weakly distributive 
ategory", 
ontinuing the pra
ti
e

begun in [CS97℄. This we view as a minor matter. More 
ontroversial per-

haps is our insisten
e upon the use of � for \par" and + for the 
oprodu
t

\sum". As 
ategory theorists we are unrepentant upon this point, and there

the matter must rest.

1 Linear fun
tors

For the full de�nition of a linearly distributive 
ategory, we refer the reader to

[CS92,CS92j,BCST℄ (where the term \weakly distributive 
ategory" is used).

Brie
y, a linearly distributive 
ategory is a 
ategory with two tensors �;�

and two strength natural transformations, making ea
h strong (respe
tively


ostrong) with respe
t to the other. These two strength transformations shall
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be denoted by:

Æ

L

L

: A� (B � C) �! (A� B)� C

Æ

R

R

: (B � C)� A �! B � (C � A):

A symmetri
 linearly distributive 
ategory is a linearly distributive 
ategory

both of whose tensors are symmetri
. In this 
ase there are these additional

indu
ed strength transformations:

Æ

L

R

: A� (B � C) �! B � (A� C)

Æ

R

L

: (B � C)� A �! (B � A)� C:

This data must satisfy standard 
oheren
e 
onditions, dis
ussed in [CS92℄,

whi
h we shall not repeat here.

Also, re
all that for a fun
tor F to be monoidal there must be natural trans-

formations m




:F (A)�F (B) �! F (A�B) and m

>

:> �! F (>) satisfying the

equations

u




= m

>

�1;m




;F (u




) (1)

:>� F (A) �! F (A)

a




; 1�m




;m




= m




�1;m




;F (a




) (2)

: (F (A)� F (B))� F (C) �! F (A� (B � C))

(and in the symmetri
 
ase, the next equation as well.)

m




;F (





) = 





;m




:F (A)� F (B) �! F (B � A) (3)

For a fun
tor G to be 
omonoidal, there must be natural transformations

n

�

:G(A� B) �! G(A)�G(B) and n

?

:G(?) �! ? satisfying equations dual

to those above.

Next we introdu
e a notion of fun
tor between linearly distributive 
ategories;

these ought to be 
alled \linearly distributive fun
tors", but we have preferred

the shorter \linear fun
tor".

De�nition 1 Given linearly distributive 
ategories X, Y, a linear fun
tor

F :X �! Y 
onsists of:

(i) a pair of fun
tors F




; F

�

:X �! Y so that F




is monoidal with respe
t to

�, and F

�

is 
omonoidal with respe
t to �,
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(ii) natural transformations (
alled \linear strengths")

�

R




:F




(A� B) �! F

�

(A)� F




(B)

�

L




:F




(A� B) �! F




(A)� F

�

(B)

�

R

�

:F




(A)� F

�

(B) �! F

�

(A� B)

�

L

�

:F

�

(A)� F




(B) �! F

�

(A� B)

satisfying the following 
oheren
e 
onditions. (These are listed in groups

given by the evident dualities. In ea
h group we illustrate one with a


ommutative diagram; only the equations 
orresponding to these diagrams

are numbered.)

F




(?�A)

F




(u

L

�

)

-

F




(A)

�

R




?

6

u

L

�

F

�

(?)� F




(A)

n

?

� 1

-

?� F




(A)

�

R




;n

?

� 1; u

L

�

=F




(u

L

�

) (4)

�

L




; 1� n

?

; u

R

�

=F




(u

R

�

)

u

L




�1

;m

>

� 1; �

R

�

=F

�

(u

L




�1

)

u

R




�1

; 1�m

>

; �

L

�

=F

�

(u

R




�1

)

F




((A�B)� C)

F




(a

�

)

-

F




(A� (B � C))

�

R




? ?

�

R




F

�

(A�B)� F




(C) F

�

(A)� F




(B � C)

n

�

� 1

? ?

1� �

R




(F

�

(A)� F

�

(B))� F




(C)

a

�

-

F

�

(A)� (F

�

(B)� F




(C))

F




(a

�

); �

R




; 1� �

R




= �

R




;n

�

� 1; a

�

(5)

F




(a

�

); �

L




; 1� n

�

= �

L




; �

L




� 1; a

�

m




� 1; �

R

�

;F

�

(a




)= a




; 1� �

R

�

; �

R

�

�

L

�

� 1; �

L

�

;F

�

(a




)= a




; 1�m




; �

L

�
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F




((A�B)� C)

F




(a

�

)

-

F




(A� (B � C))

�

L




? ?

�

R




F




(A�B)� F

�

(C) F

�

(A)� F




(B � C)

�

R




� 1

? ?

1� �

L




(F

�

(A)� F




(B))� F

�

(C)

a

�

-

F

�

(A)� (F




(B)� F

�

(C))

F




(a

�

); �

R




; 1� �

L




= �

L




; �

R




� 1; a

�

(6)

�

R

�

� 1; �

L

�

;F

�

(a




)= a




; 1� �

L

�

; �

R

�

F




(A)� F




(B � C)

1� �

R




-

F




(A)� (F

�

(B)� F




(C))

m




? ?

Æ

L

L

F




(A� (B � C)) (F




(A)� F

�

(B))� F




(C)

F




(Æ

L

L

)

? ?

�

R

�

� 1

F




((A�B)� C)

�

R




-

F

�

(A�B)� F




(C)

1� �

R




; Æ

L

L

; �

R

�

� 1=m




;F




(Æ

L

L

); �

R




(7)

�

L




� 1; Æ

R

R

; 1� �

L

�

=m




;F




(Æ

R

R

); �

L




1� �

L




; Æ

L

L

; �

L

�

� 1= �

L

�

;F

�

(Æ

L

L

);n

�

�

R




� 1; Æ

R

R

; 1� �

R

�

= �

R

�

;F

�

(Æ

R

R

);n

�

F




(A)� F




(B � C)

1� �

L




-

F




(A)� (F




(B)� F

�

(C))

m




? ?

Æ

L

L

F




(A� (B � C)) (F




(A)� F




(B))� F

�

(C)

F




(Æ

L

L

)

? ?

m




� 1

F




((A�B)� C)

�

L




-

F




(A�B)� F

�

(C)

1� �

L




; Æ

L

L

;m




� 1=m




;F




(Æ

L

L

); �

L




(8)

�

R




� 1; Æ

R

R

; 1�m




=m




;F




(Æ

R

R

); �

R
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1� n

�

; Æ

L

L

; �

R

�

� 1= �

R

�

;F

�

(Æ

L

L

);n

�

n

�

� 1; Æ

R

R

; 1� �

L

�

= �

L

�

;F

�

(Æ

R

R

);n

�

Remark 2 In the 
ommutative 
ase, it is possible to drop the requirement

that the �

L

's exist, de�ning them via the symmetry of the tensor and par.

Equivalently, we 
ould keep the presentation above and add the extra diagrams

that express su
h de�nition, namely �

R




; 





= F




(





); �

L




, and its dual.

Next, we address the question of the appropriate notion of natural transfor-

mation. Following the ideas outlined in the Introdu
tion, we are led to the

following de�nition. Re
all that for a natural transformation � to be mon-

oidal, the following equations must be satis�ed.

m




;� = �� �;m




:F (A)� F (B) �! G(A� B) (9)

m




;� = m




:> �! G(>) (10)

A 
omonoidal natural transformation must satisfy the dual 
onditions.

De�nition 3 Given F;G:X �! Y, linear fun
tors between linearly distribu-

tive 
ategories, a linear transformation �:F �! G 
onsists of a pair of natural

transformations: a monoidal transformation �




:F




�! G




and a 
omonoidal

transformation �

�

:G

�

�! F

�

. These must satisfy the following 
oheren
e 
on-

ditions.

F




(A�B)

�




-

G




(A�B)

�

R




? ?

�

R




F

�

(A)� F




(B) G

�

(A)�G




(B)

H

H

H

H

Hj

1� �




�

�

�

�

��

�

�

� 1

F

�

(A)�G




(B)

�




; �

R




;�

�

� 1= �

R




; 1� �




(11)

�




; �

L




; 1� �

�

= �

L




;�




� 1

1� �




; �

L

�

;�

�

=�

�

� 1; �

L

�

�




� 1; �

R

�

;�

�

=1� �

�

; �

R

�

Proposition 4 Linearly distributive 
ategories, linear fun
tors, and linear

transformations form a 2{
ategory, whi
h we shall denote LDC. If we restri
t

to symmetri
 linearly distributive 
ategories, we obtain a 2{
ategory denoted

SLDC. These 2{
ategories are 
losed under produ
ts.
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Proof. Identity maps are the standard identity fun
tors and transformations.

(These are obviously linear.) Linear fun
tors 
ompose in the obvious way:

(F ;G)




= F




;G




and (F ;G)

�

= F

�

;G

�

. The strength

F ;G

�

R




is de�ned as

F ;G

�

R




= G




(

F

�

R




);

G

�

R




; the other linear strengths are de�ned similarly. (Here

F

�

R




indi
ates the � for the fun
tor F , and so forth.)

For transformations, we have two types of 
omposition. If F;G;H:X �! Y,

�:F �! G and �:G �! H, then (�; �)




= �




; �




and (�; �)

�

= �

�

;�

�

. If

F;G:X �! Y, H;K:Y �! Z, �:F �! G, and �:H �! K, then (�; �)




=

�




;K(�




) and (�; �)

�

= K(�

�

); �

�

. (We have used the same symbol for both

verti
al and horizontal 
omposition of transformations|the 
ontext ought to

make 
lear whi
h is intended at any time.) Note that naturality implies that

�




;K




(�




) = H




(�




); �




, (and similarly for the � 
ase), so this gives an

alternate de�nition; this also guarantees the validity of the inter
hange law.

H




(F




(A))

�




-

K




(F




(A))

H




(�




)

? ?

K




(�




)

H




(G




(A))

�




-

K




(G




(A))

Now there are several 
oheren
e 
onditions to 
he
k here. Three of the dia-

grams needed for F ;G are given in Figure 1; we omit two as they are very

similar to other diagrams. The diagrams for verti
al and horizontal 
omposi-

tion of transformations are given in Figure 2. The 
ells marked (lin) 
ommute by

the 
orresponding 
oheren
e 
ondition on F;G; �; �; : : :, as appropriate. The


ells marked (nat) 
ommute by naturality. Note that in these Figures, we have

abbreviated the fun
tors and transformations using the notation F




= F ,

F

�

=

^

F , and so forth, in order to save spa
e. Using appropriate duality,

this 
ompletes the proof that these form 2{
ategories. As for 
losure under

produ
ts, that is quite trivial (the monoidal and 
omonoidal 
omponents are


onstru
ted pointwise), and shall be left to the reader. 2

2 Cir
uits for linear fun
tors

In [BCST℄ we developed a 
al
ulus of graph rewrites for proof nets (\
ir
uits")

for linearly distributive 
ategories; in the present note we shall extend that

system to be able to handle fun
tors as well. We shall be most interested

in linear fun
tors, but on the way we shall see how ordinary fun
tors and

how monoidal (and dually 
omonoidal) fun
tors may be dealt with as well.
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GF (A�(B�C))

GF (a

�

)

�

GF ((A�B)�C)

G(�

R




)

? ?

G(�

R




)

G(

^

F (A)�F (B�C))

(lin)

G(

^

F (A�B)�F (C))

�

R




?

�

�

�
�R

G(1��

R




)

�

�

�
�	

G(n

�

�1)

?

�

R




^

G

^

F (A)�GF (B�C)

(nat)
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^

F (B))�GF (C)

1��

R




? ?

n

�

�1

^

G

^

F (A)�(
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a

�

�

(

^

G

^

F (A)�

^
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^
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GF (?�C)
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�

)

-

GF (C)
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)

?

(lin)

G(u

L

�

)
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�
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�
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^
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�
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-

^

G(?)�GF (C)

n

�

�1

-

?�GF (C)

GF (A)�GF (B�C)

1�G(�

R




)

-

GF (A)�G(

^

F (B)�F (C))

1��

R
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GF (A)�(

^
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^

F (B)�GF (C))
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(nat)
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Æ
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GF (A�(B�C))

(lin)

G((F (A)�

^

F (B))�F (C))

�
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^
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^

F (B))�GF (C)

GF (Æ

L
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?
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?

(nat)

?

^

G(�
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�

)�1

GF ((A�B)�C)
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R




)

-

G(

^

F (A�B)�F (C))

�

R




-

^

G(

^

F (A�B))�GF (C))

Fig. 1. Coheren
e for F ;G

This treatment of fun
tors is very 
losely related to the 
al
ulus we developed

in [BCS96℄ to handle ! and ? , and in a sense was almost impli
it in that paper.

There are some di�eren
es, and it may be instru
tive to imagine treating !

and ? in the present manner, taking fun
tor boxes as primitive instead of the

traditional storage boxes used in that paper.

To begin with, we suppose F :X �! Y is a fun
tor between linearly distributive
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(lin)

^

H(A)�H(B)

�

�

�

�

�R

1��

�

�

�

�

�	

�̂�1

�

�

�

�

�R

1��

�

�

�

�

�	

^

��1

^

F (A)�G(B)
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-
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^
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^
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^
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^
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�
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(nat)

�
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�

�R
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�

�

�

�	

^

H(�̂)�1

�

�

�

�R

1��

�

�

�

�	

^

��1

^

H

^

F (A)�HF (B)

1�H(�)

-

^

H

^

F (A)�HG(B)

^

H

^

G(A)�KG(B)

�

�

�

�R

1��

�

�

�

�	

^

H(�̂)�1

^

H

^

F (A)�KG(B)

Fig. 2. Coheren
e for �;� | verti
al and horizontal


ategories. To be able to handle this with proof nets, we suppose that there is a

\box-
onstru
tion" on the nets forY whi
h takes a subnet f inX and produ
es

a 
omponent for Y. This 
omponent is represented as box whi
h 
ontains the

net f . Sequentialization pro
eeds by �rst 
he
king that f sequentializes and

then treating the boxed f as a 
omponent in the larger net. These fun
tor

boxes are represented graphi
ally as shown in Figure 3 on the left. Note that

the box bears a label with the name of the fun
tor. These fun
tor boxes have

one input and one output; if the net f has more, then appropriate use of tensor

and par links must be made before the fun
tor box is applied. (We shall relax

this 
ondition soon in dis
ussing monoidal and linear fun
tors.) The half oval

through whi
h the wire leaves the box is 
alled the \prin
iple port"; its role

will be
ome 
lear later. Noti
e also the typing 
hanges the box imposes on a
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f

�

� �

F (A)

A

B

F (B)

F

Simple

fun
tor box

f

�

� �

F (B)

B

D

F (D)

F

F (C)

C

F (A)

A

Monoidal

fun
tor box

Fig. 3. Fun
tor boxes

wire as it passes into or out of a box.

There are two obvious rewrites: an \expansion" whi
h takes an identity wire

of type F (A) and repla
es it with an identity wire of type A whi
h is then

\boxed", and a \redu
tion" whi
h \merges" two fun
tor boxes one of whi
h

dire
tly \feeds" into the next. As we shall see a generalization of this soon,

we shall leave the pi
ture to the reader.

If we suppose that the fun
tor F is monoidal, then we 
an get a more interest-

ing situation, for then we may relax the supposition that the boxed subgraph

is \one-in-one-out" to allow multi-maps, or subgraphs that have many input

wires (but still just one output wire). Then the box rule looks like the 
ir
uit

in Figure 3 on the right, (where we take three as a generi
 number of inputs

for simpli
ity).

One might expe
t that we would have to add 
omponents representing the

two natural transformations m




; m

>

that are ne
essary for F to be monoidal.

However, it is an easy exer
ise to show that these 
an be indu
ed by the

formation rule for monoidal fun
tor boxes: m




is the 
ase where f is the (� I)

node (two inputs, A;B and one output A � B), and m

>

is the 
ase where f

is the (> I) node (no inputs and one output >).

The ne
essary redu
tion rewrite is shown in Figure 4 (we refer to this saying

one box \eats" the other).

In addition, we have the \expansion" rule mentioned before, and in the sym-

metri
 
ase we also need a rewrite that allows a \twist" to be brought outside

a box. These are shown in Figure 5

For a fun
tor F to be monoidal, re
all there must be natural transforma-

tions m




:F (A) � F (B) �! F (A � B) and m

>

:> �! F (>) satisfying 
ertain

equations (as in Remark 2). We have already indi
ated what the nets are

for m




; m

>

. It is fairly straightforward to show that the equations are 
onse-

quen
es of the net rewrites given above, and that the rewrites 
orrespond to

12



f

�

� �

F (B)

B

Y

F

F (C)

C

F (A)

A

g

�

� �

Y

D

F (D)

F

F (Z)

Z

F (X)

X

F (Y )

=)

g

f

�

F

� �

F (X)

F (A) F (B) F (C)

F (Z)

X

A B C

Z

Y

D

F (D)

Fig. 4. Box-eats-box rule

�

F

� �

=)

F (A) F (A)

A

�

F

f

�

F

f

=)

� � � �

Fig. 5. Expansion and twist rules


ommutative diagrams, if F is monoidal. For example, in Figure 6 we show

that equation (2) for monoidal fun
tors, dealing with \reasso
iation", is true

for any F whose fun
tor boxes satisfy the 
ir
uit rewrites we have given so far.

The others are similar. So this 
ir
uit syntax is indeed sound and 
omplete

for monoidal fun
tors. For 
omonoidal fun
tors, we just use a dual syntax,

with the 
orresponding rewrites. Note then that for 
omonoidal fun
tors, the

prin
iple port will be at the top of the box (this is the role of the prin
iple

port, to distinguish monoidal fun
tors from 
omonoidal ones).

Finally, we extend the syntax of fun
tor boxes to linear fun
tors; in this 
ase

we �nd that all that is ne
essary is to generalize the pre
eding to allow the

boxed subnet to have arbitrarily many inputs and outputs. So for the monoidal


omponent F




of a linear fun
tor F , the fun
tor boxes will have the formation

rule shown in Figure 7, and the 
omonoidal 
omponent will have the dual rule
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j

�

j

�

j

�

j

�

� �

� �

j

�

j

�

j

�

j

�

� �

=)

j

�

j

�

j

j

j

j

j

j

�

�

�

�

�

�

� �

� �

� �

j

�

j

�

j

j

j

j

j

j

�

�

�

�

�

�

� �

(= (=

Fig. 6. Fun
tor boxes are monoidal|equation (2)

f

�

� �

F




(B)

B

Y

F




(Y )

F

F




(C)

C

F




(A)

A

F

�

(Z)

Z

F

�

(X)

X

Linear

fun
tor box

Fig. 7. Linear fun
tor box

(just turn the page upside down). Please note the typing of this formation

rule 
arefully: at the top of the box, the fun
tor applied is the fun
tor F




asso
iated with the box, but at the bottom, only the wire that leaves through

the prin
ipal port gets an F




atta
hed to it, the other wires get the 
omonoidal

F

�

atta
hed to them. (The dual situation applies for the F

�

boxes.) This is

the role of the prin
ipal port in our notation (and is similar to the notation

used in [BCS96℄). There may be only one prin
ipal port, though there may be

arbitrarily many other (\auxiliary") ports.

As suggested, it is then quite easy to represent the �

R




map as a boxed (� E)

node|the right output wire of the node passes through the prin
ipal port.

The three other linear strengths are given similarly: �

L

�

is the (� E) node

boxed with a F




box, the left output wire passing through the prin
ipal port.

The two �

�

maps are given by the (� I) node boxed by the F

�

box, with either

the right or the left input ports being the prin
ipal port, as appropriate.
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Asso
iated with these box formation rules are several rewrites. The expansion

rewrite remains as before, but the redu
tion rewrite must be generalized to

a

ount for the more general f ; this is done in the obvious fashion. Similarly,

in the symmetri
 
ase we generalize the rewrites that move a \twist" outside

a box; in fa
t, in the symmetri
 
ase it is 
onvenient to regard the order of

inputs/outputs as irrelevant (as we did in [BCST℄), so that these rewrites are

in fa
t equalities of 
ir
uits. In addition, we must a

ount for the intera
tion

between F




and F

�

boxes, whi
h gives a series of rewrites that allow one box

to \eat" another whenever a non-prin
ipal wire of one type of box be
omes the

prin
ipal wire of the dual type. We give an example of this in Table 1, along

with the other rules mentioned in this paragraph. The reader may generate the

dual rules. Note that in this Table we have illustrated 
ir
uits with 
rossings

of wires; in the non
ommutative 
ase, su
h 
rossings must not o

ur, so some

wires must be absent from these rewrites. The rewrites dealing with pulling

a \twist" out of a box are only relevant in the symmetri
 
ase of 
ourse. We

have illustrated one, where the \twisted" wires are inputs; it is also possible

that the \twisted" wires are outputs, and one may (or may not) be the wire

through the prin
iple port.

To verify the soundness and 
ompleteness of these rules, we must verify that

any F = (F




; F

�

) whi
h allows su
h a 
al
ulus is indeed a linear fun
tor,

and 
onversely, that any linear fun
tor allows su
h rewrites. The former is

fairly straightforward, involving the redu
tion of a number of 
ir
uits, similar

to the rewrites in Figure 6 for monoidal fun
tors. As for the latter, we must

verify �rst the existen
e of maps 
orresponding to the box formation rules, and

se
ondly, the 
ommutativity of diagrams 
orresponding to the 
ir
uit rewrites.

To illustrate the �rst, suppose for example that f : (A�B)�C �! (X�Y )�Z,

then we 
an derive the \boxed" map as follows.

(F




(A)� F




(B))� F




(C)

m�1;m

�����! F




((A� B)� C)

F




(f)

����! F




((X � Y )� Z)

�

L




��! F




(X � Y )� F

�

(Z)

�

R




�1

����! (F

�

(X)� F




(Y ))� F

�

(Z)

The reader 
an see how usingm and n (just as we did at the start of the deriva-

tion above) this may be extended to a

ommodate any number of auxiliary

ports.

As an illustration of a 
ommutative diagram 
orresponding to one of the

rewrites, 
onsider the rewrite where a monoidal box eats a 
omonoidal one,

when an auxiliary wire of the former be
omes the prin
ipal wire of the latter.

To be spe
i�
, suppose ea
h box has two input and two output wires, 
orre-
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�

F




f

�

F




f

==

� � � �

�

�

�

L

L

L

�

�

T

T

�

�

�

B

B

�

�

A

A

B

B

B

�

�

�

F




� �

=)

F




(A)

f

�

� �

F




g

�

� �

F




=)

g

f

�

F




� �

f

�

� �

F




g

F

�

=)

g

f

�

F




� �

�

� �

Table 1

Some redu
tion and expansion rewrites for fun
tor boxes

sponding to maps f :B � C �! D � Z and g:A � D �! X � Y . The 
ir
uit


onsisting of the two boxes 
ut together is the left{lower path in the diagram

in Figure 8, and the 
ir
uit obtained when the boxes merge is the top{right

path. The 
ommutativity is shown by the de
omposition. The other rewrites

are treated similarly.
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F




(A)� (F




(B)� F




(C))

1�m




?

F




(A) � F




(B�C)

m




-

F




(A�(B�C))

F




(1�f)

-

F




(A�(D�Z))

1�F




(f)

?

(nat)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�:

m




?

F




(Æ

L

L

)

F




(A)� F




(D�Z) F




((A�D)�Z)

1��

R




?

(lin)

?

F




(g�1)

F




(A)� (F

�

(D)� F




(Z))

�

�

�

�

�

�

�

�

�

�	

�

R




F




((X�Y )�Z)

Æ

L

L

?

(nat)

?

�

R




(F




(A)�F

�

(D))�F




(Z)

-

�

R




F

�

(A�D)�F




(Z)

-

F

�

(g)�1

F

�

(X�Y )�F




(Z)

?

n

�

(F

�

(X)� F

�

(Y ))� F




(Z)

Fig. 8. Validity of one of the box rewrite rules

�

F (A)

G(A)

Next we 
onsider linear transformations. Given �:F �! G : X �! Y,

for an obje
t A of X there is a morphism �

A

:F (A) �! G(A), whi
h

would be represented as a node in a 
ir
uit. We shall use the notation

at left, whi
h suppresses referen
e to the obje
t A. To guarantee this

is a natural transformation we need some rewrites, whi
h we shall leave to

the reader, as our �rst step will be to generalize them to the 
ase when �

is monoidal, and then linear. In fa
t, it is suÆ
ient to give the rewrites for

linear transformations, sin
e restri
ting them to the monoidal syntax will give

the appropriate rewrites for that 
ase, and indeed, restri
ting to the \one-in-

one-out" general 
ase will give the rewrites for naturality. So let us suppose

� = (�




; �

�

) is a linear transformation; then the rewrite of Figure 9 is an

equivalen
e, as is the dual one for �

�

, (and of 
ourse variants with other

numbers of auxiliary ports). We shall leave to the reader the simple exer
ise

of verifying that this 
hara
terizes linear transformations.

We 
an now use this graphi
al representation to show that a monoidal fun
-

tor between �-autonomous 
ategories indu
es a linear fun
tor between those


ategories, and similarly that a monoidal transformation between monoidal

fun
tors indu
es a linear transformation between the indu
ed linear fun
tors.
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�

F




f

=)

� �

�

�

A

A

�

G




f

� �

�

�

A

A

�

�

�

�

�




�




�




�




Fig. 9. Rewrite rule for linear transformations

In short, the in
lusion of �-autonomous 
ategories into the 
ategory of linearly

distributive 
ategories extends to an in
lusion of 2{
ategories.

Suppose X, Y are symmetri
 �-autonomous 
ategories, F :X �! Y a mon-

oidal fun
tor. Then F indu
es a linear fun
tor in the manner des
ribed in the

introdu
tion: F




= F; F

�

= (F (( )

?

))

?

.

In the non
ommutative 
ase, where there are two negations de�ned in X, Y,

we 
an de�ne F

�

if F satis�es, in addition, that

?

(F (A

?

)) = (F (

?

A))

?

, in whi
h


ase F

�

(A) is this 
ommon value. We 
an relax this 
ondition somewhat, only

requiring a natural isomorphism instead of equality, at the extra expense of

expli
itly keeping tra
k of this isomorphism. For the moment, however, we

shall not make this additional generalization in order to keep things simple.

We have to de�ne �

R




:F




(A�B) �! F

�

(A)�F




(B), whi
h in this 
ase be
omes

�

R




:F (A�B)

u

L




��! >� F (A�B)

� � 1

����! (F (

?

A)

?

� F (

?

A))� F (A� B)

Æ

R

R

��! F (

?

A)

?

� (F (

?

A))� F (A� B))

1�m




�����! F (

?

A)

?

� F (

?

A� (A�B))

1� F (Æ

L

L

)

������! F (

?

A)

?

� F ((

?

A� A)�B)

1� F (
 � 1)

��������! F (

?

A)

?

� F (?� B)

1� u

L

�

����! F (

?

A)

?

� F (B)

The other linear strengths are similarly de�ned.
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Next, if we are given a monoidal natural transformation � between mon-

oidal fun
tors F;G between �-autonomous 
ategories, we 
an de�ne a linear

transformation � = (�




; �

�

), where �




= � and (�

�

)

A

= (�?

A

)

?

: (G(

?

A))

?

�! (F (

?

A))

?

.

Proposition 5 Given a monoidal fun
tor F and a monoidal natural transfor-

mation � as above, the indu
ed pair F




; F

�

of fun
tors de�nes a linear fun
tor,

and the indu
ed pair �




; �

�

of transformations de�nes a linear transformation.

Proof. All that must be done is to show that the required 
ommutativity


onditions are met. There are essentially six diagrams (�ve for fun
tors, one

for transformations) that we must verify, using only the monoidal forms of

the fun
tor boxes. First, we give the redu
ed forms of several key maps below.

As in the Introdu
tion, we shall use the notation F = F




; F = F

�

in these


ir
uits (to save spa
e).

n

?

=

j

:

� �

j

?

j

�

F

�

F (?)

j

�

j

�

j

j

:

� �

�

F

�

R




=

F (A�B)

A B

?

A

F (A)�F (B)

F (

?

A)

?

�

L




=

j

�

j

�

j

:

j

� �

F (A�B)

AB

A

?

F (A)�F (B)

?

F (A

?

)

�

F

n

�

=

j

:

j

:

j

� �

�

F

j

j

�

j

:

j

j

�

F (A�B)

?

(A�B)

A�B

F (A)�F (B)

F (A)

F(B)

�

R

�

=

j

:

j

:

j

j

�

� �

�

F

j

j

�

F (A)�F (B)

A

B

?

B

?

(A�B)

F (A�B)

Then to show that (F




; F

�

) is linear, we 
ould either show how to simulate

the general F




box and the 
omonoidal F

�

box together with their rewrite

rules, or we 
ould use the monoidal rewrites for the boxes above and show

that the essential �ve diagrams (and their duals) 
ommute using the mon-

oidal boxes alone. The former we shall leave as an exer
ise (but note that the


omonoidal box is essentially what is illustrated by the 
ir
uits above for �




),
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Fig. 10. Validity of equation (5)

instead dire
tly verifying the ne
essary 
ommutative diagrams. The �rst dia-

gram (involving the unit ?) is quite simple, and we leave it to the reader. The

next two (involving repeated instan
es of �) are fairly similar, so we illustrate

only equation (5), whi
h amounts to the equivalen
es in Figure 10. Equations

(7), (8) are handled in a similar manner, as illustrated by the equivalen
es in

Figure 11.

Finally, we must show that if � is a monoidal transformation, the indu
ed

(�




; �

�

) is linear. The 
ir
uit that simulates the �

�

node is the � node with

negation links before and after to \turn around" the wires. So with this, there

is essentially one diagram to verify (the variants being similar), whi
h amounts

to the equivalen
es in Figure 12. And with this we 
omplete the proof that

the \deMorgan 
onstru
tion" a
tually produ
es linear fun
tors and transfor-

mations. 2

Remark 6 In fa
t, it is also true that a linear fun
tor F between �-autono-

mous 
ategories is equivalent to the linear fun
tor indu
ed by the monoidal

fun
tor F




; that is, that F

�

(A)

?

is naturally isomorphi
 to F




(A

?

). We shall

leave to the reader the simple exer
ise of 
onstru
ting the appropriate maps

that 
hara
terize linear negation, and showing the ne
essary 
oheren
e for

these maps [CS92℄.
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3 Linearly distributive and �-autonomous 
ategories

We may summarize the pre
eding dis
ussion as follows. Let �-sAUT be the 2{


ategory of (
ommutative) �-autonomous 
ategories, monoidal fun
tors, and

monoidal transformations, and let �-AUT be (the non
ommutative analogue)

the 
ategory of bilinear 
ategories (as de�ned in [CS97℄ for instan
e|these

are just non
ommutative �-autonomous 
ategories), monoidal fun
tors F su
h

that

?

(F (A

?

))

�

=

(F (

?

A))

?

, and monoidal transformations.

Proposition 7 There is an in
lusion of 2{
ategories U : �-sAUT �! SLDC,

and there is an in
lusion of 2{
ategories U : �-AUT �! LDC.
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We want to 
onstru
t right adjoints (or rather bi-adjoints) to these \forgetful"

2{fun
tors U . This is 
losely related to the development of a generalization

of the notion of \nu
learity" (as de�ned for 
ompa
t 
ategories in [R88℄ and

[HR89℄), whi
h may be found in Appendix A below. The basi
 idea is that by


onstru
ting the full sub
ategory of a linearly distributive 
ategory 
onsisting

of the \
omplemented obje
ts", we in fa
t 
onstru
t a �-autonomous 
ategory,

whi
h is the essen
e of the desired right bi-adjoint. There is a ne
essary appeal

to the axiom of 
hoi
e in this 
onstru
tion, whi
h may be avoided at the

expense of some te
hni
al obfus
ation; essentially the problem is that even

if every obje
t of a 
ategory has a 
omplement, that does not expli
itly give

a � fun
tor (nor even a � fun
tion, whi
h suÆ
es by [CS92℄) without some

use of 
hoi
e. In the Appendix we shall see that there are several ways of


onstru
ting a �-autonomous 
ategory from a linearly distributive 
ategory;

these 
onstru
tions are related, and we refer the reader to the Appendix for

details when ne
essary.

An obje
t A of a linearly distributive 
ategory is said to be 
omplemented if

there is an obje
t B and maps � :> �! B � A, 
:A� B �! ? satisfying the

equations

(u

R




)

�1

; 1� � ; Æ

L

L

; 
 � 1; u

L

�

=1

A

(u

L




)

�1

; � � 1; Æ

R

R

; 1� 
; u

R

�

=1

B

This de�nition and the 
onne
tion with nu
learity are des
ribed in detail in

the Appendix; see De�nition 32 in parti
ular. Then, to a symmetri
 linearly

distributive 
ategory X we assign the full sub
ategory C(X) of 
omplemented

obje
ts. Provided suÆ
ient idempotents split this is just the nu
leus of the


ategory X. The 
ategory C(X) is linearly distributive, and sin
e ea
h obje
t

has at least one 
omplement, then we may 
hoose a negation for ea
h obje
t,

making the 
ategory �-autonomous. Note the use of the axiom of 
hoi
e in this


onstru
tion. On 1- and 2-
ells, C is just de�ned by restri
tion. To verify that

this is well-de�ned on 1-
ells, we need to know that linear fun
tors preserve


omplemented obje
ts; this is proved in the Appendix. Then the following is

a routine exer
ise.

Proposition 8 C: SLDC �! �-sAUT is a 2{fun
tor, and moreover is a right

bi-adjoint to U .

The non
ommutative 
ase requires some more deli
a
y. One approa
h is to

mimi
 a 
onstru
tion due to M. Barr of the Chu spa
e of a non
ommutative �-

autonomous (or bilinear) 
ategory [Ba95℄. We present a simpli�ed version �rst

in the 
ommutative 
ase, whi
h will avoid the appeal to the axiom of 
hoi
e

we needed above. Instead of taking C(X) to be (essentially) the nu
leus of X,

we 
onstru
t it as follows. The obje
ts of C(X) are pairs (X;X

0

), where X is a

left 
omplement of X

0

, and so X

0

is a right 
omplement of X. In this 
ase, the
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negation fun
tion is simple to de�ne: using the � notation of �-autonomous


ategories, we have (X;X

0

)

�

= (X

0

; X). Morphisms of the 
ategory are pairs

of arrows of X, but 
ontravariant in the se
ond variable, so (f; f

0

): (X;X

0

) �!

(Y; Y

0

) if f :X �! Y and f

0

:Y

0

�! X

0

, satisfying the following 
ommutativity


onditions.

X � Y

0

1�f

0

-

X �X

0

f�1

? ?




Y � Y

0




-

?

>

�

-

X

0

�X

�

? ?

1�f

Y

0

� Y

f�1

-

X

0

� Y

It is straightforward to show that this is indeed a �-autonomous 
ategory.

In the non
ommutative 
ase, we extend this idea by taking doubly in�nite

sequen
es of obje
ts (� � � ; X

�1

; X

0

; X

1

; � � �); more pre
isely, an obje
t is a fun
-

tion Z �! Obj(X) from the integers to the set of obje
ts of X, so that the

0-position is readily identi�able in the sequen
e. Furthermore, we require of

su
h sequen
es that ea
h pair (X

i

; X

i+1

) is a 
omplementation pair. We sup-

press the 
omplementation morphisms 
; � to keep the notation as simple as

possible, but they are an essential part of the de�nition of the obje
ts of the


ategory. An arrow in this 
ategory is a doubly in�nite sequen
e of arrows, with

the varian
e alternating, so as to be 
ovariant at even positions, 
ontravari-

ant at odd positions. These arrows must 
ommute with the 
omplementation

stru
ture in the evident manner:

X

2n

� Y

2n+1

1�f

2n+1

-

X

2n

�X

2n+1

f

2n

�1

? ?




Y

2n

� Y

2n+1




-

?

Y

2n�1

�X

2n

f

2n�1

�1

-

X

2n�1

�X

2n

1�f

2n

? ?




Y

2n�1

� Y

2n




-

?

>

�

-

X

2n+1

�X

2n

�

? ?

1�f

2n

Y

2n+1

� Y

2n

f

2n+1

�1

-

X

2n+1

� Y

2n

>

�

-

X

2n

�X

2n�1

�

? ?

f

2n

�1

Y

2n

� Y

2n�1

1�f

2n�1

-

Y

2n

�X

2n�1

In this 
ategory, there are two evident negation fun
tions. Again, we shall use

the � notation (so as not to 
on
i
t with the ( )

?

notation). Given a sequen
e

(� � � ; X

�1

; X

0

; X

1

; � � �), we de�ne the two obje
ts
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(� � � ; X

�1

; X

0

; X

1

; � � �)

�

=(� � � ; X

0

; X

1

; X

2

; � � �)

�

(� � � ; X

�1

; X

0

; X

1

; � � �)= (� � � ; X

�2

; X

�1

; X

0

; � � �)

(In ea
h 
ase, just shift the sequen
e one position, right or left, as appropriate.)

Then it be
omes straightforward to show that this 
ategory is bilinear, or non-


ommutative �-autonomous; in fa
t, the proof is essentially given in [Ba95℄.

Moreover, with this 
onstru
tion of C(X), we 
an then show the non
ommu-

tative version of our main result.

Proposition 9 C: LDC �! �-AUT is a 2{fun
tor, and moreover is a right

bi-adjoint to U .

The point of saying this is a bi-adjun
tion (rather than an adjun
tion) is that

the triangle equalities required of an adjun
tion hold in this 
ase only up to

natural equivalen
e. In both the symmetri
 and nonsymmetri
 
ases we 
an


laim a bit more, however: for any A, the unit �

A

of this bi-adjun
tion is a

natural equivalen
e, and so this is a bi-
ore
e
tion. For example, in the non-

symmetri
 
ase, this unit takes an obje
t A of a �-autonomous 
ategory A to

the sequen
e (� � � ;

?

A;A;A

?

; � � �), and it is 
lear that any other sequen
e \
en-

tered" on A must be isomorphi
 to this one. The 
ounit of the bi-adjun
tion

evaluates sequen
es at 0.

4 ! and ? in SLDC

In this se
tion, we shall show that given a linearly distributive 
ategory with

storage (in the sense of [BCS96℄), the \exponential" fun
tors ! and ? form a

linear fun
tor !, given by !




= ! , !

�

= ? . Then storage may be 
hara
terized

by requiring in SLDC that ! be a 
otriple whose 
ofree 
oalgebras naturally


arry 
o
ommutative 
omonoid stru
ture.

We begin with some preliminaries. First we note that symmetri
 linearly dis-

tributive 
ategories may be presented \internally" in SLDC. We re
all that

there is a 2{
ategory M, the \2{theory" of symmetri
 monoidal 
ategories,

whose obje
ts are generated by a single generator, with the property that

a symmetri
 monoidal 
ategory may be represented by a produ
t-preserving

2{fun
tor M �! CAT into the 2{
ategory of 
ategories.

Proposition 10 For any X in SLDC, there is a 
anoni
al 2{fun
tor

^

X:M

�! SLDC (taking the generator of M to X) whi
h preserves produ
ts exa
tly,

and moreover,

^

(-) indu
es a fully faithful 2{fun
tor SLDC �! Lax(M; SLDC).

More elementarily, this means that in SLDC, ea
h obje
t is 
anoni
ally a mon-
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oidal 
ategory; that is, for a symmetri
 linearly distributive 
ategory X, there

is a linear fun
tor,�:X�X �! X given by,�




= � and,�

�

= �, and a linear

fun
tor T: 1 �! X given by T




= > and T

�

= ?. Further, fun
tors in SLDC

are \lax", in the sense that m = (m;n) is a linear transformation hF; F i;,�

�!,�;F for any linear fun
tor F , where m;n are the natural transformations

expressing the monoidal (
omonoidal) property of F




(F

�

), and similarly for

the units.

Proof. We 
an de�ne

�

R




= (A� B)� (A

0

�B

0

)

Æ

R

R

��! A� (B � (A

0

� B

0

))

1�Æ

L

R

����! A� (A

0

� (B � B

0

))

a

�

��! (A� A

0

)� (B � B

0

)

and similarly for the other linear strengths. Note there is a use of symmetry

in the use of the \non-planar" Æ

L

R

. Some generalization of the present result


ould be made to the \non-planar weakly distributive 
ategories" of [CS92℄,

but seems unne
essary in the present 
ontext.

There are some diagrams to verify. The simplest approa
h is to use the nets

des
ribed in [BCST℄; in the present 
ases, these diagrams essentially (after

simple redu
tions) amount to Kelly{Ma
Lane graphs, with some variations in

where the 
rossings o

ur, and so the ne
essary equalities hold quite trivially.

The redu
ed normal forms of three of the nets involved may be found in

Figure 13. (We have omitted two that are very similar to those for D

5

; D

7

;

only a few nodes need di�erent labels, the wiring remaining the same.) Note

that all the �'s, m




and n

�

have the same underlying graph, with appropriate

labelling of the nodes. The nets D

i

refer to the paths of the diagrams from

De�nition 1, with the subs
ript indi
ating whi
h path (top, bottom, left, or

right) is intended. We leave dual 
ases to the reader.

The 
orresponding linear strengths for the units are quite trivial (essentially

being given by unit isomorphisms). To verify that (m;n) is linear involves some

standard 
ir
uit rewrites (or some diagram 
hasing) using fun
tor boxes, whi
h

we shall leave as an exer
ise. 2

Next, we turn to the matter of ! and ? as linear fun
tors. In [BCS96℄ we

de�ned a notion of relative tensorial strength, and required that ? be rela-

tively strong, ! relatively 
ostrong. Here, we note that in the presen
e of the

triple and 
otriple stru
ture there is an alternate presentation of the notion

of relative tensorial strength in terms of the linear strengths that we have

introdu
ed in the de�nition of linear fun
tors.
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Fig. 13. Nets needed to show 
oheren
e for ,�

Lemma 11 Suppose given a monoidal 
ategory X (whose tensor is denoted

�) and two endofun
tors ! and ? on X, so that ? is a triple. Then there

is a bije
tive 
orresponden
e between natural transformations �: ! (A � ?B)

�! !A� ?B and natural transformations �: ! (A�B) �! !A� ?B. Similarly,

suppose given a monoidal 
ategory X (whose tensor is denoted �) and two

endofun
tors ! and ? on X, so that ! is a 
otriple. Then there is a bije
tion

between �: ?A� !B �! ? (A� !B) and �

0

: ?A� !B �! ? (A� B).

Remark Note that this lemma really does not depend on any spe
ial prop-
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Fig. 14. Diagrams verifying the bije
tion �$ �

erties of the monoidal 
ategory, and 
ould indeed be stated in terms of any

bifun
tor instead of the tensor produ
t or par.

Proof. We prove the �rst statement; the se
ond is a simple dual. Given a

natural transformation �: ! (A� ?B) �! !A� ?B, de�ne a natural transfor-

mation �

�

= ! (A� B)

! (1��)

�����! ! (A� ?B)

�

�! !A � ?B, and 
onversely,

given �: ! (A � B) �! !A � ?B de�ne �

�

= ! (A � ?B)

�

�! !A � ??B

1��

���! !A � ?B. Here, � is the unit of the triple ? , and � is its \multipli-


ation". These 
onstru
tions are inverse, as may seen from the diagrams of

Figure 14. 2

Next, we note that this makes ! a linear fun
tor. (We shall use the de�nitions

and notation of [BCS96℄ in this se
tion.)

Lemma 12 If X is a linearly distributive 
ategory with storage, then ! (as

de�ned above) is a linear fun
tor. Moreover, (�; �), (Æ; �), (e; i), and (d; 
) are

linear transformations.

Proof. Again, this is most easily shown using the nets [BCS96℄. For the most

part the net rewrites are straightforward; we illustrate only a representative

sample, and just give the 
ommon redu
tions of nets 
orresponding to equal

maps. (The reader ought to be familiar with the net rewrites of [BCS96℄.)

To begin with, we note that the 
ondition that all the relevant fun
tors and

transformations are monoidal is part of the de�nition of a linearly distributive
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Fig. 16. Nets needed to show some transformations are linear


ategory with storage. So we just have to de�ne the linear strengths, whi
h is

essentially the 
ontent of Lemma 11, and show the 
orresponding 
oheren
e


onditions are satis�ed. To show ! is linear, there are essentially �ve diagrams

(and their duals) to verify; the 
ommon redu
tions for three of these are shown

in Figure 15; again D

i

refers to the i

th

diagram from De�nition 1. To 
onserve

spa
e, we have omitted D

6

whi
h is similar to D

5

, and D

8

whi
h is similar

to D

7

: in ea
h 
ase, the main alteration involves swit
hing the wire 
arrying

the � node with the wire passing through the prin
ipal port. To show that

there are linear transformations given by the pairs (�; �), (Æ; �), (e; i), and

(d; 
), there are essentially four diagrams to verify (and their duals), one for

ea
h transformation. These are illustrated in Figure 16, where the 
ommon

redu
ed form is shown in ea
h 
ase. 2
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Proposition 13 The following are equivalent:

(i) X is a symmetri
 linearly distributive 
ategory with storage [BCS96℄.

(ii) In SLDC X has a 
otriple ! 
arrying a 
ompatible 
o
ommutative 
omon-

oid stru
ture.

Remark 14

(i) To require of a 
otriple ! that it 
arries a 
ompatible 
o
ommutative


omonoid stru
ture means the following:

(a) for ea
h obje
t A, !A is naturally a 
o
ommutative 
omonoid,

(b) the 
omonoid stru
ture maps are 
oalgebra maps, and

(
) the 
oalgebra stru
ture map Æ: !A �! !!A is a 
omonoid map.

This means that the diagrams given below must 
ommute.

!A

e

-

>

?

Æ

?

m

!!A

! e

-

!>

!A

d

-

!A� !A

?

Æ � Æ

?

Æ

!!A� !!A

?

m

!!A

! d

-

! ( !A� !A)

!A

d

-

!A� !A

?

Æ

?

Æ � Æ

!!A

d

-

!!A� !!A

!A

e

-

>

�

�

�

�R

Æ

�

�

�

��

e

!!A

(ii) These diagrams are part of the de�nition in [BCS96, pp. 330{332℄. In


lause (ii) of the proposition above they are interpreted in the 2{
ategory

SLDC. Thus we automati
ally obtain the dual version of the diagrams and

the 
oheren
e with respe
t to linear strength.

(iii) Having a monoidal 
otriple ! 
arry a 
ompatible 
o
ommutative 
omon-

oid stru
ture amounts to having the tensor lift to a 
artesian produ
t in

the Eilenberg{Moore 
ategory of 
oalgebras. Hen
e, 
onsidering the two


omponents of !, and using the evident duality, we 
an remark that the

Eilenberg{Moore 
ategory for ! will have produ
ts, and the Eilenberg{

Moore 
ategory (of algebras) for ? will have 
oprodu
ts.

Proof (of Proposition 13) All the basi
 stru
ture (in both dire
tions) is

assured by the previous lemmas; all that remains to do is to show that the

appropriate diagrams 
ommute. The dire
tion (i))(ii) is essentially done in

Lemma 12. For the 
onverse, we have some further work, to show that the
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strength of � and the 
ostrength of �, likewise the strength of i; 
 and the


ostrength of e; d, follow from the linearity of the various fun
tors and trans-

formations. However, it is easy to 
he
k all the diagrams given in [BCS96, pp.

328, 329, 331℄ that involve strength or 
ostrength, to verify that they 
ommute

when the strength and 
ostrength are indu
ed from the linearity of ! and the


orresponding transformations. There are eight diagrams to 
he
k (plus their

duals); we illustrate these in Figure 17 with just four, whi
h show how the

various elements 
ome into play: the various fun
tors and transformations are

(monoidal (mon) and) linear (lin), the fun
tor ? is a triple (trip), the algebra

maps must be monoid maps (alg), and so on.

For the rest of the 
onditions, [BCS96, pp. 325, 326, 330, 331(top), 332℄ not

involving strength or 
ostrength, those on pp. 325, 326, 330(top) just express

that various transformations are monoidal, whi
h is in
luded in the assumption

of linearity, and the rest are those above whi
h de�ne the \
ompatibility"

assumption. This 
ompletes the proof. 2

We 
an state the 
ontent of the previous Proposition in the following fashion,

whi
h internalizes the ! and ? stru
ture. We note �rst that there is a 2{


ategory, Mell, whi
h is the 2{theory of symmetri
 monoidal 
ategories with !

(or MELL 
ategories), and an in
lusion M �! Mell, 
orresponding to the \for-

getful" interpretation whi
h to a MELL 
ategory assigns the underlying mon-

oidal 
ategory. Furthermore, we shall de�ne a 2{
ategory SLDC

!


onsisting of

symmetri
 linearly distributive 
ategories with storage (i.e. those X (together

with the spe
i�ed !) that satisfy the 
onditions of the previous Proposition),

and linear fun
tors and transformations that preserve the ! stru
ture.

Corollary 15 For any obje
t (0-
ell) hX; !i in SLDC

!

, there is a 
anoni
al

2{fun
tor

^

X:Mell �! SLDC (taking the generator of Mell to X and the !

of Mell to !) whi
h preserves produ
ts exa
tly. Moreover,

^

(-) indu
es a fully

faithful 2{fun
tor SLDC

!

�! Lax(Mell; SLDC), whi
h is the pullba
k in CAT of

the 2{fun
tor from Proposition 10 along the forgetful interpretation.

SLDC

-

Lax(M; SLDC)

6 6

SLDC

!

-

Lax(Mell; SLDC)

Finally, a spe
ial 
ase that is worth mentioning:

Corollary 16 A (symmetri
) �-autonomous 
ategory X with a 
otriple ! 
ar-

rying a 
ompatible 
o
ommutative 
omonoid stru
ture is a linearly distributive
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-

(!A�?B)�?C

1��

6

1��

6

�

�

�

�

�

�

�

�

�

�*

(1��)��

6

a

�1

�

!(A�?B)�??C

�

L




�1

-

(!A�??B)�??C !A�(?B�?C)

�

L




6

a

�1

�

6

�

�

�

�

�

�

�

�

�

�*

1�(���)

6

1�n

!((A�?B)�?C)

(lin)

!A�(??B�??C) !A�?(B�C)

!a

�1

�

6

1�n

6

(mon)

6

1��

!(A�(?B�?C))

�
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H

H
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�

�

�

�

�

�

�
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1��

-
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�

?

(lin)

��1

?

��1

?
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1��

-
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6

=

A�??B

1��

-

A�?B

!(A�?B)

e

-

>

�

L




?

(lin)

?

u

�1

!A�??B

e�1

-

>�??B
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1�i

�
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�

�

�

�
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-
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Fig. 17. Linear implies strong
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ategory with storage.

This result is almost automati
, in view of the in
lusion of �-autonomous


ategories into LDC. The only point here is that in �-autonomous 
ategories

the duality guarantees the deMorgan dual stru
ture, so one only need refer

to ! , and ? 
omes along for free. In the next se
tion we shall see a similar

story for 
artesian produ
ts.

5 Adding the additives

In this se
tion we shall look at the e�e
t of requiring of a linearly distributive


ategory X that it have a linear fun
tor x:X�X �! X, given by x




= � and

x

�

= +, whi
h a
ts as a 
artesian produ
t in the 2{
ategory SLDC, so that

linear transformations 
orresponding to diagonal and proje
tions are present.

We shall see that this amounts to having distributive 
artesian produ
t and


oprodu
t, distributive not with respe
t to ea
h other, but with respe
t to

tensor and par, as one would expe
t, for example, in a FILL

3

and 
oFILL


ategory, where the adjoints to tensor and par guarantee su
h distributivity

be
ause of exa
tness.

We begin with the simple matter of \linear" terminal obje
ts in linearly dis-

tributive 
ategories. This will give some idea of what to expe
t when we 
on-

sider linear produ
ts.

De�nition 17 X has a linearly presented, or more simply, a \linear", ter-

minal obje
t if there is a linear 
onstant fun
tor 1: 1 �! X, 1 = (1; 0) and a

linear transformation !: Id

X

�! 1

0

: X �! X, ! = (!; <). These must satisfy the

usual equation for a terminal obje
t: !

1

= id

1

: 1 �! 1 : 1 �! X.

Here 1

0

is the 
anoni
al 
omposite X �! 1

1

��! X. Note that this is equivalent

to the usual equation for a terminal obje
t (in the monoidal 
oordinate) and

an initial obje
t (in the 
omonoidal 
oordinate).

Notational overload: please note that ! here represents the unique map from

an arbitrary obje
t to the terminal obje
t, and has nothing to do with the

\storage" fun
tor of Se
tion 4. Sin
e the former usage was as a fun
tor and

the 
urrent usage is as a transformation, there ought to be no 
onfusion.

Before pro
eeding, we justify the notation: the proof of the following lemma

3

See the Appendix to re
all the meaning of these terms.
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is trivial.

Lemma 18 If X has a linear terminal obje
t, then it has a terminal obje
t

and an initial obje
t in the usual sense, given by 1




; 1

�

respe
tively. For an

obje
t A, the unique maps A

!

A

��! 1 and 0

<

A

��! A are given by !




(A); !

�

(A)

respe
tively.

More importantly, linear terminal obje
ts are distributive, and indeed, this

gives a simpler equivalent presentation of this notion.

Proposition 19 If X is a linearly distributive 
ategory, the following are

equivalent.

(i) X has a linear terminal obje
t 1.

(ii) X has a terminal obje
t 1, an initial obje
t 0, and these are \distributive",

in the sense that 1 is preserved by par and 0 is preserved by tensor:

0

�

��! A� 0 A� 1

�

��! 1

are isomorphisms for any obje
t A.

Proof. (i)) (ii) We 
onsider the 
ase with the terminal obje
t (the other


ase is dual). First, note that the 
onstant linear fun
tor 1 
omes equipped

with a map � = �

R




: 1 �! 0�1, whi
h indu
es a map 1 �! A�1 for any obje
t

A, namely 1

�

�! 0� 1

<�1

���! A� 1. So the only thing we need to verify is that

the 
omposite A� 1 �! 1 �! A� 1 is the identity; this is then an instan
e of

the linearity of the transformation !. (Expli
itly, this be
omes an instan
e of

equation 11 with B = 1.)

(ii)) (i) Conversely, it is trivial that 1




is monoidal and 1

�

is 
omonoidal.

The linear strengths � are given using the inverses to the terminal morphisms

(whi
h are assumed to be isomorphisms). And the linearity of the fun
tor 1

and of the transformation ! is again trivial, using the fa
t that all the obje
ts

of the formX�1 are terminal, and all obje
ts of the formX�0 are initial. 2

Remark 20 Note that there is a
tually some stru
ture involved in demanding

of a \point" 1 �! X of X that it be linear. This raises the question \what

are the linear points of a linearly distributive 
ategory?" Clearly, su
h a linear

point is a pair of obje
ts of X, and moreover, this pair must lie in the nu
leus

of X. Also, sin
e the (single) obje
t of 1 is both a 
ommutative monoid and a


ommutative 
omonoid, the � 
omponent of the pair must be a 
ommutative

monoid, and the other 
omponent must be a 
o
ommutative 
omonoid. We

may 
all su
h pairs \nu
lear monoids", and then it is easy to see that the
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olle
tion of su
h nu
lear monoids is just the 
olle
tion of linear points. It is

easy to see that the 
ategory of linear points has 
oprodu
ts.

Now we turn to the matter of \linear produ
ts".

De�nition 21 A linearly distributive 
ategory X has linearly presented, or

simply \linear", binary produ
ts if there is a linear fun
tor x:X � X �! X,

x




= � and x

�

= +, and linear transformations �: Id

X

�! x Æ�

X

: X �! X,

� = (�;r), and �

i

: x �! �

X

2

i

: X � X �! X, �

i

= (p

i

; b

i

), (i = 0; 1).

Furthermore, these must satisfy the standard equations for 
artesian produ
ts

(as in [LS86℄ for example).

�; �

0

x�

1

= id

x

: x �! x : X�X �! X

�; �

i

= id : id �! id : X �! X (i = 0; 1)

Note that given our de�nition of 
omposition of linear transformations, these

are equivalent to the usual equations for produ
ts (in the monoidal 
oordinate)

and 
oprodu
ts (in the 
omonoidal 
oordinate).

As with terminal and initial obje
ts, the following is evident.

Lemma 22 If X has linear produ
ts, then it has 
artesian produ
ts and 
o-

produ
ts in the usual sense, given by x




; x

�

respe
tively. For the produ
ts, the

diagonal and the proje
tions are given by �




; �

i


respe
tively, and for the 
o-

produ
ts the 
odiagonal and the inje
tions are given by �

�

; �

i�

respe
tively.

More importantly, linear produ
ts are distributive in the appropriate sense.

Lemma 23 If X has linear produ
ts, then the indu
ed 
artesian produ
t is

preserved by par, in that there is a natural transformation

(A� B)� (A� C)

�

R




��! (A+ A)� (B � C)

r�1

���! A� (B � C)

inverse to the 
anoni
al transformation

A� (B � C)

h1�p

0

; 1�p

1

i

��������! (A� B)� (A� C):

Dually, the indu
ed 
artesian 
oprodu
t is preserved by tensor; that is, there

is a natural transformation

A� (B + C)

��1

���! (A� A)� (B + C)

�

R

�

��! (A�B) + (A� C)

whi
h is inverse to the 
anoni
al transformation

(A�B) + (A� C)

h1�b

0

j1�b

1

i

��������! A� (B + C):
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Proof. The proof of this lemma is a fairly routine exer
ise in diagram 
hasing.

For example, to show that we have an isomorphism (A � B) + (A � C) �!

A � (B + C) we must show the two 
omposites are the identities. For the

identity on (A � B) + (A � C), it suÆ
es to show the two 
omponents are

b

0

; b

1

respe
tively. The diagram for b

0

is given below, the one for b

1

is similar.

A� (B + C)

��1

-

(A�A)� (B + C)

�

R

�

-

(A�B) + (A� C)

1�b

0

6

1�b

0

6

(lin)

6

b

0

A�B

��1

-

Æ 


6

=

(A�A)�B

p

0

�1

-

A�B

For the 
omposite giving the identity on A� (B + C), the following diagram

does the tri
k. (Note the left-hand path is the identity on A� (B + C) sin
e

+ is a 
oprodu
t.)

A� (B + C)

��1

-

(A�A)� (B + C)

�

R

�

-

(A�B) + (A� C)

1�(b

0

+b

1

)

?

(nat)

1�(b

0

+b

1

)

?

(nat)

?

(1�b

0

)+(1�b

1

)

A�((B+C)+(B+C))

��1

-

(A�A)�((B+C)+(B+C))

�

R

�

-

(A�(B+C))+(A�(B+C))

H

H

H

H

H

H

H

H

H

H

H

H

Hj

1�r

(lin)

�

�

�

�

�

�

�

�

�

�

�

�

��

r

A� (B + C)

2

Moreover, su
h distributivity is equivalent to the full linear stru
ture.

Proposition 24 If X is a linearly distributive 
ategory, the following are

equivalent.

(i) X has linear binary produ
ts.

(ii) X has distributive binary produ
ts and 
oprodu
ts, in the sense that �

is preserved by par and + is preserved by tensor. In other words, the


anoni
al maps
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A� (B � C)

h1�p

0

; 1�p

1

i

��������! (A�B)� (A� C)

(A� B) + (A� C)

h1�b

0

j1�b

1

i

��������! A� (B + C)

are natural isomorphisms for any obje
ts A;B;C.

Proof. (i) ) (ii) has been proved in Lemma 23, so we only need to show

(ii) ) (i). Given suitably \distributive" produ
ts and 
oprodu
ts, we de�ne

the linear fun
tor x and the 
orresponding linear transformations in the evi-

dent way. The linear strengths may be de�ned in terms of distributivity; for

example, the transformation �

R




is

(A� B)� (A

0

� B

0

)

(b

0

�1)�(b

1

�1)

���������! ((A+ A

0

)�B)� ((A+ A

0

)�B

0

)

�

�! (A+ A

0

)� (B � B

0

)

where � is the isomorphism given by distributivity.

We must then show that this does indeed make x and the appropriate trans-

formations linear, and moreover, that these two ways of de�ning 
artesian

produ
ts and 
oprodu
ts are equivalent. This means 
he
king a number of


oheren
e diagrams, whi
h is just a routine diagram 
hase. Before sket
hing

some of the details, however, we 
an verify that at the level of morphisms

things do agree: if we have linear produ
ts and use the indu
ed distributivity

to de�ne \new" linear distributions �, then indeed, these are just the origi-

nal �'s we started with. For instan
e, in the 
ase of �

R

�

, this amounts to the


ommutativity of the following diagram.

(A�A

0

)� (B+B

0

)

=

-

(A�A

0

)� (B+B

0

)

�

R

�

-

(A�B) + (A

0

�B

0

)

�

�

�

�

�R

��1

�

�

�

�

��

(p

0

�p

1

)�1

6

(p

0

�1)+(p

1

�1)

((A�A

0

)� (A�A

0

))� (B +B

0

)

�

R

�

-

((A�A

0

)�B) + ((A�A

0

)�B

0

)

In the other dire
tion, given a distributivity �

�

: (A � B) � (A � C) �! A �

(B�C), then the indu
ed distributivity (via the indu
ed �) is the outer path

in the diagram below. The diagram 
ommutes (so the indu
ed distributivity

equals the original one) be
ause the inner square 
ommutes by naturality, and
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the triangle is the identity on (A�B)� (A�C) by the 
oprodu
t equalities.

(A�B)� (A�C)

=

-

(A�B)� (A�C)

�

�

-

A� (B � C)

�

�

�

�

�R

(b

0

�1)� (b

1

�1)

�

�

�

�

��

(r�1)� (r�1)

6

r�1

((A+A)�B)� ((A+A)�C)

�

�

-

(A+A)� (B � C)

The veri�
ation of the 
oheren
e diagrams for linearity is a straightforward

diagram 
hase; the key tri
k is to break the diagrams into smaller ones by

redu
ing to 
omponents. We shall illustrate this with one example, equation 8,

whi
h is the following diagram.

(A�A

0

)�((B�C)�(B

0

�C

0

))

� �

?

1�((1�b

0

)�(1�b

1

))

(A�A

0

)�((B�(C+C

0

))�(B

0

�(C+C

0

)))

hp

0

�p

0

; p

1

�p

1

i

? ?

1��

0

�

(A�(B�C))�(A

0

�(B

0

�C

0

)) (A�A

0

)�((B�B

0

)�(C+C

0

))

Æ

L

L

�Æ

L

L

? ?

Æ

L

L

((A�B)�C)�((A

0

�B

0

)�C

0

) ((A�A

0

)�(B�B

0

))�(C+C

0

)

(1�b

0

)�(1�b

1

)

? ?

hp

0

�p

0

; p

1

�p

1

i�1

((A�B)�(C+C

0

))�((A�B)�(C+C

0

))

Æ 


6

�

0

�

((A�B)�(A

0

�B

0

))�(C+C

0

)

The bottom arrow �

0

�

is inverse to hp

0

� 1; p

1

� 1i, and so 
an be reversed.

Hen
e we 
an establish the diagram's 
ommutativity by looking instead at the


ommutativity of the two diagrams 
orresponding to the two proje
tions into

(A�B)� (C +C

0

) and into (A�B)� (C +C

0

). We shall illustrate the �rst
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proje
tion.

(A�A

0

)�((B�C)�(B

0

�C

0

))

� �

?

1�((1�b

0

)�(1�b

1

))

(A�A

0

)�((B�(C+C

0

))�(B

0

�(C+C

0

)))

p

0

�p

0

?

�

�

�

�

�

�

�

��

p

0

�p

0

?

1��

0

�

A�(B�C)

�

�

�R

1�(1+b

0

)

�

�	

p

0

�(p

0

�1)

(A�A

0

)�((B�B

0

)�(C+C

0

))

Æ

L

L

?

A�(B�(C+C

0

))

?

Æ

L

L

(A�B)�C

�

�

�

�

�

�

�

��

Æ

L

L

((A�A

0

)�(B�B

0

))�(C+C

0

)

1�b

0

?

�

�

�

�

�

�

�

�

��

(p

0

�p

0

)�1

?

hp

0

�p

0

; p

1

�p

1

i�1

(A�B)�(C+C

0

)

Æ 


6

p

0

� 1

((A�B)�(A

0

�B

0

))�(C+C

0

)

2

We 
an state the 
ontent of the previous Proposition in terms of the 2{theory

Mad of symmetri
 monoidal \
artesian" (�nite produ
t) 
ategories. As before

there is an in
lusion M �! Mad whi
h allows the evident 2{
ategory SLDC

�

of 
artesian linearly distributive 
ategories to formed by a pullba
k.

Corollary 25 For any X in SLDC

�

, there is a 
anoni
al 2{fun
tor

^

X:Mad

�! SLDC (taking the generator of Mad to X) whi
h preserves produ
ts exa
tly.

Moreover,

^

(-) indu
es a fully faithful 2{fun
tor SLDC

�

�! Lax(Mad; SLDC),

whi
h is the pullba
k in CAT of the 2{fun
tor from Proposition 10 along the

forgetful interpretation.

SLDC

-

Lax(M; SLDC)

6 6

SLDC

�

-

Lax(Mad; SLDC)

Note in this, as well as in Corollary 15, we are in e�e
t showing how this

framework for
es the 
orre
t de�nitions on
e one has the \naive" theory in
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the monoidal 
ontext.

Again, the spe
ial 
ase of �-autonomous 
ategories is worth mention:

Corollary 26 A �-autonomous 
ategory X with �nite produ
ts is a linearly

distributive 
ategory with linear �nite produ
ts.

Proof. This is automati
, in view of the in
lusion of �-autonomous 
ategories

into LDC; again, the duality guarantees the deMorgan dual stru
ture. 2

It is worth 
omparing the semanti
s for linear logi
 developed from the 
urrent

perspe
tive of linear stru
ture with the semanti
s de�ned in [Se89℄, as 
lari�ed

by Bierman [B95℄. If one has a �-autonomous 
ategory with produ
ts and a


otriple ! 
arrying a 
ompatible 
o
ommutative 
omonoid stru
ture, then it is

straightforward to show that there are isomorphisms !A� !B

�

��! ! (A�B)

and >

�

��! ! 1. In fa
t, one does not even need linearity for the produ
ts,

and so this result is true in the 2-theory Mellad of monoidal 
ategories with

storage and produ
ts. This was �rst noti
ed by Bierman [B95℄. So these \Seely

isomorphisms" exist in any linearly distributive 
ategory with linear storage

and produ
ts. On
e one knows that, it is routine to verify that the semanti
s

of the storage rule given in [Se89,B95℄ (in terms of the \Seely isomorphisms")


oin
ides with that given in [BCS96℄; sin
e the rest of the semanti
s in the

two treatments is just the same, this reassures us that in this 
ontext, the

semanti
s of [Se89,B95℄ and the semanti
s in terms of linearly distributive


ategories with storage and distributive produ
ts 
oin
ide.

Remark 27 We end with the following observation 
on
erning the existen
e

of linearly distributive 
ategories with linear produ
ts. Hu and Joyal [HJ97,

and other papers therein 
ited℄ point out that if one forms the limit{
olimit


ompletion of a linearly distributive 
ategory, the result will also be linearly

distributive. But sin
e the linearity of the produ
t follows from distributivity,

and sin
e distributivity 
learly follows from their notion of softness, we may


on
lude that this bi
ompletion pro
ess will give linear produ
ts.
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A Appendix: Nu
learity for linearly distributive 
ategories

In this appendix we wish to show the 
onne
tion between nu
lear obje
ts

and 
omplemented obje
ts, and to prove that linear fun
tors preserve 
om-

plemented obje
ts, whi
h is the key ingredient in 
onstru
ting a right adjoint

to U : �-AUT �! LDC. First we need some de�nitions, and to be sure that the

notion we de�ne in linearly distributive 
ategories is a good generalization of

the 
orresponding notion for symmetri
 monoidal 
ategories (in parti
ular, in

�-autonomous 
ategories), we shall need some further dis
ussion about nu
le-

arity in linearly distributive 
ategories. So we begin with somewhat of a long

digression, before returning to our theme of linear fun
tors.

We shall use the following terminology: a FILL 
ategory is a full multipli
a-

tive 
ategory, in the sense of Hyland and de Paiva [HP93℄, that is to say, a

linearly distributive 
ategory whi
h is also monoidal 
losed. We shall 
onsider

both symmetri
 and nonsymmetri
 FILL 
ategories (as des
ribed in [CS97℄),

as well as the following variants: a left FILL 
ategory is a linearly distributive


ategory with a \left" internal hom �Æ, and a right FILL 
ategory is a linearly

distributive 
ategory with a \right" internal hom Æ�. The dual notions, where

the 
losed stru
ture is de�ned with respe
t to the 
otensor (\par"), will be

referred to as left (with 4) or right (with 5) 
oFILL 
ategories.

De�nition 28 Suppose C is a linearly distributive 
ategory; we shall say that

a morphism f :A �! B is left nu
lear if there are morphisms

�

f

:> �! C �B 


f

:A� C �! ?
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su
h that the following 
ommutes.

A

f

-

B

�

�

�

��

u

R

�

�

�

�

�I

u

L

�

A�> ?� B

�

�

�

�R

1� �

f

�

�

�

��




f

� 1

A� (C � B)

Æ

L

L

-

(A� C)�B

A left nu
lear obje
t A is an obje
t A whose identity map is left nu
lear.

Similarly, a morphism f :A �! B is right nu
lear if there are morphisms

�

f

:> �! B � C; 


f

:C � A �! ? so that the evident diagram 
ommutes; an

obje
t is right nu
lear if its identity map is right nu
lear.

We shall refer to the obje
t C in these de�nitions as the witness of the nu
le-

arity of f . When it is ne
essary to be more expli
it, we shall say the triplet

hC; �

f

; 


f

i witnesses the nu
learity of f .

In terms of 
ir
uits, this says f is left nu
lear if there is an equivalen
e as

shown at the left below, and right nu
lear if an equivalen
e as on the right

below.

j

?




f

A

j

>

�

f

B

�

C

f

A

B

�

f

A

B

j

?




f

A

j

>

�

f

B

C

for some 


f

; �

f

; 


f

; �

f

.

In the symmetri
 
ase, the notions of left and right nu
lear 
oin
ide, sin
e one


an easily 
onvert witnesses of left nu
learity into witnesses of right nu
learity

via a \twist".

In a (left) FILL 
ategory, where we have an adjoint to �X for ea
h X, any




f

:A�C �! ? 
an be \
urried" to produ
e 
urry(


f

):C �! A�Æ?, allowing

the re-expression of the de�nition of nu
learity. In parti
ular, this means that

in pla
e of 


f

we 
an use the evaluation map A� (A�Æ?)

ev

��! ?, and adjust
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�

f

to in
lude the 
urried 


f

:

�

f

; 
urry(


f

)� 1:> �! (A�Æ ?)� B

This allows the re-expression of (left) nu
learity in a (left) FILL 
ategory as

follows. (As usual, we write A

?

for A �Æ ?; note this is an \intuitionisti
"

negation, and is not an involution.)

Lemma 29 f is left nu
lear in a left FILL 
ategory if and only if there is a

n

f

:> �! A

?

� B su
h that the following 
ommutes.

A

f

n

f

-

A� (A

?

� B)

H

H

H

H

H

H

H

Hj

f

?

�

B

where

f

n

f

= u

R

�

�1

; 1� n

f

and � = Æ

L

L

; ev � 1; u

L

�

.

There is a dual lemma for right FILL 
ategories, using

?

A = ? Æ� A as the

witness of nu
learity; we shall leave the statement of that to the reader. The

proof of these lemmas is a simple exer
ise, and is also left to the reader.

This is 
learly equivalent to the form used in [CS97℄, and is the natural gener-

alization of the de�nition given by Rowe [R88℄ and by Higgs and Rowe [HR89℄

in the symmetri
 monoidal 
losed 
ase. Our observation is that the assump-

tion of 
losedness may be dropped, generalizing the de�nition to the 
ontext

of linearly distributive 
ategories. A basi
 property of nu
lear maps is that

they form a two-sided ideal, whi
h we now establish.

Lemma 30 The left (respe
tively right) nu
lear maps of any linearly distribu-

tive 
ategory form a 2-sided ideal.

Proof. We must establish that if f is nu
lear (as witnessed by �

f

; 


f

), then

so is h; f ; g for any (suitably \typed") h; g. This is straightforward: �

h;f ;g

=

�

f

; 1�g and 


h;f ;g

= h�1; 


f

. That these maps work is immediately apparent

from the following 
ir
uits. 2
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�

g

j

?




f

j

>

�

f

f

h

h

g

A

A �

�

�

� T

T

Proposition 31 In any linearly distributive 
ategory > and ? are left and

right nu
lear, and if f; g are (left or right) nu
lear maps, then so are f�g; f�g.

More pre
isely:

(i) the left nu
learity of > is witnessed by �

>

= (u

L

�

)

�1

:> �! ? � > and




>

= u

L

�

:> � ? �! ?; the right nu
learity is similar, and the witnesses

for ? are dual.

(ii) In addition, if f; g are left nu
lear, then the left nu
learity of f � g is

witnessed by 


f�g

= a

�

; 1� Æ

L

L

; 1� (


g

� 1); 1� u

L

�

; 


f

and �

f�g

= �

g

; 1�

(u

R

�

)

�1

; 1 � (�

f

� 1); 1 � Æ

R

R

; a

�1

�

. Again, right nu
learity witnesses are

similar, and the witnesses for f � g are dual.

Proof. The proofs for ? and � are dual to those for > and �, so we show

only the latter. That the witnesses given above satisfy the required 
oheren
e


onditions is obvious from the following 
ir
uits. 2

�

g

j

?




f

j

>

�

f

f

j

?

j

?

j

>

j

>

�

�

�

�

�

�

�

�

�

j

�

j

�

j

?




g

j

>

�

g

j

�

j

�

�

�

�

�D

D

D

D

D

D

D

D

D

D

D

D

D

D

�




f




g

�

f

�

g

j

�

j

�

d

d

d

d

j

j

�

�

,

,

�

��

?

?

>

>

Noti
e that this result does not use the symmetry of the tensors, so it is true

for the non
ommutative 
ase.

De�nition 32 In a linearly distributive 
ategory, an obje
t A is a left 
om-

plement if there is an obje
t B (a right 
omplement) and 
omplementa-

tion morphisms �

B

A

; 


B

A

making A left nu
lear and B right nu
lear. We say
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(A; �

B

A

; 


B

A

; B) is a 
omplementation pair; frequently we shall abuse the no-

tation by dropping referen
e to some parts of this 4-tuple of entities, referring

to just (A;B) or possibly just (�

B

A

; 


B

A

) as a 
omplementation pair.

In 
ir
uits, this means we have this pair of �gures.

j

?




B

A

j

>

�

B

A

B

B

�

��

�

B

A

B

and

� �

j

?




B

A

j

>

�

B

A

�

�

B

B B

B

A

B

A

AB

Lemma 33 If (�

B

A

; 


B

A

) and (�

B

0

A

; 


B

0

A

) are 
omplementation pairs witnessing

that A is left 
omplemented, then there is a unique isomorphism h:B �! B

0

su
h that the equation below for h holds.

j

?




B

A

j

>

�

B

0

A

B

B

�

��

�

B

A

B

0

h = and

j

?




B

0

A

j

>

�

B

A

B

B

�

��

�

B

0

A

B

k =

Proof. It suÆ
es to show that h as above is an isomorphism. However it is


lear that k (also as above) is its inverse. 2

Proposition 34 Complemented obje
ts are 
losed under �;�; > and ? form

a 
omplementation pair.

Proof. This is routine and essentially just follows the ideas of the proof of

Proposition 31. We shall give an alternate proof at the end of the Appendix

for the symmetri
 
ase (though the routine approa
h just outlined shows the

result holds in the non
ommutative 
ase as well). 2

The observation we would have liked to make was that the full sub
ategory of

(left) 
omplemented obje
ts forms a (left) �-autonomous 
ategory (and simi-

larly for right). However, there is a problem in the nonsymmetri
 
ase: a right


omplement may not itself be left 
omplemented. We say, therefore, that an

obje
t is strongly left 
omplemented in 
ase it is left 
omplemented and

its right 
omplement is strongly left 
omplemented. (This is a re
ursive de�-

nition.) There is another minor matter: we have shown [CS92℄ that a linearly
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distributive 
ategory whi
h has a negation fun
tion is �-autonomous, but we

need an appeal to the axiom of 
hoi
e if we wish to 
on
lude that a linearly

distributive 
ategory has this stru
ture if we only know that every obje
t has

a (strong) 
omplement. (The 
ommutativity 
onditions do follow from one

another; that is not the problem.) In Se
tion 3 we dis
uss a way around this

matter using sequen
es of obje
ts, but the simpler approa
h does have its

appeal, even if the ontologi
al 
ommitments are more severe.

The following result is now obvious.

Theorem 35 In any linearly distributive 
ategory the strongly left 
omple-

mented obje
ts determine a full sub
ategory whi
h is left �-autonomous.

Of 
ourse there are dual \right" notions. In the symmetri
 
ase we 
an drop

the notions \strong", \left", and \right" to obtain a �-autonomous 
ategory

from the 
omplemented obje
ts.

Now we shall 
onne
t these two notions of 
omplemented and nu
lear obje
ts.

If A is a left nu
lear obje
t, its left nu
learity 
an be witnessed by several

obje
ts and morphisms. Consider two su
h obje
ts B and B

0

, so

j

?




B

A

j

>

�

B

A

j

?




B

0

A

j

>

�

B

0

A

�

�

�

�

B

B

B

B B

B

B

B

� �

A

A

B

A A

B

0

A

Clearly this gives two right nu
lear maps B �! B

0

and B

0

�! B respe
tively:

j

?




B

A

j

>

�

B

0

A

B

B

�

��

�

B

A

B

0

h = and

j

?




B

0

A

j

>

�

B

A

B

B

�

��

�

B

0

A

B

k =

(�)

These maps, when 
omposed, give idempotents on their sour
e and targets,

namely, the right nu
lear maps resulting from reversing the a
tion of the 
om-
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plementation:

j

?




B

A

j

>

�

B

A

B

B

�

��

�

B

A

B

and

j

?




B

0

A

j

>

�

B

0

A

B

B

�

��

�

B

0

A

B

0

We 
all su
h idempotents right 
omplement idempotents; note that su
h

an idempotent e:B �! B may be de
omposed into the maps (u

L

�

)

�1

; �

B

A

�

1; Æ

R

R

; 1 � 


B

A

; u

R

�

:B �! B for a left nu
lear obje
t A. In a similar fashion

right nu
lear obje
ts indu
e left 
omplement idempotents (the 
ir
uit has the

dual shape [

\

). Note that not all idempotents are of this type; not even all

nu
lear idempotents (that is, idempotents that are nu
lear maps) are 
om-

plement idempotents. The essential ingredient that makes these idempotents

spe
ial is that they embody witnesses of nu
learity, and so the dual 
omposite

is the identity on the 
orresponding nu
lear obje
t. For example, using the

de
omposition above, (u

R

�

)

�1

; 1� �

B

A

; Æ

L

L

; 


B

A

� 1; u

L

�

:A �! A is the identity on

A.

This 
lass of idempotents may seem somewhat strange and arbitrary (for in-

stan
e, it is not 
losed under 
omposition); however, it is just what we need

to 
ompare nu
lear obje
ts with 
omplemented ones.

Proposition 36 If C is a linearly distributive 
ategory, then left nu
lear ob-

je
ts are left 
omplements if and only if all right 
omplement idempotents split.

Proof. ()) Suppose e is a left 
omplement idempotent (as above), so that

e = (u

L

�

)

�1

; �

B

A

�1; Æ

R

R

; 1�


B

A

; u

R

�

:B �! B and (u

R

�

)

�1

; 1��

B

A

; Æ

L

L

; 


B

A

�1; u

L

�

:A

�! A is the identity on A. Then A is left nu
lear, so is a left 
omplement, with

a right 
omplement, C say. It then is an easy exer
ise to show that the evident

\

[{shape maps \through" C split e: r = (u

L

�

)

�1

; �

C

A

�1; Æ

R

R

; 1�


B

A

; u

R

�

:C �! B

and s = (u

L

�

)

�1

; �

B

A

� 1; Æ

R

R

; 1� 


C

A

; u

R

�

:B �! C. (The 
al
ulation is similar to

that below in the proof of the 
onverse: pla
e the two

\

[

\

[ shapes together,


an
el the middle, and see the result is e one way, and 1 the other.)

(() Let (�

A

; 


A

) witness the left nu
learity of A; then form the (by now

familiar

\

[ shape) right 
omplement idempotent h = (u

L

�

)

�1

; �

A

� 1; Æ

R

R

; 1 �




A

; u

R

�

:C �! C. This may be split: h = e

h

;m

h

and m

h

; e

h

= 1

C

. Set �

C

A

=

�

A

; e

h

� 1 and 


C

A

= 1 � m

h

; 


A

; then the following simple 
al
ulation shows

that (�

C

A

; 


C

A

) is a 
omplementation pair. 2
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j

?




C

A

j

>

�

C

A

B

B

�

��

�

C

A

C

�

j

?




A

j

>

�

A

B

B�

�

�

�

e

h

m

h

C

C

�

e

h

h

m

h

�

C C

j

?




C

A

j

>

�

C

A

�

�

B

B B

B

A

C

A

j

?




A

j

>

�

A

B

B

B

B

m

h

A

A

�

e

h

�

j

?




A

j

>

�

A

A

�

A

j

?




A

B

B

A

j

>

�

A

B

B

C

C

Note that if all left nu
lear idempotents split, so that 
ertainly the right 
om-

plement idempotents split, then the notion of right nu
lear and right 
omple-

mented obje
t 
oin
ide. While nu
lear idempotents are not generally 
omple-

ment idempotents, when all nu
lear idempotents split these two notions do


oin
ide.

Lemma 37 In a linearly distributive 
ategory, any right nu
lear idempotent

whose 
orresponding left nu
lear idempotents split, is a right 
omplement idem-

potent, where a \
orresponding idempotent" is obtained by reversing the a
tion

of the witness maps.

Proof. Let e be a right nu
lear idempotent. Then we have

j

?




e

j

>

�

e

B

B

�

��

�

e =

j

?




e

j

>

�

e

�

�

B

B B

B

and
= e

0

is a left nu
lear idempotent. e

0


an then be split: e

0

= r; s, where s; r = 1

C

.

Now, �

e

; 1 � r = �

C

and s � 1; 


e

= 


C

witnesses the left nu
learity of C, by

the argument above. This means e is a right 
omplement idempotent. 2

Now we return to the FILL 
ategory 
ase. There, the spe
ial nature of 
om-
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plementation simpli�es matters.

Proposition 38 If C is a left FILL 
ategory, then every left nu
lear obje
t is

a left 
omplement.

This is an immediate 
onsequen
e of the following lemma.

Lemma 39 In a left FILL 
ategory, all right 
omplement idempotents split.

Proof. Let e be a right 
omplement idempotent, so that e = (u

L

�

)

�1

; �

B

A

�

1; Æ

R

R

; 1�


B

A

; u

R

�

:B �! B for a left nu
lear obje
t A. As we saw in the dis
ussion

before Lemma 29, this means 


B

A


an be 
urried to give a map 
:B �! A

?

so

that 


B

A

= 1�
; ev. There is a 
anoni
al map A

?

�! B indu
ed by �

B

A

, and it is

evident that e is the 
omposite of this with 
. We have to show that the other


omposite, viz. the indu
ed right idempotent on A

?

, is the identity. The 
ir
uit

equivalen
es below show this, starting with the 
ir
uit for the idempotent on

A

?

and ending with the expanded normal form of the identity on A

?

. 2

�

A

�

� B

B

A

�

j

�Æ

�

�

A

?

A

?

>

?

�

A

B

B

j

�Æ

�

�

A

?

>

?

�

�

j

�Æ

B

B

?

?

�

�

�

�

j

�Æ

�

�

A

B

B

j

�Æ

�

�

A

?

�

�

j

�Æ

B

B

j

�Æ

�

�

�

�

B

B

j

�Æ

�

�

A

?

j

�Æ

�

�

�

�

�

h

h

h

h

h

h

>

?

?

?

h

h

h

h

?

?

h

h





 


Remark A linearly distributive 
ategory may have no nontrivial nu
lear

obje
ts and yet the 
ategory may have nu
lear idempotents. These, when

suitably split, will themselves generate a nontrivial �-autonomous 
ategory.

Finally, we are ready to return to the main theme of this paper, with the

following proposition.

Proposition 40 Linear fun
tors preserve nu
lear morphisms and obje
ts.

Spe
i�
ally, if F :X �! Y is a linear fun
tor of linearly distributive 
ategories,

and if f is (left) nu
lear in X, then both F




(f); F

�

(f) are (left) nu
lear in Y,

and similarly for right nu
lear maps. Moreover, if the left nu
learity of f is

witnessed by an obje
t C, so that there are maps �

f

:> �! C�B and 


f

:A�C

�! ? su
h that f = A

u

�1

���! A � >

1��

f

����! A � (C � B)

Æ

L

L

��! (A � C) � B
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f

�1

����! ?�B

u

�! B, then the (left) nu
learity of F




(f) is witnessed by F

�

(C):

>

m

>

���! F




(>)

F




(�

f

)

�����! F




(C � B)

�

R




��! F

�

(C)� F




(B)

F




(A)� F

�

(C)

�

R

�

��! F

�

(A� C)

F

�

(


f

)

�����! F

�

(?)

n

?

��! ?

and dually for F

�

(f), and similarly for right nu
learity.

Proof. We shall do the 
ase of the left nu
learity of F




(f), leaving the other


ases to the reader. We have given the appropriate witness above; we must


he
k that the appropriate 
omposition gives F




(f). This amounts to showing

that the outer paths of the re
tangle in Figure A.1 
ommute. Note that the

left-bottom path is just the image under F of the 
omposite that gives f sin
e

f is nu
lear. (We have indi
ated in the 
ells whether they 
ommute be
ause

of naturality (nat), be
ause the fun
tor is linear (lin), or the fun
tor is monoidal

(mon).) The reader might like to try this using 
ir
uits: it is easy to get a simple

\one-line" proof 
orresponding to the diagram de
omposition in Figure A.1.

If one puts a F




fun
tor box around ea
h side of the de�ning 
ir
uit equation

expressing that f is left nu
lear, and then splits the F




box around the [

\


ir
uit (involving the � and 
 nodes) using the fourth equivalen
e from Table 1,

one obtains a new [

\

shape involving a F




box with a � node inside, and a

F

�

box with a 
 node inside, showing that F




(f) is left nu
lear with F

�

(C)

as witness. With the other 
ases done dually, this 
ompletes the proof. 2

Corollary 41 Linear fun
tors preserve 
omplemented obje
ts.

Spe
i�
ally, if F :X �! Y is a linear fun
tor of linearly distributive 
ategories,

and if A is (left) 
omplemented in X, then both F




(f); F

�

(f) are (left) 
om-

plemented in Y, and similarly for right 
omplements.

Proof. The proof is immediate from the Proposition and proof above; note

that the witness of the left nu
learity of (say) the identity on F




(A) will be

F

�

(B), where B is the right 
omplement of A. 2

Note that this gives another proof, at least in the symmetri
 
ase, that 
om-

plemented obje
ts are 
losed under �;�, and that > and ? form a 
omple-

mentation pair, sin
e we just need to apply the pre
eding Corollary to the

linear fun
tor ,�.
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Fig. A.1. Linear F preserves nu
lear f
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