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Abstrat. There are two di�erent approahes to formalizing proofs in a

omputer: the proedural approah (whih is the one of the HOL system)

and the delarative approah (whih is the one of the Mizar system).

Most provers are proedural. However delarative proofs are muh loser

in style to informal mathematial reasoning than proedural ones.

There have been attempts to put delarative interfaes on top of proe-

dural proof assistants, like John Harrison's Mizar mode for HOL and

Markus Wenzel's Isar mode for Isabelle. However in those ases the

delarative assistant is a layer on top of the proedural basis, having

a separate syntax and a di�erent `feel' from the underlying system.

This paper shows that the proedural and the delarative ways of proving

are related and an be integrated seamlessly. It presents an implementa-

tion of the Mizar proof language on top of HOL that onsists of only 41

lines of ML. This shows how lose the proedural and delarative styles

of proving really are.

1 Introdution

We desribe a programming experiment with the HOL system. To be able to

read this paper one has to have some familiarity with both the HOL [10℄ and

Mizar [12, 17℄ systems. The software desribed here is not meant to be used for

serious work (and it ertainly doesn't emulate the full Mizar language). Rather

it's a kind of `thought experiment' to larify the relation between the proedural

and delarative styles of proving.

This paper uses HOL for the proedural prover. However the way the paper

integrates Mizar-style proofs with it also applies to other proedural systems

like Coq [2℄ and Isabelle [14℄. For eah of these systems a set of `Mizar tatis'

ould be written as desribed in this paper, giving them `Mizar style' delarative

proofs without a separate syntati layer.

The plan of this paper is as follows. It �rst presents the proedural and

delarative styles of proving and the HOL and Mizar systems. Then Setion 6

presents the main idea of the paper whih is implementing Mizar steps as HOL

tatis. For eah of these `Mizar tatis' this setion gives an ML type in the

framework of the HOL system. After that the paper disusses various variations

on this Mizar mode for HOL. The paper onludes with a bigger example and

an outlook. The soure ode of the Mizar mode is an appendix.
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2 Proedural versus delarative proving

The idea of formalizing mathematial proofs in suh a way that a omputer

an hek the orretness is not new but only reently it has beome pratial

and popular. Most of the proofs that are urrently heked are proofs of the

orretness of omputer software or hardware but some people have also been

formalizing other kinds of proofs (for instane of mathematial theorems [3, 6℄).

There are two main styles of proof heking programs (the so-alled proof

hekers or proof assistants): the proedural style and the delarative style.

The proedural proof hekers desend from a system from the seventies

alled LCF [8℄. Suh a system has a proof state whih onsists of a set of `proof

obligations'. This state is transformed by means of so-alled tatis whih take a

proof obligation and redue it to several simpler ones (possibly none). The proof

proess starts with the statement to be proved as the sole proof obligation; one

no proof obligations remain, the proof is omplete. Proedural proofs onsisting

of a sequene of tatis annot be understood without interatively running them

on a omputer beause they only ontain the transitions between the proof states

and not the proof states themselves.

1

Also sine the initial proof obligation is

the �nal statement to be proved, proedural proofs tend to run bakwards , from

the onlusion bak to the assumptions.

The other two proof hekers from the seventies, Automath [13℄ and Mizar

[12, 17℄, both are of the delarative kind. (Another system that is delarative is

the Onti system by David MAllester [11℄.) In a delarative system, a proof

doesn't onsist of instrutions to transform statements but of those statements

themselves. Furthermore, the statements are present in dedutive order: the

assumptions are at the start and the onlusion is at the end.

2

The proedural and delarative styles di�er in several ways:

{ Delarative proofs are loser to informal mathematial reasoning and there-

fore are more readable than proedural proofs beause in a delarative proof

the statements are present themselves and in the proper order.

{ Most urrent proof assistants are proedural (perhaps beause LCF style

provers are programmable by their users, while delarative systems an gen-

erally only be extended by its developers).

{ Delarative proofs an be written without the proof assistant running and

then heked with a bath oriented system. Proedural proofs an only be

developed interatively beause the omputer has to keep trak of the proof

obligations. Indeed, some delarative provers only have a bath mode while

proedural provers always also have an interative mode.

1

Proedural proofs are therefore sometimes presented using runs of proof sripts (or,

even better, proof trees) showing intermediate goals.

2

The relation between bakward and forward reasoning as related to proedural and

delarative proofs is more subtle than is suggested here. Delarative proofs (and in-

formal mathematial reasoning as well) also take bakward steps. And many proe-

dural provers also an do forward reasoning. However the partiular tati olletions

found in proedural provers tend to be biased towards bakward reasoning.
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{ Sine a delarative proof ontains a hain of statements, it is fairly robust

with respet to errors. If one step in the proof is erroneous, a delarative

system an reover from the error and hek the rest of the proof �le reason-

ably well. In ontrast, a proedural prover stops heking at the �rst error it

enounters. So after the point in the �le where an error ours, a proedural

system an't say muh about orretness.

It seems natural to look for a way to integrate the proedural and delarative

approahes to proving. Two attempts to put a delarative interfae on a pro-

edural prover are the Mizar mode for HOL by John Harrison [9℄ and the Isar

mode for Isabelle by Markus Wenzel [16℄.

The Mizar mode for HOL by John Harrison is a true integration, in the

sense that the Mizar ommands behave like ordinary HOL tatis. However

this doesn't beome lear from the way this mode is presented. For instane,

the Mizar sub-language has a separate parser from the (ML based) HOL proof

language. Also one the Mizar mode is ative, the normal parser of the HOL

terms is no longer easily available. This seems to suggest that one the Mizar

mode has been ativated, the `normal' style of proedural HOL proving is not

meant to be used anymore.

The Mizar mode for HOL in this paper is a variation on the Mizar mode of

John Harrison. Its main di�erene with Harrison's Mizar mode is that the Mizar

primitives are HOL tatis (so are not just ompiled to them) and therefore the

integration is very tight. Also the implementation of our Mizar mode takes only

41 lines of ML, whih is smaller than Harrison's implementation whih onsists

of about 650 lines of ML.

The Isar mode for Isabelle di�ers from the Mizar mode for HOL in that it

has outgrown the experimental stage and has been used for serious proofs [3, 5,

4℄. However it really is a seond layer on top of the Isabelle layer (although it

is possible to `embed' tati sripts in Isar proofs), so in this ase there is no

mixture between the two approahes. In fat, both layers have their own proof

state (alled `the stati proof ontext' and `the dynami goal state') whih are

to be synhronized at ertain hekpoints. This is presented as a bene�t beause

it makes it possible to give a di�erent order to the proof steps from the order

imposed by the underlying proedural basis but it shows that there is no tight

integration.

Two other delarative systems that integrate delarative proofs with higher

order logi are the SPL system by Vinent Zammit [18℄ and the Delare system

by Don Syme [15℄. These two systems are not meant as a delarative interfae

to a proedural prover. Instead they are autonomous delarative systems. (The

SPL system is implemented on top of the HOL system but it is not an interfae

to HOL.)

Proedural and delarative proof hekers both might or might not satisfy

what Henk Barendregt alls the de Bruijn priniple and the Poinar�e priniple

[1℄. This paper is about the relation between proedural and delarative proof

styles. This is unrelated to the issue of whether a system should satisfy either of

these priniples or how to make it do so.
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3 Example: the drinker

As a running example in this paper, we will use the so-alled drinker's priniple.

This says that in every group of people one an point to one person in the group

suh that if that person drinks then all the people in the group drink. This

somewhat surprising statement beomes in �rst order prediate logi:

9x:

�

P (x) ! 8y: P (y)

�

The HOL version of this is:

?x:A. P x ==> !y. P y

(so in HOL `?' is the existential quanti�er and `!' is the universal quanti�er) and

the Mizar version is:

ex x st P x implies for y holds P y

Here is an informal proof of the drinker's priniple (we will see below how this

textual version ompares both to the proofs of this statement in the HOL and

Mizar systems):

Suppose that P (x) is false for some x. Then for that x the impliation

holds beause from a false proposition one may dedue anything. That

means that in this ase the proposition follows.

Now suppose that P (x) is false for no x. Then P (x) is true for all x. But

that statement is the onlusion of the impliation and so the proposition

again follows.

Almost all example proofs in this paper are proofs of this simple statement. In

Setion 8 we will present a bigger example.

4 HOL

The HOL system [7℄ by Mike Gordon is a desendant from LCF that imple-

ments Churh's Higher Order Logi (hene the aronym `HOL'), whih is a las-

sial higher order logi enoded by simply typed lambda alulus with ML style

polymorphism. The system guarantees the orretness of its proofs by reduing

everything in LCF style to a `proof kernel', whih beause of its small size (nine

pages of ML ode, about half of whih is omment) an be thoroughly heked

for orretness by inspetion.

The HOL system has had several implementations: HOL88, HOL90, HOL98,

ProofPower (a ommerial version) and HOL Light. The HOL Light system

[10℄ whih is the HOL re-implementation by John Harrison, is the version of

the system that we have used for this paper (but all versions are similar). It has

been written in CAML Light and onsists of slightly under two megabytes of ML

soure, whih implement a mathematial framework ontaining a formalization
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of the real numbers, analysis and transendental funtions and several deision

proedures for both logial and arithmetial problems. It has been both used for

omputer siene appliations and for formalizing pure mathematis (like the

fundamental theorem of algebra).

The drinker's priniple an be proved in HOL in the following way:

let DRINKER = prove

(`?x:A. P x ==> !y. P y`,

ASM_CASES_TAC `?x:A. ~P x` THEN

RULE_ASSUM_TAC (REWRITE_RULE[NOT_EXISTS_THM℄) THENL

[POP_ASSUM CHOOSE_TAC; ALL_TAC℄ THEN

EXISTS_TAC `x:A` THEN

ASM_REWRITE_TAC[℄);;

There are various ways to prove this statement, but this tati sequene is a

fairly normal way to prove something like this in HOL.

5 Mizar

The Mizar system [12, 17℄ by Andrzej Trybule and his group in Bialystok,

Poland, is a delarative prover that goes bak to the seventies. It implements

lassial �rst order logi with ZFC-style set theory. The urrent version, alled

PC Mizar, dates from 1989. It onsists of a suite of Pasal programs whih are

distributed ompiled for Intel proessors (both Windows and Linux). These pro-

grams are aompanied by a huge library of all kinds of mathematis, in the

form of a series of 686 so-alled `artiles' whih together are about 1.3 million

lines of Mizar.

In Mizar a proof of the drinker's priniple looks like:

ex x st P x implies for y holds P y

proof

per ases;

suppose A0: ex x st not P x;

onsider a suh that A1: not P a by A0;

take a;

assume A2: P a;

A3: ontradition by A1,A2;

thus A4: for y holds P y by A3;

suppose A5: for x holds P x;

onsider a suh that A6: not ontradition;

take a;

thus A7: P a implies for y holds P y by A5;

end;

Note that this is readable and similar to the informal proof in Setion 3.

The Mizar system has many interesting ideas. For instane it has a om-

pliated type system with polymorphi types, overloading, subtyping and type
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modi�ers alled `adjetives', together with powerful type inferene rules. Also it

has a mathematial looking operator syntax with not only pre�x and in�x oper-

ators but also `around�x' operators, whih behave like brakets. However in this

paper we will restrit ourselves to the proof language of Mizar. That means that

from now on we will only have HOL types and HOL term syntax and we will

not mix those with Mizar types and Mizar term syntax. The same restrition

to just the proof fragment of Mizar was hosen for the Mizar mode for HOL by

John Harrison.

The reasoning part of Mizar turns out to be simple. In its basi form it is

given by the following ontext free grammar:

proposition = [ label : ℄ formula

statement = proposition justi�ation

justi�ation =

empty

j by label f, labelg

j proof fstepg [ ases ℄ end

step =

statement ;

j assume proposition ;

j onsider variable f, variableg

suh that proposition fand propositiong justi�ation ;

j let variable f, variableg ;

j take term f, termg ;

j thus statement ;

ases = per ases justi�ation ; fsuppose proposition ; fstepgg

empty =

The main Mizar proof feature that is missing from this language fragment is the

use of `.=' for equational reasoning.

Note that this grammar has only seven kinds of proof elements: a statement

without keyword, assume, onsider, let, per ases, take and thus. (Compare

this with the hundreds of di�erent tatis, tatials, onversions and onversion-

als that appear all over the HOL proofs.)

6 Mizar as HOL tatis

We will ompare the way the Mizar and HOL systems implement natural dedu-

tion. That will lead to a natural ML type (in the framework of HOL) for eah

of the Mizar steps. The table that lists these types is the essene of our Mizar

implementation on top of HOL. (The appendix will show how to implement the

Mizar steps aording to these types.)

There are two kinds of Mizar steps:

{ skeleton steps: the natural dedution way of reasoning
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{ forward steps: statements that get added to the ontext after having been

justi�ed with the `by' justi�ation

The natural dedution rules orrespond to Mizar steps aording to following

table (rules for whih a `{' appears in this table are implemented as forward

steps and don't have a Mizar step of their own):

natural dedution Mizar

! introdution assume

! elimination {

^ introdution thus

^ elimination {

_ introdution {

_ elimination per ases

8 introdution let

8 elimination {

9 introdution take

9 elimination onsider

The HOL language has natural dedution as well. The main di�erene is that

the Mizar steps make the propositions expliit that the HOL steps leave impliit.

Compare the two ways to do! introdution. Suppose we want to redue the

goal:

A;B ` (C ! D)! E

to:

A;B; (C ! D) ` E

(this is the introdution rule beause a goal oriented prover reasons bakwards).

The Mizar step doing this is:

assume A2: C implies D;

(here `A2' is the label of the assumption). The same is aomplished in HOL by:

DISCH_TAC

or if we write out the proof state transformation expliitly:

it : goalstak = 1 subgoal (1 total)

0 [`A`℄

1 [`B`℄

`(C ==> D) ==> E`

#e DISCH_TAC;;

it : goalstak = 1 subgoal (1 total)

0 [`A`℄

1 [`B`℄

2 [`C ==> D`℄

`E`
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The Mizar statement gives the `redundant' information what the disharged

statement is and where it ends up in the ontext. We an imitate this in HOL

by de�ning a tati ASSUME_A suh that the HOL tati beomes:

ASSUME_A(2,`C ==> D`)

or expliitly:

it : goalstak = 1 subgoal (1 total)

0 [`A`℄

1 [`B`℄

`(C ==> D) ==> E`

#e (ASSUME_A(2,`C ==> D`));;

it : goalstak = 1 subgoal (1 total)

0 [`A`℄

1 [`B`℄

2 [`C ==> D`℄

`E`

All that the ASSUME_A tati does is hek that the number and statement �t

and then apply DISCH_TAC.

The ASSUME_A tati has the type:

int � term ! tati

If we ontinue along this line of thought, it turns out that every Mizar onstru-

tion has a `natural' HOL type. The table that gives these types is the essene of

our Mizar mode for HOL:

A int � term ! tati ! tati

ASSUME_A int � term ! tati

BY int list ! thm list ! tati

CONSIDER term list ! (int � term) list ! tati ! tati

LET term list ! tati

PER_CASES tati ! ((int � term) � tati) list ! tati

TAKE term list ! tati

THUS_A int � term ! tati ! tati

Note that this table orresponds to the Mizar proof grammar from Setion 5.

Implementing these eight tatis is trivial, as shown in the appendix. The �rst

of these tatis, the A tati, orresponds to a Mizar step without a keyword: a

forward reasoning step. The BY tati is used to justify steps. It takes two lists

of arguments. The �rst list is a list of integers referring to the assumption list of

the urrent goal, the seond list is a list of thms.

Now we an write down the proof of the drinker's priniple as a normal HOL

proof (so with prove and a hain of tatis put together with THEN), this time

using the `Mizar tatis':



Mizar Light for HOL Light 9

let DRINKER = prove

(`?x:A. P x ==> !y. P y`,

PER_CASES (BY [℄[℄)

[(0,`?x:A. ~P x`),

(CONSIDER [`a:A`℄ [(1,`~(P:A->bool) a`)℄ (BY [0℄[℄) THEN

TAKE [`a:A`℄ THEN

ASSUME_A(2,`(P:A->bool) a`) THEN

A(3,`F`) (BY [1;2℄[℄) THEN

THUS_A(4,`!y:A. P y`) (BY [3℄[℄))

;(0,`!x:A. P x`),

(CONSIDER [`a:A`℄ [℄ (BY [℄[℄) THEN

TAKE [`a:A`℄ THEN

THUS_A(1,`P a ==> !y:A. P y`) (BY [0℄[℄))℄);;

Note that this is similar to the Mizar version of this proof from Setion 5. The

main di�erene is that type annotations are needed (`(P:A->bool) a` instead

of `P a`). This problem of having to put type annotations in terms is standard

in HOL. A possible approah to this problem will be presented in Setion 7.5.

7 Enhanements

The Mizar tatis that we presented in the previous setion are very basi. They

an be enhaned in various ways. Beause we lak the spae we don't give all

the details. Curious readers are referred to the HOL Light soure �le miz.ml at

the URL <http://www.s.kun.nl/~freek/mizar/miz.ml>.

7.1 The BECAUSE tati

The ommon way to justify a Mizar step in our Mizar mode is with a justi�ation

that looks like:

(BY [loal statement list℄[global statement list℄)

This has the prover `hardwired in' (in the implementation from the appendix,

this prover �rst tries REWRITE_TAC and if that fails tries MESON_TAC). However

the BY tati is built on top of a tati alled `BECAUSE' whih has the type:

(thm list ! tati) ! int list ! thm list ! tati

This means that one an use it with any tati that has the type thm list

! tati like REWRITE_TAC, SIMP_TAC, MESON_TAC and so on. (One also ould

use it with tatis like ASM_REWRITE_TAC but that would be silly, beause the

assumptions already are aessible through the `loal statements' argument.) For

instane one ould justify a step by:

(BECAUSE ONCE_SIMP_TAC[loal statement list℄[global statement list℄)

This would prove the statement being justi�ed using the ONCE_SIMP_TAC tati

with the relevant thms.

The BECAUSE tati gives ontrol over the exat behavior of the prover if that

is needed, making a re�ned version of BY unneessary.
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7.2 A more powerful ASSUME A tati

The ASSUME_A tati is the delarative version of the proedural DISCH_TAC ta-

ti. The implementation from the appendix mirrors DISCH_TAC exatly. However

sine the ASSUME_A tati ontains the statement that is disharged, it an be

more general. It beomes more powerful if we implement it as:

let ASSUME_A (n,tm) =

DISJ_CASES_THEN2

(fun th -> REWRITE_TAC[th℄ THEN N_ASSUME_TAC n th)

(fun th -> REWRITE_TAC[REWRITE_RULE[℄ th℄ THEN

MIZ_ERROR_TAC "ASSUME_A" [n℄)

(SPEC tm EXCLUDED_MIDDLE);;

For instane in that ase one an use it to reason by ontradition:

it : goalstak = 1 subgoal (1 total)

`A`

#e (ASSUME_A(0,`~A`));;

it : goalstak = 1 subgoal (1 total)

0 [`~A`℄

`F`

This is also how the assume step of the real Mizar system behaves.

7.3 An interative version of the PER CASES tati

The PER_CASES tati has the type:

PER_CASES : tati ! ((int � term) � tati) list ! tati

In order to debug a proof interatively a version that has type:

PER_CASES : tati ! (int � term) list ! tati

and that leaves the ases as subgoals is more pratial. Using this variant makes

the proof look less like Mizar beause the list of the statements of the ases has

been separated from the list of proofs of the ases.

A hybrid is also possible that has the type of the original PER_CASES but

doesn't require all the ases to be ompletely proved after the tati �nishes.

7.4 Tatis versus proofs

Some of the tati arguments of the Mizar tatis not only have to redue the

proof obligations but they have to prove the goal altogether. So those arguments

are more `proofs' than `tatis'. One might try to reet this in the typing of the

Mizar tatis by at ertain plaes hanging tati (whih is de�ned as goal !

goalstate) to goal! thm. The seond type is in a way a speial ase (`subtype')

of the �rst. Then funtions:
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PROOF : tati ! goal ! thm

PER : (goal ! thm) ! tati

map these two types to eah other and:

prove' : term � (goal ! thm) ! thm

runs a proof. Using this approah, the Mizar mode tatis will get the following

type assignments:

A int � term ! (goal ! thm) ! tati

ASSUME_A int � term ! tati

BY int list ! thm list ! goal ! thm

CASES (goal ! thm) ! ((int � term) � (goal ! thm)) list

! goal ! thm

CONSIDER term list ! (int � term) list ! (goal ! thm) ! tati

LET term list ! tati

TAKE term list ! tati

THUS_A int � term ! (goal ! thm) ! tati

(Note that we have separated the PER_CASES tati into a ombination of PER

and CASES.) The example proof beomes, using these tatis:

let DRINKER = prove'

(`?x:A. P x ==> !y. P y`,

PROOF

(PER (CASES (BY [℄[℄)

[(0,`?x:A. ~P x`),

PROOF

(CONSIDER [`a:A`℄ [(1,`~(P:A->bool) a`)℄ (BY [0℄[℄) THEN

TAKE [`a:A`℄ THEN

ASSUME_A(2,`(P:A->bool) a`) THEN

A(3,`F`) (BY [1;2℄[℄) THEN

THUS_A(4,`!y:A. P y`) (BY [3℄[℄))

;(0,`!x:A. P x`),

PROOF

(CONSIDER [`a:A`℄ [℄ (BY [℄[℄) THEN

TAKE [`a:A`℄ THEN

THUS_A(1,`P a ==> !y:A. P y`) (BY [0℄[℄))℄)));;

7.5 Terms in ontext

The HOL system parses a term in an empty ontext beause the HOL imple-

mentation is funtional. So if we write an expression of type term it doesn't

have aess to the goal state. This means that `n` will always be read as a

polymorphi variable, whatever is in the urrent goal. If a goal talks about a

natural number `n` of type `:num`, then to instantiate an existential quanti�er
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with this `n` one has to write EXISTS_TAC `n:num` instead of EXISTS_TAC `n`.

Generally this doesn't get too bad but it is irritating.

In our Mizar mode this problem is worse beause there are more statements

in the tatis. So we might try to modify things for this. The idea is to hange

the type term to goal ! term everywhere. This means that the `term parsing

funtion' X will have to get the type string ! goal ! term. Again a variant

funtion prove'' of type (goal ! term) � tati ! thm is needed.

If we follow this approah then most type annotations will be gone, exept

in the statement of the theorem to be proved and in the arguments of LET and

CONSIDER (where they also are required in the `real' Mizar).

Beause in that ase the terms are parsed in the ontext of a goal, we an give

a speial meaning to the variables `anteedent` and `thesis`. See Setion 8

for an example of this.

The main disadvantage of this modi�ation to our Mizar mode is that the

original HOL proof sripts will not work anymore beause the X funtion has

been hanged. That is a big disadvantage if one wants true integration between

the `pure' HOL and the Mizar mode.

7.6 Out of sequene labels and negative labels

Another thing that an be hanged is to be less restritive whih numbers are

allowed for the labels. Until now they had to be the exat position that the

statement would end up in the assumption list of the goal. However there is no

reason not to allow any number and put the statement at that position, padding

the assumption list with `T` thms if neessary. That way we an make the labels

in the example math the labels in the original Mizar version. If we do this in

the example proof, then the seond CONSIDER will see a goal like:

it : goalstak = 1 subgoal (1 total)

0 [`T`℄

1 [`T`℄

2 [`T`℄

3 [`T`℄

4 [`T`℄

5 [`!x. P x`℄

`?x. P x ==> (!y. P y)`

Related to this is an enhanement that implements Mizar's then. In Mizar a step

an refer to the step diretly before it with the then pre�x. A way to imitate

this in our Mizar mode is to allow negative numbers in the labels, ounting bak

from the top of the assumption stak. The label -1 will then refer to the top of

the stak (whih ontains the statement from the previous step). Therefore use

of -1 will behave like then.
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7.7 Symboli labels

Instead of numeri labels we also an have symboli labels. HOL Light supports

symboli labels already. It is straight-forward to hange the set of Mizar tatis

to work with these symboli labels instead of with the numeri positions in the

list of assumptions.

In the rest of this paper we have presented our Mizar mode with numeri

labels. We had two reasons for this:

{ In HOL the symboli labels are almost never used, so proof states that

ontain them are un-HOL-like.

{ In Mizar the `symboli' labels generally just are A1, A2, A3, . . . That means

that the Mizar labels really are used as numbers, most of the time. Therefore

we didn't onsider numeri labels un-Mizar-like.

7.8 Error reovery

A delarative proof ontains expliit statements for all reasoning steps. Beause

of this a delarative system like Mizar an reover from errors and ontinue

heking proofs after the �rst error.

3

This behavior an be added to our Mizar

mode for HOL by athing the exeption if there is an error, and then ontinue

with the appropriate statement added to the ontext as an axiom. This was

implemented by using a justi�ation funtion that just throws an exeption.

Having this enhanement of ourse only gives error reovery for `reasoning

errors' and will not help with other errors like syntax errors or ML type errors.

One of the referees of this paper liked the idea of error reovery for the Mizar

tatis, and suggested a stak on whih the goalstates of the erroneous steps

ould be stored for later proof debugging. We implemented this idea, but we

think that the standard HOL pratie of running a proof one tati at a time is

more onvenient (for whih the `Mizar tatis with error reovery' are unusable).

8 Bigger example

In this setion we show a larger example of our Mizar mode (it uses the variant

from Setion 7.5, so terms are parsed in the ontext of the proof):

let FIXPOINT = prove''

(`!f. (!x:A y. x <= y /\ y <= x ==> (x = y)) /\

(!x y z. x <= y /\ y <= z ==> x <= z) /\

(!x y. x <= y ==> f x <= f y) /\

(!X. ?s. (!x. x IN X ==> s <= x) /\

(!s'. (!x. x IN X ==> s' <= x) ==> s' <= s))

==> ?x. f x = x`,

3

The Mizar mode by John Harrison does not have this feature. Isar satis�es the prin-

iple that sub-proofs an be heked independently, but the present implementation

simply stops at the �rst error it enounters.
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LET [`f:A->A`℄ THEN

ASSUME_A(0,`anteedent`) THEN

A(1,`!x y. x <= y /\ y <= x ==> (x = y)`) (BY [0℄[℄) THEN

A(2,`!x y z. x <= y /\ y <= z ==> x <= z`) (BY [0℄[℄) THEN

A(3,`!x y. x <= y ==> f x <= f y`)(BY [0℄[℄) THEN

A(4,`!X. ?s. (!x. x IN X ==> s <= x) /\

(!s'. (!x. x IN X ==> s' <= x) ==> s' <= s)`)

(BY [0℄[℄) THEN

CONSIDER [`Y:A->bool`℄ [(5,`Y = {b | f b <= b}`)℄ (BY [℄[℄) THEN

A(6,`!b. b IN Y = f b <= b`) (BY [5℄[IN_ELIM_THM;BETA_THM℄) THEN

CONSIDER [`a:A`℄ [(7,`!x. x IN Y ==> a <= x`);

(8,`!a'. (!x. x IN Y ==> a' <= x) ==> a' <= a`)℄ (BY [4℄[℄) THEN

TAKE [`a`℄ THEN

A(9,`!b. b IN Y ==> f a <= b`)

(LET [`b:A`℄ THEN

ASSUME_A(9,`b IN Y`) THEN

A(10,`f b <= b`) (BY [6;9℄[℄) THEN

A(11,`a <= b`) (BY [7;9℄[℄) THEN

A(12,`f a <= f b`) (BY [3;11℄[℄) THEN

THUS_A(13,`f a <= b`) (BY [2;10;12℄[℄)) THEN

A(10,`f(a) <= a`) (BY [8;9℄[℄) THEN

A(11,`f(f(a)) <= f(a)`) (BY [3;10℄[℄) THEN

A(12,`f(a) IN Y`) (BY [6;11℄[℄) THEN

A(13,`a <= f(a)`) (BY [7;12℄[℄) THEN

THUS_A(14,`thesis`) (BY [1;10;13℄[℄));;

This is a translation to our framework of an example proof from John Harrison's

Mizar mode whih proves the Knaster-Tarski �xpoint theorem.

9 Conlusion

The tatis that are presented here might be the basis of a realisti system that

o�ers the best of both the proedural and delarative provers. One hopes this

to be possible: to build a prover that has the readable proofs of the delarative

provers and the programmability of the proedural ones. The Mizar mode for

HOL by John Harrison and the Isar mode for Isabelle might laim to be just

that, but in those systems it feels like one has to learn two provers if one wants

to be able to use both styles of proving.

The Mizar mode of this paper makes lear that that both kinds of prover

are very similar. Although the proofs using our Mizar tatis look awkward and

fragile ompared with their Mizar ounterparts, we have shown that it is possible

to bridge the gap between the proedural and delarative proof styles in a more

intimate way than had been aomplished thus far.
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A Implementation

Here is the full listing of the Mizar implementation as desribed in Setion 6.

1 let miz_error msg nl =

2 failwith (rev_itlist (fun s t -> t^" "^s) (map string_of_int nl) msg);;

3 let MIZ_ERROR_TAC msg nl = fun g -> miz_error msg nl;;

4 let N_ASSUME_TAC n th (asl,_ as g) =

5 if length asl = n then ASSUME_TAC th g else miz_error "N_ASSUME_TAC" [n℄;;

6 let A (n,tm) ta =

7 SUBGOAL_THEN tm (N_ASSUME_TAC n) THENL

8 [ta THEN MIZ_ERROR_TAC "A" [n℄; ALL_TAC℄;;

9 let ASSUME_A (n,tm) =

10 DISCH_THEN (fun th -> if onl th = tm then N_ASSUME_TAC n th

11 else miz_error "ASSUME_A" [n℄);;

12 let (BECAUSE:(thm list -> tati) -> int list -> thm list -> tati) =

13 fun ta nl thl (asl,_ as g) ->

14 try ta ((map (fun n -> snd (el (length asl - n - 1) asl)) nl) � thl) g

15 with _ -> ALL_TAC g;;

16 let BY = BECAUSE (fun thl -> REWRITE_TAC thl THEN MESON_TAC thl);;

17 let CONSIDER =

18 let T = `T` in

19 fun vl ntml ta ->

20 let ex = itlist (urry mk_exists) vl

21 (itlist (urry mk_onj) (map snd ntml) T) in

22 SUBGOAL_THEN ex

23 ((EVERY_TCL (map X_CHOOSE_THEN vl) THEN_TCL EVERY_TCL (map

24 (fun (n,_) tl j ->

25 let th,j' = CONJ_PAIR j in N_ASSUME_TAC n th THEN tl j')

26 ntml)) (K ALL_TAC)) THENL

27 [ta THEN MIZ_ERROR_TAC "CONSIDER" (map fst ntml); ALL_TAC℄;;

28 let LET = MAP_EVERY X_GEN_TAC;;

29 let PER_CASES =

30 let F = `F` in

31 fun ta ases ->

32 let dj = itlist (urry mk_disj) (map (snd o fst) ases) F in

33 SUBGOAL_THEN dj

34 (EVERY_TCL (map (fun ase -> let n,_ = fst ase in

35 (DISJ_CASES_THEN2 (N_ASSUME_TAC n))) ases) CONTR_TAC) THENL

36 ([ta℄ � map snd ases) THEN MIZ_ERROR_TAC "PER_CASES" [℄;;

37 let TAKE = MAP_EVERY EXISTS_TAC;;

38 let THUS_A (n,tm) ta =

39 SUBGOAL_THEN tm ASSUME_TAC THENL

40 [ta THEN MIZ_ERROR_TAC "THUS_A" [n℄

41 ;POP_ASSUM (fun th -> N_ASSUME_TAC n th THEN REWRITE_TAC[EQT_INTRO th℄)℄;;


