
Mizar Light for HOL Light

Freek Wiedijk

freek�
s.kun.nl

Department of Computer S
ien
e

University of Nijmegen

The Netherlands

Abstra
t. There are two di�erent approa
hes to formalizing proofs in a

omputer: the pro
edural approa
h (whi
h is the one of the HOL system)

and the de
larative approa
h (whi
h is the one of the Mizar system).

Most provers are pro
edural. However de
larative proofs are mu
h
loser

in style to informal mathemati
al reasoning than pro
edural ones.

There have been attempts to put de
larative interfa
es on top of pro
e-

dural proof assistants, like John Harrison's Mizar mode for HOL and

Markus Wenzel's Isar mode for Isabelle. However in those
ases the

de
larative assistant is a layer on top of the pro
edural basis, having

a separate syntax and a di�erent `feel' from the underlying system.

This paper shows that the pro
edural and the de
larative ways of proving

are related and
an be integrated seamlessly. It presents an implementa-

tion of the Mizar proof language on top of HOL that
onsists of only 41

lines of ML. This shows how
lose the pro
edural and de
larative styles

of proving really are.

1 Introdu
tion

We des
ribe a programming experiment with the HOL system. To be able to

read this paper one has to have some familiarity with both the HOL [10℄ and

Mizar [12, 17℄ systems. The software des
ribed here is not meant to be used for

serious work (and it
ertainly doesn't emulate the full Mizar language). Rather

it's a kind of `thought experiment' to
larify the relation between the pro
edural

and de
larative styles of proving.

This paper uses HOL for the pro
edural prover. However the way the paper

integrates Mizar-style proofs with it also applies to other pro
edural systems

like Coq [2℄ and Isabelle [14℄. For ea
h of these systems a set of `Mizar ta
ti
s'

ould be written as des
ribed in this paper, giving them `Mizar style' de
larative

proofs without a separate synta
ti
 layer.

The plan of this paper is as follows. It �rst presents the pro
edural and

de
larative styles of proving and the HOL and Mizar systems. Then Se
tion 6

presents the main idea of the paper whi
h is implementing Mizar steps as HOL

ta
ti
s. For ea
h of these `Mizar ta
ti
s' this se
tion gives an ML type in the

framework of the HOL system. After that the paper dis
usses various variations

on this Mizar mode for HOL. The paper
on
ludes with a bigger example and

an outlook. The sour
e
ode of the Mizar mode is an appendix.

2 Freek Wiedijk

2 Pro
edural versus de
larative proving

The idea of formalizing mathemati
al proofs in su
h a way that a
omputer

an
he
k the
orre
tness is not new but only re
ently it has be
ome pra
ti
al

and popular. Most of the proofs that are
urrently
he
ked are proofs of the

orre
tness of
omputer software or hardware but some people have also been

formalizing other kinds of proofs (for instan
e of mathemati
al theorems [3, 6℄).

There are two main styles of proof
he
king programs (the so-
alled proof

he
kers or proof assistants): the pro
edural style and the de
larative style.

The pro
edural proof
he
kers des
end from a system from the seventies

alled LCF [8℄. Su
h a system has a proof state whi
h
onsists of a set of `proof

obligations'. This state is transformed by means of so-
alled ta
ti
s whi
h take a

proof obligation and redu
e it to several simpler ones (possibly none). The proof

pro
ess starts with the statement to be proved as the sole proof obligation; on
e

no proof obligations remain, the proof is
omplete. Pro
edural proofs
onsisting

of a sequen
e of ta
ti
s
annot be understood without intera
tively running them

on a
omputer be
ause they only
ontain the transitions between the proof states

and not the proof states themselves.

1

Also sin
e the initial proof obligation is

the �nal statement to be proved, pro
edural proofs tend to run ba
kwards , from

the
on
lusion ba
k to the assumptions.

The other two proof
he
kers from the seventies, Automath [13℄ and Mizar

[12, 17℄, both are of the de
larative kind. (Another system that is de
larative is

the Onti
 system by David M
Allester [11℄.) In a de
larative system, a proof

doesn't
onsist of instru
tions to transform statements but of those statements

themselves. Furthermore, the statements are present in dedu
tive order: the

assumptions are at the start and the
on
lusion is at the end.

2

The pro
edural and de
larative styles di�er in several ways:

{ De
larative proofs are
loser to informal mathemati
al reasoning and there-

fore are more readable than pro
edural proofs be
ause in a de
larative proof

the statements are present themselves and in the proper order.

{ Most
urrent proof assistants are pro
edural (perhaps be
ause LCF style

provers are programmable by their users, while de
larative systems
an gen-

erally only be extended by its developers).

{ De
larative proofs
an be written without the proof assistant running and

then
he
ked with a bat
h oriented system. Pro
edural proofs
an only be

developed intera
tively be
ause the
omputer has to keep tra
k of the proof

obligations. Indeed, some de
larative provers only have a bat
h mode while

pro
edural provers always also have an intera
tive mode.

1

Pro
edural proofs are therefore sometimes presented using runs of proof s
ripts (or,

even better, proof trees) showing intermediate goals.

2

The relation between ba
kward and forward reasoning as related to pro
edural and

de
larative proofs is more subtle than is suggested here. De
larative proofs (and in-

formal mathemati
al reasoning as well) also take ba
kward steps. And many pro
e-

dural provers also
an do forward reasoning. However the parti
ular ta
ti

olle
tions

found in pro
edural provers tend to be biased towards ba
kward reasoning.

Mizar Light for HOL Light 3

{ Sin
e a de
larative proof
ontains a
hain of statements, it is fairly robust

with respe
t to errors. If one step in the proof is erroneous, a de
larative

system
an re
over from the error and
he
k the rest of the proof �le reason-

ably well. In
ontrast, a pro
edural prover stops
he
king at the �rst error it

en
ounters. So after the point in the �le where an error o

urs, a pro
edural

system
an't say mu
h about
orre
tness.

It seems natural to look for a way to integrate the pro
edural and de
larative

approa
hes to proving. Two attempts to put a de
larative interfa
e on a pro-

edural prover are the Mizar mode for HOL by John Harrison [9℄ and the Isar

mode for Isabelle by Markus Wenzel [16℄.

The Mizar mode for HOL by John Harrison is a true integration, in the

sense that the Mizar
ommands behave like ordinary HOL ta
ti
s. However

this doesn't be
ome
lear from the way this mode is presented. For instan
e,

the Mizar sub-language has a separate parser from the (ML based) HOL proof

language. Also on
e the Mizar mode is a
tive, the normal parser of the HOL

terms is no longer easily available. This seems to suggest that on
e the Mizar

mode has been a
tivated, the `normal' style of pro
edural HOL proving is not

meant to be used anymore.

The Mizar mode for HOL in this paper is a variation on the Mizar mode of

John Harrison. Its main di�eren
e with Harrison's Mizar mode is that the Mizar

primitives are HOL ta
ti
s (so are not just
ompiled to them) and therefore the

integration is very tight. Also the implementation of our Mizar mode takes only

41 lines of ML, whi
h is smaller than Harrison's implementation whi
h
onsists

of about 650 lines of ML.

The Isar mode for Isabelle di�ers from the Mizar mode for HOL in that it

has outgrown the experimental stage and has been used for serious proofs [3, 5,

4℄. However it really is a se
ond layer on top of the Isabelle layer (although it

is possible to `embed' ta
ti
 s
ripts in Isar proofs), so in this
ase there is no

mixture between the two approa
hes. In fa
t, both layers have their own proof

state (
alled `the stati
 proof
ontext' and `the dynami
 goal state') whi
h are

to be syn
hronized at
ertain
he
kpoints. This is presented as a bene�t be
ause

it makes it possible to give a di�erent order to the proof steps from the order

imposed by the underlying pro
edural basis but it shows that there is no tight

integration.

Two other de
larative systems that integrate de
larative proofs with higher

order logi
 are the SPL system by Vin
ent Zammit [18℄ and the De
lare system

by Don Syme [15℄. These two systems are not meant as a de
larative interfa
e

to a pro
edural prover. Instead they are autonomous de
larative systems. (The

SPL system is implemented on top of the HOL system but it is not an interfa
e

to HOL.)

Pro
edural and de
larative proof
he
kers both might or might not satisfy

what Henk Barendregt
alls the de Bruijn prin
iple and the Poin
ar�e prin
iple

[1℄. This paper is about the relation between pro
edural and de
larative proof

styles. This is unrelated to the issue of whether a system should satisfy either of

these prin
iples or how to make it do so.

4 Freek Wiedijk

3 Example: the drinker

As a running example in this paper, we will use the so-
alled drinker's prin
iple.

This says that in every group of people one
an point to one person in the group

su
h that if that person drinks then all the people in the group drink. This

somewhat surprising statement be
omes in �rst order predi
ate logi
:

9x:

�

P (x) ! 8y: P (y)

�

The HOL version of this is:

?x:A. P x ==> !y. P y

(so in HOL `?' is the existential quanti�er and `!' is the universal quanti�er) and

the Mizar version is:

ex x st P x implies for y holds P y

Here is an informal proof of the drinker's prin
iple (we will see below how this

textual version
ompares both to the proofs of this statement in the HOL and

Mizar systems):

Suppose that P (x) is false for some x. Then for that x the impli
ation

holds be
ause from a false proposition one may dedu
e anything. That

means that in this
ase the proposition follows.

Now suppose that P (x) is false for no x. Then P (x) is true for all x. But

that statement is the
on
lusion of the impli
ation and so the proposition

again follows.

Almost all example proofs in this paper are proofs of this simple statement. In

Se
tion 8 we will present a bigger example.

4 HOL

The HOL system [7℄ by Mike Gordon is a des
endant from LCF that imple-

ments Chur
h's Higher Order Logi
 (hen
e the a
ronym `HOL'), whi
h is a
las-

si
al higher order logi
 en
oded by simply typed lambda
al
ulus with ML style

polymorphism. The system guarantees the
orre
tness of its proofs by redu
ing

everything in LCF style to a `proof kernel', whi
h be
ause of its small size (nine

pages of ML
ode, about half of whi
h is
omment)
an be thoroughly
he
ked

for
orre
tness by inspe
tion.

The HOL system has had several implementations: HOL88, HOL90, HOL98,

ProofPower (a
ommer
ial version) and HOL Light. The HOL Light system

[10℄ whi
h is the HOL re-implementation by John Harrison, is the version of

the system that we have used for this paper (but all versions are similar). It has

been written in CAML Light and
onsists of slightly under two megabytes of ML

sour
e, whi
h implement a mathemati
al framework
ontaining a formalization

Mizar Light for HOL Light 5

of the real numbers, analysis and trans
endental fun
tions and several de
ision

pro
edures for both logi
al and arithmeti
al problems. It has been both used for

omputer s
ien
e appli
ations and for formalizing pure mathemati
s (like the

fundamental theorem of algebra).

The drinker's prin
iple
an be proved in HOL in the following way:

let DRINKER = prove

(`?x:A. P x ==> !y. P y`,

ASM_CASES_TAC `?x:A. ~P x` THEN

RULE_ASSUM_TAC (REWRITE_RULE[NOT_EXISTS_THM℄) THENL

[POP_ASSUM CHOOSE_TAC; ALL_TAC℄ THEN

EXISTS_TAC `x:A` THEN

ASM_REWRITE_TAC[℄);;

There are various ways to prove this statement, but this ta
ti
 sequen
e is a

fairly normal way to prove something like this in HOL.

5 Mizar

The Mizar system [12, 17℄ by Andrzej Trybule
 and his group in Bialystok,

Poland, is a de
larative prover that goes ba
k to the seventies. It implements

lassi
al �rst order logi
 with ZFC-style set theory. The
urrent version,
alled

PC Mizar, dates from 1989. It
onsists of a suite of Pas
al programs whi
h are

distributed
ompiled for Intel pro
essors (both Windows and Linux). These pro-

grams are a

ompanied by a huge library of all kinds of mathemati
s, in the

form of a series of 686 so-
alled `arti
les' whi
h together are about 1.3 million

lines of Mizar.

In Mizar a proof of the drinker's prin
iple looks like:

ex x st P x implies for y holds P y

proof

per
ases;

suppose A0: ex x st not P x;

onsider a su
h that A1: not P a by A0;

take a;

assume A2: P a;

A3:
ontradi
tion by A1,A2;

thus A4: for y holds P y by A3;

suppose A5: for x holds P x;

onsider a su
h that A6: not
ontradi
tion;

take a;

thus A7: P a implies for y holds P y by A5;

end;

Note that this is readable and similar to the informal proof in Se
tion 3.

The Mizar system has many interesting ideas. For instan
e it has a
om-

pli
ated type system with polymorphi
 types, overloading, subtyping and type

6 Freek Wiedijk

modi�ers
alled `adje
tives', together with powerful type inferen
e rules. Also it

has a mathemati
al looking operator syntax with not only pre�x and in�x oper-

ators but also `around�x' operators, whi
h behave like bra
kets. However in this

paper we will restri
t ourselves to the proof language of Mizar. That means that

from now on we will only have HOL types and HOL term syntax and we will

not mix those with Mizar types and Mizar term syntax. The same restri
tion

to just the proof fragment of Mizar was
hosen for the Mizar mode for HOL by

John Harrison.

The reasoning part of Mizar turns out to be simple. In its basi
 form it is

given by the following
ontext free grammar:

proposition = [label : ℄ formula

statement = proposition justi�
ation

justi�
ation =

empty

j by label f, labelg

j proof fstepg [
ases ℄ end

step =

statement ;

j assume proposition ;

j
onsider variable f, variableg

su
h that proposition fand propositiong justi�
ation ;

j let variable f, variableg ;

j take term f, termg ;

j thus statement ;

ases = per
ases justi�
ation ; fsuppose proposition ; fstepgg

empty =

The main Mizar proof feature that is missing from this language fragment is the

use of `.=' for equational reasoning.

Note that this grammar has only seven kinds of proof elements: a statement

without keyword, assume,
onsider, let, per
ases, take and thus. (Compare

this with the hundreds of di�erent ta
ti
s, ta
ti
als,
onversions and
onversion-

als that appear all over the HOL proofs.)

6 Mizar as HOL ta
ti
s

We will
ompare the way the Mizar and HOL systems implement natural dedu
-

tion. That will lead to a natural ML type (in the framework of HOL) for ea
h

of the Mizar steps. The table that lists these types is the essen
e of our Mizar

implementation on top of HOL. (The appendix will show how to implement the

Mizar steps a

ording to these types.)

There are two kinds of Mizar steps:

{ skeleton steps: the natural dedu
tion way of reasoning

Mizar Light for HOL Light 7

{ forward steps: statements that get added to the
ontext after having been

justi�ed with the `by' justi�
ation

The natural dedu
tion rules
orrespond to Mizar steps a

ording to following

table (rules for whi
h a `{' appears in this table are implemented as forward

steps and don't have a Mizar step of their own):

natural dedu
tion Mizar

! introdu
tion assume

! elimination {

^ introdu
tion thus

^ elimination {

_ introdu
tion {

_ elimination per
ases

8 introdu
tion let

8 elimination {

9 introdu
tion take

9 elimination
onsider

The HOL language has natural dedu
tion as well. The main di�eren
e is that

the Mizar steps make the propositions expli
it that the HOL steps leave impli
it.

Compare the two ways to do! introdu
tion. Suppose we want to redu
e the

goal:

A;B ` (C ! D)! E

to:

A;B; (C ! D) ` E

(this is the introdu
tion rule be
ause a goal oriented prover reasons ba
kwards).

The Mizar step doing this is:

assume A2: C implies D;

(here `A2' is the label of the assumption). The same is a

omplished in HOL by:

DISCH_TAC

or if we write out the proof state transformation expli
itly:

it : goalsta
k = 1 subgoal (1 total)

0 [`A`℄

1 [`B`℄

`(C ==> D) ==> E`

#e DISCH_TAC;;

it : goalsta
k = 1 subgoal (1 total)

0 [`A`℄

1 [`B`℄

2 [`C ==> D`℄

`E`

8 Freek Wiedijk

The Mizar statement gives the `redundant' information what the dis
harged

statement is and where it ends up in the
ontext. We
an imitate this in HOL

by de�ning a ta
ti
 ASSUME_A su
h that the HOL ta
ti
 be
omes:

ASSUME_A(2,`C ==> D`)

or expli
itly:

it : goalsta
k = 1 subgoal (1 total)

0 [`A`℄

1 [`B`℄

`(C ==> D) ==> E`

#e (ASSUME_A(2,`C ==> D`));;

it : goalsta
k = 1 subgoal (1 total)

0 [`A`℄

1 [`B`℄

2 [`C ==> D`℄

`E`

All that the ASSUME_A ta
ti
 does is
he
k that the number and statement �t

and then apply DISCH_TAC.

The ASSUME_A ta
ti
 has the type:

int � term ! ta
ti

If we
ontinue along this line of thought, it turns out that every Mizar
onstru
-

tion has a `natural' HOL type. The table that gives these types is the essen
e of

our Mizar mode for HOL:

A int � term ! ta
ti
 ! ta
ti

ASSUME_A int � term ! ta
ti

BY int list ! thm list ! ta
ti

CONSIDER term list ! (int � term) list ! ta
ti
 ! ta
ti

LET term list ! ta
ti

PER_CASES ta
ti
 ! ((int � term) � ta
ti
) list ! ta
ti

TAKE term list ! ta
ti

THUS_A int � term ! ta
ti
 ! ta
ti

Note that this table
orresponds to the Mizar proof grammar from Se
tion 5.

Implementing these eight ta
ti
s is trivial, as shown in the appendix. The �rst

of these ta
ti
s, the A ta
ti
,
orresponds to a Mizar step without a keyword: a

forward reasoning step. The BY ta
ti
 is used to justify steps. It takes two lists

of arguments. The �rst list is a list of integers referring to the assumption list of

the
urrent goal, the se
ond list is a list of thms.

Now we
an write down the proof of the drinker's prin
iple as a normal HOL

proof (so with prove and a
hain of ta
ti
s put together with THEN), this time

using the `Mizar ta
ti
s':

Mizar Light for HOL Light 9

let DRINKER = prove

(`?x:A. P x ==> !y. P y`,

PER_CASES (BY [℄[℄)

[(0,`?x:A. ~P x`),

(CONSIDER [`a:A`℄ [(1,`~(P:A->bool) a`)℄ (BY [0℄[℄) THEN

TAKE [`a:A`℄ THEN

ASSUME_A(2,`(P:A->bool) a`) THEN

A(3,`F`) (BY [1;2℄[℄) THEN

THUS_A(4,`!y:A. P y`) (BY [3℄[℄))

;(0,`!x:A. P x`),

(CONSIDER [`a:A`℄ [℄ (BY [℄[℄) THEN

TAKE [`a:A`℄ THEN

THUS_A(1,`P a ==> !y:A. P y`) (BY [0℄[℄))℄);;

Note that this is similar to the Mizar version of this proof from Se
tion 5. The

main di�eren
e is that type annotations are needed (`(P:A->bool) a` instead

of `P a`). This problem of having to put type annotations in terms is standard

in HOL. A possible approa
h to this problem will be presented in Se
tion 7.5.

7 Enhan
ements

The Mizar ta
ti
s that we presented in the previous se
tion are very basi
. They

an be enhan
ed in various ways. Be
ause we la
k the spa
e we don't give all

the details. Curious readers are referred to the HOL Light sour
e �le miz.ml at

the URL <http://www.
s.kun.nl/~freek/mizar/miz.ml>.

7.1 The BECAUSE ta
ti

The
ommon way to justify a Mizar step in our Mizar mode is with a justi�
ation

that looks like:

(BY [lo
al statement list℄[global statement list℄)

This has the prover `hardwired in' (in the implementation from the appendix,

this prover �rst tries REWRITE_TAC and if that fails tries MESON_TAC). However

the BY ta
ti
 is built on top of a ta
ti

alled `BECAUSE' whi
h has the type:

(thm list ! ta
ti
) ! int list ! thm list ! ta
ti

This means that one
an use it with any ta
ti
 that has the type thm list

! ta
ti
 like REWRITE_TAC, SIMP_TAC, MESON_TAC and so on. (One also
ould

use it with ta
ti
s like ASM_REWRITE_TAC but that would be silly, be
ause the

assumptions already are a

essible through the `lo
al statements' argument.) For

instan
e one
ould justify a step by:

(BECAUSE ONCE_SIMP_TAC[lo
al statement list℄[global statement list℄)

This would prove the statement being justi�ed using the ONCE_SIMP_TAC ta
ti

with the relevant thms.

The BECAUSE ta
ti
 gives
ontrol over the exa
t behavior of the prover if that

is needed, making a re�ned version of BY unne
essary.

10 Freek Wiedijk

7.2 A more powerful ASSUME A ta
ti

The ASSUME_A ta
ti
 is the de
larative version of the pro
edural DISCH_TAC ta
-

ti
. The implementation from the appendix mirrors DISCH_TAC exa
tly. However

sin
e the ASSUME_A ta
ti

ontains the statement that is dis
harged, it
an be

more general. It be
omes more powerful if we implement it as:

let ASSUME_A (n,tm) =

DISJ_CASES_THEN2

(fun th -> REWRITE_TAC[th℄ THEN N_ASSUME_TAC n th)

(fun th -> REWRITE_TAC[REWRITE_RULE[℄ th℄ THEN

MIZ_ERROR_TAC "ASSUME_A" [n℄)

(SPEC tm EXCLUDED_MIDDLE);;

For instan
e in that
ase one
an use it to reason by
ontradi
tion:

it : goalsta
k = 1 subgoal (1 total)

`A`

#e (ASSUME_A(0,`~A`));;

it : goalsta
k = 1 subgoal (1 total)

0 [`~A`℄

`F`

This is also how the assume step of the real Mizar system behaves.

7.3 An intera
tive version of the PER CASES ta
ti

The PER_CASES ta
ti
 has the type:

PER_CASES : ta
ti
 ! ((int � term) � ta
ti
) list ! ta
ti

In order to debug a proof intera
tively a version that has type:

PER_CASES : ta
ti
 ! (int � term) list ! ta
ti

and that leaves the
ases as subgoals is more pra
ti
al. Using this variant makes

the proof look less like Mizar be
ause the list of the statements of the
ases has

been separated from the list of proofs of the
ases.

A hybrid is also possible that has the type of the original PER_CASES but

doesn't require all the
ases to be
ompletely proved after the ta
ti
 �nishes.

7.4 Ta
ti
s versus proofs

Some of the ta
ti
 arguments of the Mizar ta
ti
s not only have to redu
e the

proof obligations but they have to prove the goal altogether. So those arguments

are more `proofs' than `ta
ti
s'. One might try to re
e
t this in the typing of the

Mizar ta
ti
s by at
ertain pla
es
hanging ta
ti
 (whi
h is de�ned as goal !

goalstate) to goal! thm. The se
ond type is in a way a spe
ial
ase (`subtype')

of the �rst. Then fun
tions:

Mizar Light for HOL Light 11

PROOF : ta
ti
 ! goal ! thm

PER : (goal ! thm) ! ta
ti

map these two types to ea
h other and:

prove' : term � (goal ! thm) ! thm

runs a proof. Using this approa
h, the Mizar mode ta
ti
s will get the following

type assignments:

A int � term ! (goal ! thm) ! ta
ti

ASSUME_A int � term ! ta
ti

BY int list ! thm list ! goal ! thm

CASES (goal ! thm) ! ((int � term) � (goal ! thm)) list

! goal ! thm

CONSIDER term list ! (int � term) list ! (goal ! thm) ! ta
ti

LET term list ! ta
ti

TAKE term list ! ta
ti

THUS_A int � term ! (goal ! thm) ! ta
ti

(Note that we have separated the PER_CASES ta
ti
 into a
ombination of PER

and CASES.) The example proof be
omes, using these ta
ti
s:

let DRINKER = prove'

(`?x:A. P x ==> !y. P y`,

PROOF

(PER (CASES (BY [℄[℄)

[(0,`?x:A. ~P x`),

PROOF

(CONSIDER [`a:A`℄ [(1,`~(P:A->bool) a`)℄ (BY [0℄[℄) THEN

TAKE [`a:A`℄ THEN

ASSUME_A(2,`(P:A->bool) a`) THEN

A(3,`F`) (BY [1;2℄[℄) THEN

THUS_A(4,`!y:A. P y`) (BY [3℄[℄))

;(0,`!x:A. P x`),

PROOF

(CONSIDER [`a:A`℄ [℄ (BY [℄[℄) THEN

TAKE [`a:A`℄ THEN

THUS_A(1,`P a ==> !y:A. P y`) (BY [0℄[℄))℄)));;

7.5 Terms in
ontext

The HOL system parses a term in an empty
ontext be
ause the HOL imple-

mentation is fun
tional. So if we write an expression of type term it doesn't

have a

ess to the goal state. This means that `n` will always be read as a

polymorphi
 variable, whatever is in the
urrent goal. If a goal talks about a

natural number `n` of type `:num`, then to instantiate an existential quanti�er

12 Freek Wiedijk

with this `n` one has to write EXISTS_TAC `n:num` instead of EXISTS_TAC `n`.

Generally this doesn't get too bad but it is irritating.

In our Mizar mode this problem is worse be
ause there are more statements

in the ta
ti
s. So we might try to modify things for this. The idea is to
hange

the type term to goal ! term everywhere. This means that the `term parsing

fun
tion' X will have to get the type string ! goal ! term. Again a variant

fun
tion prove'' of type (goal ! term) � ta
ti
 ! thm is needed.

If we follow this approa
h then most type annotations will be gone, ex
ept

in the statement of the theorem to be proved and in the arguments of LET and

CONSIDER (where they also are required in the `real' Mizar).

Be
ause in that
ase the terms are parsed in the
ontext of a goal, we
an give

a spe
ial meaning to the variables `ante
edent` and `thesis`. See Se
tion 8

for an example of this.

The main disadvantage of this modi�
ation to our Mizar mode is that the

original HOL proof s
ripts will not work anymore be
ause the X fun
tion has

been
hanged. That is a big disadvantage if one wants true integration between

the `pure' HOL and the Mizar mode.

7.6 Out of sequen
e labels and negative labels

Another thing that
an be
hanged is to be less restri
tive whi
h numbers are

allowed for the labels. Until now they had to be the exa
t position that the

statement would end up in the assumption list of the goal. However there is no

reason not to allow any number and put the statement at that position, padding

the assumption list with `T` thms if ne
essary. That way we
an make the labels

in the example mat
h the labels in the original Mizar version. If we do this in

the example proof, then the se
ond CONSIDER will see a goal like:

it : goalsta
k = 1 subgoal (1 total)

0 [`T`℄

1 [`T`℄

2 [`T`℄

3 [`T`℄

4 [`T`℄

5 [`!x. P x`℄

`?x. P x ==> (!y. P y)`

Related to this is an enhan
ement that implements Mizar's then. In Mizar a step

an refer to the step dire
tly before it with the then pre�x. A way to imitate

this in our Mizar mode is to allow negative numbers in the labels,
ounting ba
k

from the top of the assumption sta
k. The label -1 will then refer to the top of

the sta
k (whi
h
ontains the statement from the previous step). Therefore use

of -1 will behave like then.

Mizar Light for HOL Light 13

7.7 Symboli
 labels

Instead of numeri
 labels we also
an have symboli
 labels. HOL Light supports

symboli
 labels already. It is straight-forward to
hange the set of Mizar ta
ti
s

to work with these symboli
 labels instead of with the numeri
 positions in the

list of assumptions.

In the rest of this paper we have presented our Mizar mode with numeri

labels. We had two reasons for this:

{ In HOL the symboli
 labels are almost never used, so proof states that

ontain them are un-HOL-like.

{ In Mizar the `symboli
' labels generally just are A1, A2, A3, . . . That means

that the Mizar labels really are used as numbers, most of the time. Therefore

we didn't
onsider numeri
 labels un-Mizar-like.

7.8 Error re
overy

A de
larative proof
ontains expli
it statements for all reasoning steps. Be
ause

of this a de
larative system like Mizar
an re
over from errors and
ontinue

he
king proofs after the �rst error.

3

This behavior
an be added to our Mizar

mode for HOL by
at
hing the ex
eption if there is an error, and then
ontinue

with the appropriate statement added to the
ontext as an axiom. This was

implemented by using a justi�
ation fun
tion that just throws an ex
eption.

Having this enhan
ement of
ourse only gives error re
overy for `reasoning

errors' and will not help with other errors like syntax errors or ML type errors.

One of the referees of this paper liked the idea of error re
overy for the Mizar

ta
ti
s, and suggested a sta
k on whi
h the goalstates of the erroneous steps

ould be stored for later proof debugging. We implemented this idea, but we

think that the standard HOL pra
ti
e of running a proof one ta
ti
 at a time is

more
onvenient (for whi
h the `Mizar ta
ti
s with error re
overy' are unusable).

8 Bigger example

In this se
tion we show a larger example of our Mizar mode (it uses the variant

from Se
tion 7.5, so terms are parsed in the
ontext of the proof):

let FIXPOINT = prove''

(`!f. (!x:A y. x <= y /\ y <= x ==> (x = y)) /\

(!x y z. x <= y /\ y <= z ==> x <= z) /\

(!x y. x <= y ==> f x <= f y) /\

(!X. ?s. (!x. x IN X ==> s <= x) /\

(!s'. (!x. x IN X ==> s' <= x) ==> s' <= s))

==> ?x. f x = x`,

3

The Mizar mode by John Harrison does not have this feature. Isar satis�es the prin-

iple that sub-proofs
an be
he
ked independently, but the present implementation

simply stops at the �rst error it en
ounters.

14 Freek Wiedijk

LET [`f:A->A`℄ THEN

ASSUME_A(0,`ante
edent`) THEN

A(1,`!x y. x <= y /\ y <= x ==> (x = y)`) (BY [0℄[℄) THEN

A(2,`!x y z. x <= y /\ y <= z ==> x <= z`) (BY [0℄[℄) THEN

A(3,`!x y. x <= y ==> f x <= f y`)(BY [0℄[℄) THEN

A(4,`!X. ?s. (!x. x IN X ==> s <= x) /\

(!s'. (!x. x IN X ==> s' <= x) ==> s' <= s)`)

(BY [0℄[℄) THEN

CONSIDER [`Y:A->bool`℄ [(5,`Y = {b | f b <= b}`)℄ (BY [℄[℄) THEN

A(6,`!b. b IN Y = f b <= b`) (BY [5℄[IN_ELIM_THM;BETA_THM℄) THEN

CONSIDER [`a:A`℄ [(7,`!x. x IN Y ==> a <= x`);

(8,`!a'. (!x. x IN Y ==> a' <= x) ==> a' <= a`)℄ (BY [4℄[℄) THEN

TAKE [`a`℄ THEN

A(9,`!b. b IN Y ==> f a <= b`)

(LET [`b:A`℄ THEN

ASSUME_A(9,`b IN Y`) THEN

A(10,`f b <= b`) (BY [6;9℄[℄) THEN

A(11,`a <= b`) (BY [7;9℄[℄) THEN

A(12,`f a <= f b`) (BY [3;11℄[℄) THEN

THUS_A(13,`f a <= b`) (BY [2;10;12℄[℄)) THEN

A(10,`f(a) <= a`) (BY [8;9℄[℄) THEN

A(11,`f(f(a)) <= f(a)`) (BY [3;10℄[℄) THEN

A(12,`f(a) IN Y`) (BY [6;11℄[℄) THEN

A(13,`a <= f(a)`) (BY [7;12℄[℄) THEN

THUS_A(14,`thesis`) (BY [1;10;13℄[℄));;

This is a translation to our framework of an example proof from John Harrison's

Mizar mode whi
h proves the Knaster-Tarski �xpoint theorem.

9 Con
lusion

The ta
ti
s that are presented here might be the basis of a realisti
 system that

o�ers the best of both the pro
edural and de
larative provers. One hopes this

to be possible: to build a prover that has the readable proofs of the de
larative

provers and the programmability of the pro
edural ones. The Mizar mode for

HOL by John Harrison and the Isar mode for Isabelle might
laim to be just

that, but in those systems it feels like one has to learn two provers if one wants

to be able to use both styles of proving.

The Mizar mode of this paper makes
lear that that both kinds of prover

are very similar. Although the proofs using our Mizar ta
ti
s look awkward and

fragile
ompared with their Mizar
ounterparts, we have shown that it is possible

to bridge the gap between the pro
edural and de
larative proof styles in a more

intimate way than had been a

omplished thus far.

A
knowledgements. Thanks to Dan Synek, Jan Zwanenburg and the anonymous

referees for valuable
omments. Due to spa
e limits we have not been able to

in
orporate all of them.

Mizar Light for HOL Light 15

Referen
es

1. Henk Barendregt. The impa
t of the lambda
al
ulus. Bulletin of Symboli
 Logi
,

3(2), 1997.

2. Bruno Barras, e.a. The Coq Proof Assistant Referen
e Manual, 2000.

<ftp://ftp.inria.fr/INRIA/
oq/V6.3.1/do
/Referen
e-Manual-all.ps.gz>.

3. Gertrud Bauer. Lesbare formale Beweise in Isabelle/Isar | der Satz von Hahn-

Bana
h. Master's thesis, TU M�un
hen, November 1999.

<http://www.in.tum.de/~bauerg/HahnBana
h-DA.pdf>.

4. Gertrud Bauer. The Hahn-Bana
h Theorem for real ve
tor spa
es. Part of the

Isabelle99-2 distribution, <http://isabelle.in.tum.de/

library/HOL/HOL-Real/HahnBana
h/do
ument.pdf>, February 2001.

5. Gertrud Bauer and Markus Wenzel. Computer-assisted mathemati
s at work| the

Hahn-Bana
h theorem in Isabelle/Isar. In Thierry Coquand, Peter Dybjer, Bengt

Nordstr�om, and Jan Smith, editors, Types for Proofs and Programs: TYPES'99,

volume 1956 of LNCS, 2000.

6. Jan Cederquist, Thierry Coquand, and Sara Negri. The Hahn-Bana
h Theorem

in Type Theory. In G. Sambin and J. Smith, editors, Twenty-Five years of Con-

stru
tive Type Theory, Oxford, 1998. Oxford University Press.

7. M.J.C. Gordon and T.F. Melham, editors. Introdu
tion to HOL. Cambridge Uni-

versity Press, Cambridge, 1993.

8. M.J.C. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: A Me
hanised

Logi
 of Computation, volume 78 of LNCS. Springer Verlag, Berlin, Heidelberg,

New York, 1979.

9. John Harrison. A Mizar Mode for HOL. In Pro
eedings of the 9th International

Conferen
e on Theorem Proving in Higher Order Logi
s, TPHOLs '96, volume

1125 of LNCS, pages 203{220. Springer, 1996.

10. John Harrison. The HOL Light manual (1.1), 2000.

<http://www.
l.
am.a
.uk/users/jrh/hol-light/manual-1.1.ps.gz>.

11. David A. M
Allester. Onti
: A Knowledge Representation System for Mathemati
s.

The MIT Press Series in Arti�
ial Intelligen
e. MIT Press, 1989.

12. M. Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels,

1993. <http://www.
s.kun.nl/~freek/mizar/mizarmanual.ps.gz>.

13. R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer. Sele
ted Papers on Automath,

volume 133 of Studies in Logi
 and the Foundations of Mathemati
s. Elsevier

S
ien
e, Amsterdam, 1994.

14. L.C. Paulson. The Isabelle Referen
e Manual, 2000. <http://www.
l.
am.a
.uk/

Resear
h/HVG/Isabelle/dist/Isabelle99-1/do
/ref.pdf>.

15. Don Syme. Three Ta
ti
 Theorem Proving. In Theorem Proving in Higher Order

Logi
s, TPHOLs '99, volume 1690 of LNCS, pages 203{220. Springer, 1999.

16. M. Wenzel. The Isabelle/Isar Referen
e Manual. TU M�un
hen, M�un
hen, 1999.

<http://isabelle.in.tum.de/do
/isar-ref.pdf>.

17. F. Wiedijk. Mizar: An impression.

<http://www.
s.kun.nl/~freek/mizar/mizarintro.ps.gz>, 1999.

18. Vin
ent Zammit. On the Implementation of an Extensible De
larative Proof Lan-

guage. In Theorem Proving in Higher Order Logi
s, TPHOLs '99, volume 1690 of

LNCS, pages 185{202. Springer, 1999.

16 Freek Wiedijk

A Implementation

Here is the full listing of the Mizar implementation as des
ribed in Se
tion 6.

1 let miz_error msg nl =

2 failwith (rev_itlist (fun s t -> t^" "^s) (map string_of_int nl) msg);;

3 let MIZ_ERROR_TAC msg nl = fun g -> miz_error msg nl;;

4 let N_ASSUME_TAC n th (asl,_ as g) =

5 if length asl = n then ASSUME_TAC th g else miz_error "N_ASSUME_TAC" [n℄;;

6 let A (n,tm) ta
 =

7 SUBGOAL_THEN tm (N_ASSUME_TAC n) THENL

8 [ta
 THEN MIZ_ERROR_TAC "A" [n℄; ALL_TAC℄;;

9 let ASSUME_A (n,tm) =

10 DISCH_THEN (fun th -> if
on
l th = tm then N_ASSUME_TAC n th

11 else miz_error "ASSUME_A" [n℄);;

12 let (BECAUSE:(thm list -> ta
ti
) -> int list -> thm list -> ta
ti
) =

13 fun ta
 nl thl (asl,_ as g) ->

14 try ta
 ((map (fun n -> snd (el (length asl - n - 1) asl)) nl) � thl) g

15 with _ -> ALL_TAC g;;

16 let BY = BECAUSE (fun thl -> REWRITE_TAC thl THEN MESON_TAC thl);;

17 let CONSIDER =

18 let T = `T` in

19 fun vl ntml ta
 ->

20 let ex = itlist (
urry mk_exists) vl

21 (itlist (
urry mk_
onj) (map snd ntml) T) in

22 SUBGOAL_THEN ex

23 ((EVERY_TCL (map X_CHOOSE_THEN vl) THEN_TCL EVERY_TCL (map

24 (fun (n,_) t
l
j ->

25 let th,
j' = CONJ_PAIR
j in N_ASSUME_TAC n th THEN t
l
j')

26 ntml)) (K ALL_TAC)) THENL

27 [ta
 THEN MIZ_ERROR_TAC "CONSIDER" (map fst ntml); ALL_TAC℄;;

28 let LET = MAP_EVERY X_GEN_TAC;;

29 let PER_CASES =

30 let F = `F` in

31 fun ta

ases ->

32 let dj = itlist (
urry mk_disj) (map (snd o fst)
ases) F in

33 SUBGOAL_THEN dj

34 (EVERY_TCL (map (fun
ase -> let n,_ = fst
ase in

35 (DISJ_CASES_THEN2 (N_ASSUME_TAC n)))
ases) CONTR_TAC) THENL

36 ([ta
℄ � map snd
ases) THEN MIZ_ERROR_TAC "PER_CASES" [℄;;

37 let TAKE = MAP_EVERY EXISTS_TAC;;

38 let THUS_A (n,tm) ta
 =

39 SUBGOAL_THEN tm ASSUME_TAC THENL

40 [ta
 THEN MIZ_ERROR_TAC "THUS_A" [n℄

41 ;POP_ASSUM (fun th -> N_ASSUME_TAC n th THEN REWRITE_TAC[EQT_INTRO th℄)℄;;

