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Abstract

I outline an argument for a subjective Bayesian interpretation of quantum probabilities as degrees
of belief distributed subject to consistency constraints on a quantum rather than a classical event
space. I show that the projection postulate of quantum mechanics can be understood as a
noncommutative generalization of the classical Bayesian rule for updating an initial probability
distribution on new information, and I contrast the Bayesian interpretation of quantum probabilities
sketched here with an alternative approach defended by Chris Fuchs.
r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper I outline an argument for a subjective Bayesian interpretation of quantum
probabilities as degrees of belief distributed subject to consistency constraints on a
quantum rather than a classical event space. I begin with a brief review of quantum
mechanics as a noncommutative modification of classical mechanics in Section 2. In
Section 3, I discuss what Pitowsky (2007) has called two ‘dogmas’ about quantum
mechanics. The first dogma is Bell’s (1990) assertion that measurement should always be
given a dynamical analysis and never introduced as a primitive in a fundamental theory of
mechanics. The second dogma is the view that the quantum state is a (perhaps incomplete)
representation of physical reality. I argue that both dogmas are called into question by a
‘no cloning’ principle that distinguishes quantum information from classical information.
In Section 4, I distinguish two measurement problems: a problem about individual events,
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which I characterize as a pseudo-problem, and a tractable problem about probabilities,
which finds a solution in the phenomenon of decoherence. Section 5 develops an earlier
argument of mine (Bub, 1977), where I show that the projection postulate of quantum
mechanics can be understood as a noncommutative generalization of the classical Bayesian
rule for updating an initial probability distribution on new information, and Section 6 is a
critical analysis of Chris Fuchs’ alternative treatment of the projection postulate as
Bayesian updating. Finally, in Section 7, I consider whether the Bayesian interpretation of
quantum probabilities sketched here, following Ramsey rather than de Finetti—see
Howson (1990, 2003), Galavotti (1991), Ramsey (1931), de Finetti (1964)—is instrumen-
talist, and I contrast this with the approach defended by Fuchs (2001a, 2001b, 2002a,
2002b).

2. From classical to quantum mechanics

Quantum mechanics first appeared as a noncommutative modification of classical
mechanics in the form of Heisenberg’s matrix mechanics in 1925, following the ‘old
quantum theory’; a patchwork of ad hoc modifications of classical mechanics to
accommodate Planck’s quantum postulate. Shortly afterwards, Schrödinger developed a
wave mechanical version of quantum mechanics and proved the formal equivalence of his
theory and Heisenberg’s. It used to be common to understand the significance of the
transition from classical to quantum mechanics in terms of ‘wave-particle duality,’ the idea
that a quantum system like an electron manifests itself as a wave under certain
circumstances and as a particle under other circumstances. This picture obscures far more
than it illuminates. We can see more clearly what is going on conceptually if we consider
the implications of Heisenberg’s move for the way we think about objects and their
properties in the most general sense.

Heisenberg replaced the commutative algebra of dynamical variables of classical
mechanics—position, momentum, angular momentum, energy, etc.—with a noncommu-
tative algebra. Some of these dynamical variables take the values 0 and 1 only and
correspond to properties. For example, we can represent the property of a particle being in
a certain region of space by a dynamical variable that takes the value 1 when the particle is
in the region and 0 otherwise. A dynamical variable like position corresponds to a set of
such two-valued dynamical variables or physical properties. In the case of the position of a
particle, these are the properties associated with the particle being in region R, for all
regions R. If, for all regions R, you know whether or not the particle is in that region, you
know the position of the particle, and conversely. The two-valued dynamical variables or
properties of a classical system form a Boolean algebra, a subalgebra of the commutative
algebra of dynamical variables. Equivalently, we could refer to events: the instantiation a
property can be associated with the occurrence of the corresponding event.

Replacing the commutative algebra of dynamical variables with a noncommutative
algebra is equivalent to replacing the Boolean algebra of two-valued dynamical variables
representing properties or events with a non-Boolean algebra. The really essential thing
about the classical mode of representation of physical systems in relation to quantum
mechanics is that the possible properties of classical systems, or the possible events that can
occur to classical systems, are represented as having the structure of a Boolean algebra.
Every Boolean algebra is isomorphic to a Boolean algebra of subsets of a set. To say that
the possible properties of a classical system or the corresponding events form a Boolean
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algebra is to say that they can be represented as the subsets of a set, the phase space or state
space of classical mechanics. To say that a physical system has a certain property or that a
certain event occurs is to associate the system with a certain set in a representation space
where the elements of the space—the points of the set—represent all possible states of the
system. A state picks out a collection of sets, the sets to which the point representing the
state belongs, as the properties of the system in that state, or the events concerning the
system that occur in that state. The dynamics of classical mechanics is described in terms of
a law of motion describing how the state moves in the state space. As the state changes
with time, the set of properties or events selected by the state changes.
The transition from classical to quantum mechanics involves replacing the Boolean

event space with the representation of possible events as a certain sort of non-Boolean
algebra: essentially, the non-Boolean algebra obtained by ‘pasting together’1 various
Boolean algebras in a certain way, so that the total set of elements cannot be represented as
a single Boolean algebra. Dirac and von Neumann developed Schrödinger’s equivalence
proof into a representation theory for the properties of quantum systems as subspaces in a
linear vector space over the complex numbers: Hilbert space. The non-Boolean algebra in
question is the algebra of subspaces of this space. Instead of representing events as the
subsets of a set, quantum mechanics represents events as the subspaces of a linear space—
as lines, or planes, or hyperplanes, i.e., as a projective geometry. Algebraically, this is the
central structural change in the transition from classical to quantum mechanics.
A given property is instantiated or a given event occurs if and only if the corresponding

proposition is true. So we could talk equivalently in terms of propositions. In a Boolean
propositional structure, there exist two-valued homomorphisms on the structure that
correspond to truth-value assignments to the propositions. Each point in phase space—
representing a classical state—defines a truth-value assignment to the subsets representing
the propositions: each subset to which the point belongs represents a true proposition or a
property that is instantiated by the system or an event that occurs, and each subset to
which the point does not belong represents a false proposition or a property that is not
instantiated by the system or an event that does not occur. So a classical state corresponds
to a complete assignment of truth values to the propositions, or a maximal consistent
catalogue of properties of the system or a maximal set of co-occurring events, and all
possible states correspond to all possible maximal consistent catalogues or maximal sets of
co-occurring events.
Probabilities can be introduced on a classical event space as measures on the subsets

representing the events. Since each phase space point defines a truth-value assignment, the
probability of an event is the measure of the set of truth-value assignments that assign a 1
(‘true’) to the event—in effect, we ‘count’ (in the measure-theoretic sense) the relative
number of state descriptions in which the event occurs (or the corresponding proposition is
true), and this number represents the probability of the event. So it makes sense to
interpret the probability of an event as a measure of our ignorance as to whether or not the
event occurs. Probability distributions over classical states represented as phase space
points are sometimes referred to as ‘mixed states,’ in which case states corresponding to
phase space points are distinguished as ‘pure states.’

ARTICLE IN PRESS
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The problem for a quantum event space arises because two-valued homomorphisms do
not exist on these structures (except in the special case of a two-dimensional Hilbert space).
If we take the subspace structure of Hilbert space seriously as the structural feature of
quantum mechanics corresponding to the Boolean event space or propositional structure
of classical mechanics, then the non-existence of two-valued homomorphisms on the
algebra of subspaces of a Hilbert space means that there is no partition of the totality of
events of the associated quantum system into two sets: the events that occur, and the events
that do not occur; i.e., there is no partition of the totality of propositions into true
propositions and false propositions. (Of course, other ways of associating propositions
with features of a Hilbert space are possible, and other ways of assigning truth values,
including multi-valued truth-value assignments and contextual truth-value assignments.
Ultimately, the issue here concerns what we take as the salient structural change involved
in the transition from classical to quantum mechanics, and this is reflected in the
identification of quantum propositions or events that take the same probabilities for all
quantum states.)

It might appear that, on the standard interpretation, a pure quantum state represented
by a one-dimensional subspace in Hilbert space—a minimal element in the subspace
structure—defines a truth-value assignment to quantum propositions in an analogous
sense to the truth-value assignment to classical propositions defined by a pure classical
state. Specifically, on the standard interpretation, a pure quantum state selects the
propositions represented by subspaces containing the state as true, and the propositions
represented by subspaces orthogonal to the state as false.2

There is, however, an important difference between the two situations. In the case of a
classical state, every possible event represented by a phase space subset is selected as either
occurring or not; equivalently, every proposition is either true or false. For a quantum
state, the events represented by Hilbert space subspaces are not partitioned into two such
mutually exclusive and collectively exhaustive sets: some propositions are assigned no truth
value. Only propositions represented by subspaces that contain the state are assigned the
value ‘true,’ and only propositions represented by subspaces orthogonal to the state are
assigned the value ‘false.’ This means that propositions represented by subspaces that are
at some non-zero or nonorthogonal angle to the ray representing the quantum state are not
assigned any truth value in the state, and the corresponding events must be regarded as
indeterminate or indefinite: according to the theory, there can be no fact of the matter about
whether these events occur or not.

For Hilbert spaces of three or more dimensions, the possible assignments of probabilities
to quantum events, i.e., weights that satisfy the usual Kolmogorov axioms for a
probability measure on Boolean subalgebras of the non-Boolean algebra of quantum
events, are uniquely characterized by Gleason’s theorem (Gleason, 1957). An event
represented by a subspace associated with a projection operator P can only be assigned the
probability TrðrPÞ, for some density operator r on the Hilbert space. Density operators
are pure or mixed, where mixed density operators correspond to classical probability
distributions over quantum pure states: convex combinations of pure states represented by
rays (one-dimensional subspaces) or vectors in Hilbert space. If r is a pure state,
r ¼ jcihcj, the probability of the event represented by P is jhcPjcij

2, where jcPi is the
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normalized orthogonal projection of jci onto the subspace P, i.e., the probability of the
event is the square of the cosine of the angle between the vector jci and its orthogonal
projection in the subspace P (the Born rule). This means that events represented by
subspaces containing the state are assigned probability 1, events represented by subspaces
orthogonal to the state are assigned probability 0, and all other events, represented by
subspaces at a non-zero or nonorthogonal angle to the state are assigned a probability
between 0 and 1. So quantum probabilities are not represented as measures over truth-
value assignments and cannot be given an ignorance interpretation in the obvious way.

3. Two dogmas

Pitowsky (2007) has pointed out that there are two assumptions or dogmas that characterize
debates about the foundations of quantum mechanics. The first dogma is Bell’s assertion
(defended in Bell, 1990) that measurement should never be introduced as a primitive in a
fundamental mechanical theory like classical or quantum mechanics, but should always be
open to a complete dynamical analysis in principle. The second dogma is the view that the
quantum state has an ontological significance analogous to the ontological significance of the
classical state (which specifies a complete catalogue of a system’s properties), i.e., that the
quantum state is a (perhaps incomplete) representation of physical reality.
The second dogma leads immediately to what Pitowsky calls the ‘big measurement

problem,’ the problem of reconciling the individual outcome of a quantum measurement with
a dynamical account of how the quantum state changes in a measurement interaction. Von
Neumann proposed two modes of dynamical evolution for the quantum state of a system: a
deterministic, unitary evolution when a system is not measured, and a stochastic, non-unitary
evolution when a system undergoes measurement, described as the ‘collapse’ of the wave
function in configuration space and referred to more generally as the ‘projection postulate.’ In
the light of the first dogma, this is hardly a solution to the measurement problem. A solution is
provided by a theory like Bohm’s hidden variable theory (Bohm, 1952; Goldstein, 2001),
according to which quantum mechanics is incomplete, there is no wave-function collapse, but
there is always an ‘effective collapse’ corresponding to one definite measurement outcome that
depends on the values of the hidden variables, or the GRW theory (Ghirardi, 2002), according
to which quantum mechanics is only approximately true, there is a unified stochastic dynamics
in terms of which the wave function sometimes undergoes a real collapse in configuration
space, and there is always one definite measurement outcome that depends on the collapse, or
an Everettian many worlds interpretation of quantum mechanics (Everett, 1957; Wallace &
Brown, 2005), according to which quantum mechanics is exactly true, there is no collapse, and
all measurement outcomes occur in some indexical sense relative to different
‘worlds’ corresponding to the different terms in the linear superposition representing the
quantum state.
Now, the first dogma is called into question if, as a contingent matter of fact, there is a

limitation on copying information—if the dynamical implementation of a universal
cloning machine is in principle excluded by structural features of events. In a ‘no cloning’
world, as I will show below, no complete dynamical account of a measurement process is
possible in general: ultimately, a measuring instrument in a quantum measurement process
simply acts as a source of classical information, i.e., it produces a probability distribution
over distinguishable measurement outcomes, and how the individual outcomes come about
is not subject to further dynamical analysis.
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The ‘no cloning’ principle can be formulated quite generally as follows:

There is no universal cloning machine.

The principle asserts that it is impossible to construct a cloning machine that will clone the
output of an arbitrary information source. By contrast, note that a universal computing
machine is possible: a Turing machine can simulate any other Turing machine and hence
compute any computable function.

A ‘universal cloning machine’ is defined in the following way:

Given an arbitrary information source, s, producing outputs ei with probabilities pi,
a universal cloning machine is a device that can be coupled to s, where the outputs of
s are inputs to the device, so that the compound device is a new information source s$

that produces outputs f i with the same probabilities pi, where each f i consists of the
original output ei and a copy of ei. A copy of an output ei is an output e$i that
conveys the same information as ei, in the sense that the information source fpi; e$i g is
statistically indistinguishable from the information source fpi; eig by any possible
measurements on the outputs.

To be precise, the notion of ‘cloning’ defined here should more properly be called
‘broadcasting’. The process of taking a probability distribution over an event space to a new
probability distribution over a product space of events, where the marginal probability
distribution over each factor space are the same as the original distribution, is called
broadcasting. (This is what happens, for example, when there are corresponding events at
different radio receivers, all reacting in the same way to the same varying signal, so that the
marginal probability distributions of events at each receiver is the same as the joint
probability of corresponding events.) I shall continue to use the term ‘cloning’ rather than
‘broadcasting’ because it is more intuitive and more familiar. But the reader should bear in
mind that the process we are talking about concerns copying or cloning the outputs of an
information source, not the information source itself (defined by the probability distribution).

Some comments are relevant here about the notion of an information source, and the
difference between classical and quantum information as this is usually understood.

The concept of information in the physical sense was first clearly formulated by
Shannon (1948). In Shannon’s theory, information is a quantifiable resource associated
with a (suitably idealized) stochastic source of output states, where the physical nature of
the systems embodying these output states is irrelevant to the amount of information
associated with the source. The quantity of information associated with an information
source is defined by its optimal compressibility as given by the Shannon entropy. The fact
that the output of an information source can be optimally compressed is, ultimately, what
justifies the attribution of a quantifiable resource to the source.

Information is represented physically in the states of physical systems. The essential
difference between classical and quantum information is associated with the different
distinguishability properties of classical and quantum states. Only sets of orthogonal
quantum states are reliably distinguishable (i.e., with zero probability of error), as are sets
of different (pure) classical states (which are represented by disjoint singleton subsets in a
phase space, and so are formally orthogonal as subsets of phase space in a sense analogous
to the orthogonality of subspaces of a Hilbert space).

Classical information, then, is understood as that sort of information represented in a
probability distribution over distinguishable states—pure states of classical systems, or
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orthogonal quantum states—and so can be regarded as a subcategory of quantum
information, where the states may or may not be distinguishable. The theory of quantum
information extends Shannon’s notion of compressibility to sources of quantum states, for
which the von Neumann entropy turns out to be a suitable measure of information. The
indistinguishability of nonorthogonal quantum states is associated with the non-unique
decomposition of mixed states into specific mixtures of pure states. So the statistics of a
quantum information source that produces a probability distribution of quantum states is
completely defined by the density operator of the mixture, which represents a mixed state
that is decomposable, in general, into different mixtures of quantum states, all statistically
indistinguishable by any possible measurement.
To see that a cloning machine for all classical information sources is possible, in

principle, consider first a classical information source that produces the bits3 0 or 1 with
probabilities pð0Þ, pð1Þ. A cloning device can be constructed as follows: the device
implements a ‘controlled-not’ Boolean gate on the contents of two 1-bit input registers, the
‘control’ register and the ‘target’ register: if the control bit is 0, the target bit keeps the
same value; if the control bit is 1, the target bit is flipped. The control and target output
registers contain the content of the input control register (unchanged) and the content of
the (possibly altered) target register, respectively. So the transformation is as follows
(where the first bit in the sequence represents the control and the second bit the target):

00 ! 00

01 ! 01

10 ! 11

11 ! 10 (1)

To clone the output of a classical information source, the output of the source is fed to the
control input register of a controlled-not gate. The target input register is set to 0. Then,
depending on the output of the information source, 0 or 1, the cloning device performs the
required cloning transformation:

00 ! 00

10 ! 11 (2)

If the information source produces n-bit sequences, the cloning device is constructed with
n-bit control and target input registers, and n 1-bit controlled-not gates which act
sequentially on the n individual bits of the target input register, initially set to 00 % % % 0, in
terms of the corresponding bit of the control input register. No principle prohibits the
construction of such a cloning device, for any n-bit sequences. Think of the content of the
target register as the resource used up in the copying (cf. the paper in a copying machine),
and the sequence of controlled-not gates as the copying engine. In principle, the
distinguishable output states of any classical information source can be represented, to
arbitrary accuracy, by n-bit sequences for any n. (So, to be precise, the claim is that, for any
n, there is a universal cloning machine that will clone the outputs of an arbitrary classical

ARTICLE IN PRESS
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information source that produces m-bit sequences, for mpn, as outputs—that, for any n,
there is a universal broadcasting machine for classical information sources defined by
probability distributions over m-bit sequences, for mpn.)

To see why a cloning machine for all quantum information sources is impossible,
in principle, note that a quantum controlled-not gate for qubits4 will similarly
copy the output of an information source that produces orthogonal qubit states j0i and
j1i, but the device will fail for quantum states that are linear superpositions of j0i and j1i
states. Since any quantum gate implements a unitary, hence linear, transformation,
it will produce an entangled state in the output registers for a superposition in the input
control register:

j0ij0i!
U

j0ij0i, (3)

j1ij0i!
U

j1ij1i (4)

from which it follows that

jcij0i ¼ ðc1j0iþ c2j1iÞj0i!
U

c1j0ij0iþ c2j1ij1iajcijci (5)

unless ci ¼ 0 or 1.
The class of classical information sources can be defined as the class of information

sources for which there exists a cloning machine (i.e., one machine for the whole class).
Then, for example, a Stern-Gerlach device set to measure spin in the x-direction, where the
inputs are quantum states jzþi, will produce outputs jxþi (0) and jx'i (1) with
probabilities 1

2, and so this would be a clonable hence classical information source. But if
the jxþi output is sent to a Stern–Gerlach device oriented in the y-direction, the whole set-
up—jzþi inputs and two coupled Stern-Gerlach devices, producing outputs jxþi with
probability 1

2 and jyþi,jy'i each with probability 1
4—would be a nonclassical quantum

information source that cannot be cloned.
The rejection of both dogmas, as I will argue in the following section, leads to an

information-theoretic interpretation of quantum mechanics. On this interpretation, the
structure of Hilbert space, i.e., the non-Boolean algebra of Hilbert space subspaces, defines
the structure of a quantum event space, just as, classically, a Boolean algebra, the subsets
of a set (phase space), defines the structure of a classical event space. Gleason’s theorem
then determines all possible probability measures on this structure as given by quantum
states (pure and mixed) according to the trace rule, where the probabilities are interpreted
as degrees of belief or measures of uncertainty about events in the Bayesian sense.

4. The measurement problem

Richard Feynman is often quoted as saying that nobody understands quantum
mechanics (Feynman, 1967, p. 129):

There was a time when the newspapers said that only twelve men understood the
theory of relativity. I do not believe there ever was such a time. . . . On the other hand,
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4By analogy with the term ‘bit,’ a ‘qubit’ refers to the basic unit of quantum information in terms of the von
Neumann entropy, and to an elementary two-state quantum system considered as representing the possible
outputs of a quantum information source.
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I think I can safely say that nobody understands quantum mechanics. . . . Do not
keep saying to yourself, if you can possibly avoid it, ‘But how can it be like that?’
because you will get ‘down the drain,’ into a blind alley from which nobody has yet
escaped. Nobody knows how it can be like that.

What is it about quantum mechanics, as opposed to the theory of relativity, that raises a
special problem of intelligibility?
The salient and surprising discovery leading to the special theory of relativity was that

the velocity of light is independent of the motion of the source—that our world is the sort
of world in which there is ‘no overtaking of light by light,’ as Bondi (1980) puts it. The
special theory of relativity is a revision of the conceptual framework of classical mechanics
that stems from Einstein’s recognition of the foundational significance of this fact.
Newtonian mechanics makes a fundamental distinction between inertial motion and

accelerated motion, not between motion and rest as Aristotle’s theory had done. An
inertial frame is a reference frame in which Newton’s laws hold, i.e., bodies not under the
action of forces move in straight lines with constant velocity, accelerations are
proportional to applied forces and in the same direction, and all forces come in
action–reaction pairs. Any system of bodies defining a reference frame at rest or moving
uniformly and rectilinearly with respect to an inertial frame is also an inertial frame.
There is a contradiction between this Galilean principle of relativity characterizing the

symmetry group of Newtonian spacetime, that ‘velocity doesn’t matter,’ as Bondi (1980)
puts it, and the light postulate, ‘no overtaking of light by light.’ Lorentz resolved the
contradiction by appealing, in effect, to ‘hidden variables’: mechanical distortions in
electromagnetic and intermolecular forces as a result of motion through the ether. On
Lorentz’s view, the apparent invariance of the velocity of light for all inertial frames is
explained on the assumption that measuring devices moving relative to the ether contract
as a result of these distorting forces in a way that conforms to the Lorentz transformation,
the symmetry group of Maxwell’s electrodynamics. For Lorentz, Einstein’s derivation of
the Lorentz transformation from the light postulate is simply an alternative, but hardly
more fundamental, resolution of the contradiction.
The revolutionary significance of special relativity lies in Einstein’s recognition that the

concept of an inertial system in Newtonian mechanics involved definitions of space and
time that were constitutive of a conceptual framework in terms of which relative motion
and causal interaction were physically intelligible, and this entire conceptual framework
was called into question by unexpected facts about the propagation of light. What was
required, then, was a definition of simultaneity that took account of the invariance of the
velocity of light as the basis for a new conceptual framework. The new definition of
simultaneity proposed by Einstein is constitutive of the new conception of time and space
introduced by special relativity.
Einstein’s conceptual analysis, like Newton’s, is in effect a transcendental argument for

the spatio-temporal concepts presupposed by physics. By contrast, Lorentz’s assumption
about the effect of motion through the ether on electrodynamic and intermolecular
forces involves an ontological hypothesis about the nature of physical reality rather than a
precondition for physical inquiry. This hypothesis implicitly depends on a notion of
simultaneity, and hence a spatio-temporal structure, that is not well-defined physically if
the light postulate is true. Ultimately, Lorentz’s rejection of Einstein’s approach
depends on a subjective distaste for a physical explanation that does not conform to
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this hypothesis, rather than a principled objection to the conceptual framework of
special relativity. For an illuminating analysis of space–time theories along these lines,
see DiSalle (2006).

The salient and surprising discovery underlying the quantum theory is that there is a
limitation on copying information—that our world is the sort of world in which there does
not exist a cloning machine that will clone the outputs of an arbitrary information source
(more precisely: there are information sources that cannot be broadcast). The quantum
theory is the revised conceptual framework for mechanics that stems from the recognition
of the foundational significance of this fact.

There are, in principle if not in fact, nonclassical information sources that are not
quantum information sources—e.g., the information sources defined by the nonlocal boxes
of Popescu and Rhorlich (2005). In part, the answer to Feynman’s question will involve
identifying (suitably informative) principles, in addition to ‘no cloning,’ that distinguish
quantum information sources from other nonclassical information sources and from
classical information sources. The remaining part, understanding ‘how it can be like that,’
is the measurement problem.

The ‘no cloning’ principle was first explicitly recognized by Dieks (1982) and Wootters
and Zurek (1982) in 1982, almost 60 years after the emergence of quantum mechanics in
the 1920s, so this claim about the quantum theory in relation to the theory of relativity
would seem to be oddly anachronistic. Nevertheless, the debate between Einstein, Bohr,
Heisenberg, and others about the interpretation of quantum mechanics ultimately had to
do with features of quantum measurement that are puzzling just because of the conflict
between the ‘no cloning’ principle and the conceptual framework of classical mechanics. Of
course, it would be more true to historical fact to say that the quantum theory is the revised
conceptual framework for mechanics that stems from the recognition of the fundamental
significance of Planck’s quantum postulate. But the concern here is with a conceptual
rather than a historical analysis, and the relevance of the quantum postulate for a theory of
mechanics is precisely a limitation on cloning that is directly associated with the
noncommutativity of quantum mechanics.

There are two ways of understanding the ‘no cloning’ principle in quantum mechanics.
Either (i) the principle is not fundamental and unrestricted cloning is possible in principle,
and what prevents cloning in certain cases is some feature of the dynamics, so that there is
a dynamical explanation for the fact that cloning in these cases is, as a matter of fact,
impossible or practically impossible, or (ii) unrestricted cloning is impossible in principle.
In the latter case it follows that no complete dynamical account of a measurement process
is possible in general, and there must always be some system involved in the process, taken
as the ultimate measuring instrument, that functions simply as a classical information
source in Shannon’s sense, where the occurrence of the outputs of this measuring
instrument is not analyzed dynamically.

This can be seen from the following line of reasoning: suppose there exists a
measurement device that functions dynamically in such a way as to identify (with
certainty) the output of an arbitrary information source. That is, the device distinguishes a
given output from every other possible output by undergoing a dynamical transformation
that results in a state that represents a distinguishable record of the output. If we assume
that any known state can be prepared from a standard reference state by some dynamical
evolution, then the possibility of identifying the output of an arbitrary information source
means that it must be possible to clone the output of such a source. So if unrestricted
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cloning is impossible in principle, it follows that such a measurement device must be
impossible in principle.
Now this entails that there exist information sources that produce outputs that cannot

be distinguished in this way through measurement interactions. Since we understand a
measurement device as something that produces distinguishable measurement outcomes
(‘pointer readings’ or records), it follows that in such cases a measurement device must
produce outcomes stochastically, over a range of measurement outcomes that is the same
for different outputs of the information source, or else the outputs of the information
source would be distinguishable. That is, such a measurement device itself acts as a
classical information source that produces a range of distinguishable outputs, where only
the probabilities can depend on what is being measured. This, then, is what we mean by a
measurement device in a quantum event space.
Position (i) corresponds to Bohm’s position, or Einstein’s interpretation of quantum

mechanics as incomplete. Position (ii) corresponds to a Bohrian position, but re-
formulated information-theoretically. From the impossibility of cloning, in principle, it
follows that the structure of events must be non-Boolean, or else cloning would be
possible—there exists a universal cloning machine for the outputs of an arbitrary
information source if the outputs of all possible information sources can be represented as
events in a common Boolean algebra.
The ‘big measurement problem’ is the problem of explaining how individual measurement

outcomes come about dynamically. The problem arises if the quantum state is understood
as representing physical reality in an analogous sense in which the classical state represents
physical reality—if the quantum state is understood as the ‘truthmaker’ with respect to
what is true and what is false about the physical world at a particular time. Then we would
expect the quantum state of a system plus measuring instrument in a quantum
measurement process to evolve dynamically during the course of the measurement process
in such a way that, at the end of the process, the state selects a particular measurement
outcome as actually occurring, i.e., the corresponding proposition is assigned the value
‘true’ by the state. But we have seen that this is inconsistent with the ‘no cloning’
principle—there can be no dynamical account of this sort for the same reason that
nonorthogonal quantum states cannot be cloned, i.e., the argument here is precisely the
argument of Eqs. (3)–(5), with the controlled-not gate interpreted as a measuring device
rather than a cloning device.
Putting it differently, a solution to the big measurement problem, say along the lines of

Bohm’s hidden variable theory, is simply an attempt to provide a dynamical explanation
for ‘no cloning.’ It is analogous to Lorentz’s attempt to provide a dynamical explanation
for length contraction in terms of distortions that occur to bodies as they move through the
ether. But, as Einstein saw, the significance of the surprising discovery that the velocity of
light is independent of the velocity of the light source is that there is simply no relation of
absolute simultaneity in the world—it is not that there is a relation of absolute
simultaneity, but there is some dynamical reason why events that are not absolutely
simultaneous but appear simultaneous to an observer depend on the observer’s state of
motion. Similarly, it is only if unrestricted cloning is regarded as possible in principle that
it makes sense to look for a dynamical explanation of our inability to clone non-
orthogonal quantum states, having to do, say in Bohm’s theory, with the form of the
equation of motion and the fact that the distribution of hidden variables is assumed to
have reached equilibrium (so cloning would have been possible in the early universe).
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The ‘small measurement problem’ is the problem of accounting for the possibility of
classical information sources in a world in which cloning is in principle impossible.
The solution is provided by the phenomenon of decoherence: a particular sort of
interaction between macrosystems, such as our macroscopic measuring instruments,
and the environment. Decoherence effectively selects a preferred basis dynamically,
i.e., a preferred Boolean subalgebra in the quantum event space. It is with respect
to this Boolean subalgebra that the Gleason measures can be interpreted as
classical probabilities. Formally, the von Neumann entropy of quantum information
(of the reduced density matrix of the measured system plus measuring instrument)
becomes very rapidly equivalent to the Shannon entropy of classical information
in the basis in which the density matrix is diagonal, and this is effectively the
decoherence basis. So we have a dynamical justification for the interpretation of the
Gleason measures as classical probability distributions on the Boolean subalgebras of the
quantum event space.

To sum up: if ‘no cloning’ is accepted as a fundamental principle, then our world must
be such that there is no dynamical account of the individual occurrence of the outcome of a
quantum measurement, which is to say that the world is ‘irreducibly statistical.’
But the impossibility of a dynamical account here does not entail that there can be no
actually occurring measurement outcomes or actually occurring events. Rather,
we begin with a space of possible events that the quantum theory represents as structured
in a particular (non-Boolean) way. In this ‘no cloning’ world of quantum events, a
particular Boolean subalgebra is dynamically selected by decoherence, and the Gleason
measures are interpreted as probabilities with respect to this Boolean subalgebra. So the set
of possibly occurring events to which probabilities are assigned is relativized to this
Boolean subalgebra—just as, in special relativity, the set of simultaneous events is
relativized to a space-like hypersurface in Minkowski space defined by an inertial system.
In a quantum event space, an event, in the sense of something to which a probability is
assigned, occurs or does not occur with respect to a particular Boolean subalgebra selected
by decoherence.

Now, the (effective) selection of a Boolean subalgebra and the emergence of classical
probability distributions through the phenomenon of decoherence depends on certain
contingent dynamical features of the quantum event space that apply to a particular way
(relevant to us) of ‘carving up’ the space into microsystem (localized atomic nucleus,
electron, etc.), macroscopic measuring instrument (extended metallic body with a
registration and recording device, such as a computer), and the environment (gases,
electromagnetic radiation, etc.), and averaging over (‘tracing out’) the environmental
degrees of freedom. But this requires that we reject the second dogma that the quantum
state has an ontological significance analogous to the significance of the classical state in
specifying which events occur and which events do not occur, and interpret the
probabilities defined by the quantum state as degrees of belief subject to consistency
constraints on a quantum rather than a classical event space. Then there is no
inconsistency in taking an event, in the sense of something we would be prepared to bet
on, as relativized to a Boolean subalgebra selected by decoherence in the non-Boolean
quantum event structure. And no inconsistency in the quantum description of events is
involved in ignoring (tracing out) certain information in the environment that is in practice
impossible to keep track of. If we were able to keep track of more of this information, we
would derive our degrees of belief from constraints on a richer non-Boolean structure of
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quantum events in a similar way, but there would be no inconsistency with the ‘coarser’
probability assignment with respect to our expectations about the outcomes of possible
measurements.

5. The projection postulate as Bayesian updating

Pitowsky (2002, 2007) has formulated an explicit subjective Bayesian interpretation of
the quantum probability calculus as a logic of partial belief in terms of ‘quantum gambles’
defined by consistency constraints on a quantum event structure. See also Schack, Brun,
and Caves (2001) and Caves, Fuchs, and Schack (2002). Here I want to show that von
Neumann’s projection postulate for the change induced by measurement on a quantum
state, or the more general Lüders version, is in fact just a non-Boolean or noncommutative
version of the classical Bayesian rule for updating an initial probability distribution on new
information.5

For simplicity, consider a countable classical probability space ðX ;F;mÞ, with atomic or
elementary events x1;x2; . . . . These are associated with singleton subsets X 1;X 2; . . . and
characteristic functions w1; w2; . . . . Denote other, possibly non-atomic events by a; b; . . . .
For any probability measure m defined by an assignment of probabilities pi to the

elementary events xi, it is possible to introduce a density operator r ¼
P

i piwi (whereP
i pi ¼ 1, piX0, for all i) in terms of which the probability of an event a can be represented

as

pmðaÞ ¼
X

j

X

i

piwiðxjÞ

 !

waðxjÞ ð6Þ

¼
X

j

rðxjÞwaðxjÞ ð7Þ

¼ mðXaÞ. ð8Þ

Writing prðaÞ for pmðaÞ, we have

prðaÞ ¼
X

rwa, (9)

where a summation sign without an index is understood as summing over all the atomic
events.
In terms of this density operator r, the conditional probability of an event b, given an

event a, can be represented as

prðbjaÞ ¼
P

j rðxjÞwaðxjÞwbðxjÞP
j rðxjÞwaðxjÞ

ð10Þ

¼
P

rwawbP
rwa

. ð11Þ
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5The analysis can be extended to the general case of measurements represented by positive operator valued
measures (POVMs), see Henderson (2007). A general measurement represented by a POVM on a system S 2 HS

is equivalent to a projection-valued measurement on a larger Hilbert space: specifically, a projective measurement
on an ancilla system E 2 HE suitably entangled with S. An analogous equivalence holds for classical systems. For
an account of such general measurements, see the section on measurement in Nielsen & Chuang (2000) or Bub
(2006).
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To see this, simply notice that

pmðbjaÞ ¼
mðXa \ XbÞ

mðXaÞ
ð12Þ

¼
P

rwawbP
rwa

. ð13Þ

The transition

m ! m0, (14)

where m0 is defined for any event b by

m0ðXbÞ ¼
mðXa \ XbÞ

mðXaÞ
(15)

represents the classical Bayesian rule for updating an initial probability distribution on
new information a. It can be justified in terms of consistency constraints by a
Dutch book argument. The rule can be represented in terms of the density operator r
as the transition:

r ! r0 ¼
rwaP
rwa

(16)

or, equivalently, in the symmetrized form

r ! r0 ¼
warwaP
warwa

(17)

so that

prðbjaÞ ¼
X

r0wb. (18)

Now, Eq. (17) is just the classical analogue of the von Neumann–Lüders projection
postulate in quantum mechanics! Consider the case of a quantum system in a state
represented by a density matrix:

r ¼
X

i

piPi, (19)

where the Pi are projection operators onto one-dimensional subspaces spanned by the
vectors jxii representing atomic events, and the pi are probabilities. So r here is a convex
combination of atomic projection operators of the system, just as in the classical case the
density operator is a convex combination of characteristic functions (which are projection
operators in the commutative algebra of classical dynamical variables).

In terms of the density operator, the probability of an event a is given by

prðaÞ ¼ TrðrPaÞ. (20)

Note that the trace of an operator O is just the sum of the eigenvalues of O, i.e., the sum of
the possible values of O at each atom in the Boolean subalgebra defined by O. So TrðrPaÞ
is the noncommutative analogue of

P
rwa.

After a measurement of an observable A with outcome a, the conditional probability of
an event b, relative to an initial probability assignment given by r, is

prðbjaÞ ¼ Trðr0PbÞ, (21)
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where

r0 ¼
ParPa

TrðParPaÞ
. (22)

That is, since the projection operators Pa are the noncommutative analogues of the
characteristic functions wa, the transition r ! r0 in (22), which is the quantum projection
postulate, is just the Bayesian rule (17) for updating a probability distribution on new
information. It can be justified in the quantum case as a rule for updating beliefs on new
information on the basis of consistency constraints by an analysis in terms of quantum
gambles.
Note that if the prior probability assignment of an observer about to make a

measurement on a quantum system S is taken as rS ¼ IS=TrSðISÞ, where IS is the identity
on the Hilbert space of S, then updating rS on the new information a obtained in the
measurement yields the transition:

rS ! r0S ¼
ParSPa

TrSðParSPaÞ
ð23Þ

¼
Pa

TrSðPaÞ
. ð24Þ

If a; b are atomic events, so Pa ¼ jaihaj;Pb ¼ jbihbj are projection operators onto one-
dimensional subspaces spanned by the vectors jai; jbi, respectively, then the probability of
the event b conditional on the event a, where b may be incompatible with a and so belong
to a different Boolean subalgebra in the non-Boolean event space, is computed according
to the rule

prS ðbjaÞ ¼ pr0
S
ðbÞ ð25Þ

¼ TrSðPaPbÞ ð26Þ

¼ jhbjaij2. ð27Þ

So the ‘transition probability’ between the pure states jai and jbi can be interpreted as the
conditional probability of the event b occurring in the Boolean subalgebra selected by
decoherence in a suitable measurement process on a system about which we have the
updated information that the event a has occurred (or, equivalently, the conditional
probability of a given b), relative to a prior probability assignment given by the
equiprobable density operator rS ¼ IS=TrSðISÞ.
Note that if S is obtained by placing a ‘cut’ between the system of interest and the rest of

the environment E, and S þ E is in some pure entangled state jCi, it follows from a result
by Popescu, Short, and Winter (2005)6 that rS ¼ TrEðjCihCjÞ ( IS=TrSðISÞ, for any pure
state jCi.

6. Fuchs on the projection postulate as Bayesian updating

In Fuchs (2002b), Chris Fuchs presents a different analysis of the status of the projection
postulate as Bayesian updating, associated with a very different account of quantum
probabilities as degrees of belief than the view I have sketched above.

ARTICLE IN PRESS

6See also Goldstein, Lebowitz, Tumulka, & Zanghi (2005).

J. Bub / Studies in History and Philosophy of Modern Physics 38 (2007) 232–254246

https://www.researchgate.net/publication/243660881_Entanglement_and_the_foundations_of_statistical_mechanics?el=1_x_8&enrichId=rgreq-292415b96c74590589fe66ff81a52bbb-XXX&enrichSource=Y292ZXJQYWdlOzI0ODUyNjQ3MjtBUzozMzY3NzUzODcwNzQ1NjBAMTQ1NzMwNDkxNzQ5Ng==


Aut
ho

r's
   p

er
so

na
l   

co
py

He begins by presenting a general formulation of the state change following a quantum
measurement of a POVM fEdg with outcome d on a system S as

r ! rd ¼
1

TrðrEdÞ

X

i

AdirA
y
di, (28)

where
X

i

Ay
diAdi ¼ Ed . (29)

As Fuchs points out, this is completely general: there is no constraint on the number of
indices i and the operators Adi need not even be Hermitian.

As a special case, of course, the index i could take a single value and Ed could be a
projection operator Pd (in which case Ad ¼ Pd ). Then rd reduces to ð1=TrðrPaÞÞParPa.

Fuchs now considers this special case and comments (Fuchs, 2002b, pp. 29–30):

Let us take a moment to think about this special case in isolation. What is distinct
about it is that it captures in the extreme a common folklore associated with the
measurement process. For it tends to convey the image that measurement is a kind of
gut-wrenching violence: In one moment the state is r ¼ jcihcj, while in the very next
it is a Pi ¼ jiihij. Moreover, such a wild transition need depend on no details of jci
and jii; in particular the two states may even be almost orthogonal to each other. In
density-operator language, there is no sense in which Pi is contained in r: the two
states are in distinct places of the operator space. That is,

ra
X

i

pðiÞPi. (30)

Contrast this with the description of information gathering that arises in Bayesian
probability theory. There, an initial state of belief is captured by a probability
distribution pðhÞ for some hypothesis H. The way gathering a piece of data d is taken
into account in assigning one’s new state of belief is through Bayes’ conditionaliza-
tion rule. That is to say, one expands pðhÞ in terms of the relevant joint probability
distribution and picks off the appropriate term:

pðhÞ ¼
X

d

pðh; dÞ ð31Þ

¼
X

d

pðdÞpðhjdÞ ð32Þ

pðhÞ!
d
pðhjdÞ, (33)

where pðhjdÞ satisfies the tautology

pðhjdÞ ¼
pðh; dÞ
pðdÞ

. (34)

He asks (Fuchs, 2002b, p. 30): ‘Why does quantum collapse not look more like Bayes’ rule?
Is quantum collapse really a more violent kind of change, or might it be an artifact of a
problematic representation?’ His answer to this question is as follows:
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If we suppress the index i, then

rd ¼
1

pðdÞ
AdrA

y
d , ð35Þ

Ed ¼ Ay
dAd . ð36Þ

Now, in general,

ra
X

d

pðdÞrd (37)

while classically we have

pðhÞ ¼
X

d

pðdÞpðhjdÞ (38)

So Fuchs writes

r ¼
X

d

pðdÞ ~rd , (39)

where

~rd ¼
1

pðdÞ
r1=2Edr1=2. (40)

Note that rd and ~rd have the same eigenvalues.
Now, Fuchs points out (Fuchs, 2002b, p. 34) that the state change following a quantum

measurement of a POVM fEdg can be presented as a two-stage process:

First one imagines an observer refining his initial state of belief and simply plucking
out a term corresponding to the ‘data’ collected:

r ¼
X

d

pðdÞ ~rd , (41)

r!
d

~rd . (42)

Finally, there may be a further ‘mental readjustment’ of the observer’s beliefs, which
takes into account details both of the measurement interaction and the observer’s
initial quantum state. This is enacted via some (formal) unitary operator Vd :

rd ! ~rd ¼ VdrdV
y
d . (43)

Fuchs contrasts this representation of the two-stage process with the following
alternative representation. Since one can write

rd ¼
1

pðdÞ
AdrA

y
d (44)

¼
1

pðdÞ
UdE

1=2
d rE1=2

d Uy
d (45)

for some unitary operator Ud (using the polar decomposition theorem; see Nielsen &
Chuang, 2000, Theorem 2.3, p. 78), the state transformation in a measurement of a POVM
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fEdg with outcome d can be represented as a ‘raw collapse’:

r ! sd ¼
1

pðdÞ
E

1=2
d rE1=2

d (46)

followed by a further ‘back action’ or ‘feedback’ of the measuring instrument on the
measured system:

sd ! rd ¼ UdsdU
y
d . (47)

He notes that these different representations of the measurement transformation are purely
conceptual.

Now, Fuchs’ claim (Fuchs, 2002b, p. 34) is that on his formulation of the two-stage
process, quantum collapse can be seen as ‘not such a violent state of affairs after all,’ but
rather as nothing more than a refinement and readjustment of one’s initial state of belief.
He considers two limiting cases as support for this claim.

In the first type of case, the observer’s initial state of belief is maximal, represented by a
pure state

r ¼ jcihcj (48)

for the system. Here no refinement is possible because for any fEdg, rd ¼ r1=2Edr1=2 ¼
pðdÞjcihcj and the only state change can be a ‘mental readjustment.’ We can learn nothing
new from a measurement—we only change what we can predict as a consequence of our
experimental intervention. Here the measurement is solely disturbance, resulting in a
state transition of the ‘violent’ sort. In the case of a projective measurement
fEdg ¼ fPd ¼ jdihdjg, where the Pd are projection operators, the state change on
measurement with outcome d is a collapse corresponding to a readjustment by some
unitary operator Ud that takes jci to jdi.7

The second type of case involves a measurement on one of a pair of separated systems, A
and B, in an entangled state. A measurement on A leads to a change in the state of B that is
purely a Bayesian updating with no further readjustment. Fuchs considers a pure state of
the system Aþ B which takes the Schmidt decomposition:

jcABi ¼
X

i

ffiffiffiffi
li

p
jaiijbii. (49)

A measurement of the POVM fEd ¼ AdA
y
dg on A yields

jcABihcABj ! rd ¼
1

pðdÞ
ðAd ) IÞjcABihcABjðAy

d ) IÞ. (50)

Tracing over A yields

TrAðrdÞ ¼
1

pðdÞ
r1=2ðUAy

dAdU
yÞTr1=2, (51)

where r is the initial state of B, U is the unitary operator connecting the fjaiig
basis with the fjbiig basis, and T represents the transpose with respect to the fjaiig
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7Fuchs writes Ud ¼ jdihcj, see Fuchs, 2002b, Eq. (34), but this operator is not unitary, as Palge & Konrad, 2006
point out.
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basis. Since

ðUAy
dAdU

yÞT ¼ Fd , (52)

where fFdg is a POVM, the result follows (cf. (40)).
Fuchs concludes from this analysis that quantum collapse can be regarded as a

noncommutative version of Bayes’s rule. Now, granted, the purely ‘gentle’ selection from
an initial density operator of a term corresponding to the outcome of a measurement is just
like classical Bayesian conditionalization, when we update an initial probability
distribution on new information. But the ‘violent’ transition cannot be attributed to a
mechanical disturbance, as a result of a dynamical interaction between a system and a
measuring instrument. A dynamical interaction leads to an entangled state, not to the state
obtained by ‘mental readjustment.’ The disturbance is ‘uncontrollable,’ to use Bohr’s
terminology, and reflects the constraints imposed on conditionalization in a quantum
event structure. So the ‘violent’ collapse transition described by the projection postulate
too is an effect of conditionalization.
Consider the following example of a measurement on one of a pair of systems, A and B,

in an entangled state jcABi, where the Hilbert space of B is two-dimensional and the
Hilbert space of A is three-dimensional. I shall refer to A as the ancilla system, because
projection-valued measurements on the ancilla A alone correspond to POVM measure-
ments (with three possible values) on B. Consider a case where the Schmidt decomposition
(49) takes the form

jcABi ¼
1ffiffiffi
2

p
2ja1i' ja2i' ja3iffiffiffi

6
p jb1iþ

ja2i' ja3iffiffiffi
2

p jb2i
" #

, (53)

where fja1i; ja2i; ja3ig is an orthonormal basis in HA and jb1i; jb2i is an orthonormal basis
in HB.
It is easy to see that jcABi can be expressed as

jcABi ¼
1ffiffiffi
3

p ðja1ijb1iþ ja2ijciþ ja3ijdiÞ, (54)

where

jci ¼ '
1

2
jb1iþ

ffiffiffi
3

p

2
jb2i, (55)

jdi ¼ '
1

2
jb1i'

ffiffiffi
3

p

2
jb2i. (56)

The states jb1i; jci; jdi are non-orthogonal states in HB. Note that

1

3
jb1ihb1jþ

1

3
jcihcjþ

1

3
jdihdj ¼

IB
2

(57)

i.e., the state of B (obtained by tracing over HA) is the completely mixed state rB ¼ 1
2IB.

Similarly, jcABi can be expressed as

jcABi ¼
1ffiffiffi
3

p ðja01ijb2iþ ja02ijeiþ ja03ijf iÞ, (58)
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where

jei ¼
ffiffiffi
3

p

2
jb1i'

1

2
jb2i, (59)

jf i ¼ '
ffiffiffi
3

p

2
jb1i'

1

2
jb2i (60)

and

ja01i ¼
1
3ja1iþ ð1þ

ffiffiffi
3

p
Þja2iþ ð1'

ffiffiffi
3

p
Þja3i, (61)

ja02i ¼
1
3ð1þ

ffiffiffi
3

p
Þja1iþ ð1'

ffiffiffi
3

p
Þja2iþ ja3i, (62)

ja03i ¼
1
3ð1'

ffiffiffi
3

p
Þja1iþ ja2iþ ð1þ

ffiffiffi
3

p
Þja3i (63)

is an orthonormal basis in HA. The states jb2i; jei; jf i are non-orthogonal states in HB

and, of course,

1

3
jb2ihb2jþ

1

3
jeihejþ

1

3
jf ihf j ¼

IB
2
. (64)

Now suppose the observable with eigenstates fja1i; ja2i; ja3ig is measured on the ancilla A.
Depending on the outcome, the system B will be left in one of the states jb1i; jci; jdi, and
since the completely mixed state rB ¼ 1

2IB can be regarded as an equal weight mixture of
jb1i; jci; jdi, the change in the state of B as a result of the measurement will be of the
‘gentle’ sort, representing a pure refinement of the observer’s beliefs. Similarly, if the
observable with eigenstates fja01i; ja

0
2i; ja

0
3ig is measured on A, the system B will be left in

one of the states jb2i; jei; jf i, and since the completely mixed state can equivalently be
regarded as an equal weight mixture of jb2i; jei; jf i, the change in the state of B as a result
of the measurement will again be a pure refinement of the observer’s beliefs. This is simply
because the mixed state rB ¼ 1

2IB corresponds to an infinite variety of mixtures of states in
HB (not necessarily equal weight mixtures, of course). Any one of these mixtures can be
obtained by a suitable measurement on an ancilla system entangled with B. This is the
content of the Hughston–Jozsa–Wootters theorem (Hughston, Jozsa, & Wootters, 1993).
It is what Schrödinger called ‘remote steering’ and is the basis of quantum teleportation,
quantum dense coding, and other peculiarities of quantum information, including the
impossibility of unconditionally secure quantum bit commitment (see Bub, 2006).

By contrast, consider the effect of the measurement on A. The initial state of A is
obtained by tracing jcABi over B. This yields the mixed state:

rA ¼ 1
2jgihgjþ

1
2jhihhj, (65)

where

jgi ¼
2ja1i' ja2i' ja3iffiffiffi

6
p , (66)

jhi ¼
ja2i' ja3iffiffiffi

2
p . (67)

Note that rAa1
3IA. In fact, rA has support on a two-dimensional subspace in the three-

dimensional Hilbert space HA: the plane spanned by jgi and jhi. A measurement of either
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of the maximal (non-degenerate) observables with eigenvectors fja1i; ja2i; ja3ig or
fja01i; ja

0
2i; ja

0
3ig will result in a state that has a component outside this plane. So the

state change on measurement will necessarily be partly of the ‘violent’ sort, i.e., it will
involve at least in part a readjustment of beliefs and cannot be a simple refinement.
The above example simply illustrates certain features of the projection postulate in

quantum mechanics. It does not show how quantum collapse can be understood as arising
from a non-Boolean or noncommutative version of Bayes’ rule for updating states of
belief. All that Fuchs’ analysis in terms of POVMs shows is that the relevant features of my
example are quite general. What is not explained is how the ‘uncontrollable’ disturbance in
a quantum measurement process can be attributed to the constraints on Bayesian updating
in a non-Boolean event structure.

7. Instrumentalism?

On the view proposed here, an objective feature of the world, the fact that events are
structured in a non-Boolean way, underlies a limitation on copying information,
formulated as the ‘no cloning’ principle. Consistency constraints on how partial beliefs
are distributed on a quantum event structure yield a nonclassical probability theory. This
accords with Ramsey’s ‘big idea’ (see (Howson, 1990)) that the laws of probability are laws
of consistency.
Is this information-theoretic interpretation of quantum mechanics simply instrumen-

talist? It is no more instrumentalist than the special theory of relativity is instrumentalist
relative to Lorentz’s theory of the electron. If the rejection of the ‘big measurement
problem’ as a pseudo-problem is instrumentalist, then it is a principled instrumentalism,
entailed by the acceptance of ‘no cloning’ as a fundamental principle, just as the rejection
of absolute simultaneity is entailed by accepting the light postulate as a fundamental
principle. If it is indeed the case that there is no universal cloning machine—and, of course,
we may ultimately be mistaken about this—then a measurement cannot be the sort of
process we thought it was in classical physics, just as simultaneity cannot be the sort of
relation we thought it was in classical physics if there is no overtaking of light by light.
On Fuchs’ view, quantum states represent subjective degrees of belief, and quantum

collapse involves Bayesian conditionalization as the straightforward refinement of prior
degrees of belief in the usual sense, together with a readjustment of the observer’s beliefs
required because, as Fuchs puts it (Fuchs, 2002b, p. 8): ‘The world is sensitive to our
touch.’ It seems that for Fuchs, as for de Finetti (see Galavotti, 1991), physics is an
extension of common sense and can only be relevant to the extra-logical and context-
dependent evaluation of probabilities. But then, if the constraints on the distribution of
partial belief about quantum events do not reflect structural features of the world that we
take to be characteristic of a quantum event space, it seems that what is doing the work in
Fuchs’ Bayesian analysis of quantum collapse is ultimately an instrumentalist interpreta-
tion of quantum probabilities.

Acknowledgments

This paper represents the results of research undertaken during the tenure of a
University of Maryland General Research Board semester award in 2005, and as a long-
term visiting researcher at the Perimeter Institute for Theoretical Physics in Waterloo,

ARTICLE IN PRESS
J. Bub / Studies in History and Philosophy of Modern Physics 38 (2007) 232–254252

https://www.researchgate.net/publication/229761769_The_Notion_of_Subjective_Probability_in_the_Work_of_Ramsey_and_De_Finetti?el=1_x_8&enrichId=rgreq-292415b96c74590589fe66ff81a52bbb-XXX&enrichSource=Y292ZXJQYWdlOzI0ODUyNjQ3MjtBUzozMzY3NzUzODcwNzQ1NjBAMTQ1NzMwNDkxNzQ5Ng==


Aut
ho

r's
   p

er
so

na
l   

co
py

Canada, in 2006. Discussions with Itamar Pitowsky have been extremely helpful in
formulating the Bayesian view developed here.

References

Bell, J. S. (1990). Against measurement. Physics World, 8, 33–40 [reprinted In Arthur Miller (Ed.), Sixty-two years
of uncertainty: Historical, philosophical and physical inquiries into the foundations of quantum mechanics,
New York: Plenum, pp. 17–31].

Bohm, D. (1952). A suggested interpretation of quantum theory in terms of ‘hidden’ variables. i and ii. Physical
Review, 85, 166–193.

Bondi, H. (1980). Relativity and common sense. New York: Dover Publications.
Bub, J. (1977). Von Neumann’s projection postulate as a probability conditionalization rule in quantum

mechanics. Journal of Philosophical Logic, 6, 381–390.
Bub, J. (2006). Quantum information and computation. In Handbook of philosophy of physics. Amsterdam:

North-Holland, arXiv e-print quant-ph/0512125.
Caves, C. M., Fuchs, C. A., & Schack, R. (2002). Quantum probabilities as Bayesian probabilities. Physical

Review A, 65, 022305.
de Finetti, B. (1964). Foresight: It’s logical laws its subjective sources. In H. Kyburg, & H. Smokler (Eds.), Studies

in subjective probability (pp. 93–159). New York: Wiley.
Dieks, D. (1982). Communication by EPR devices. Physics Letters A, 92, 271–272.
DiSalle, R. (2006). Understanding space– time. Cambridge: Cambridge University Press.
Everett, H. (1957). ‘Relative state’ formulation of quantum mechanics. Reviews of Modern Physics, 29, 454–462.
Feynman, R. P. (1967). The character of physical law. Cambridge, MA: MIT Press [first published in 1965 by the

British Broadcasting Corporation].
Fuchs, C. A. (2001a). Notes on a Paulian idea: Foundational, historical, anecdotal and forward-looking thoughts

on the quantum. arXiv e-print quant-ph/0105039.
Fuchs, C. A. (2001b). Quantum foundations in the light of quantum information. In A. Gonis (Ed.). Proceedings

of the NATO advanced research workshop on decoherence and its implications in quantum computation and
information transfer. arXiv e-print quant-ph/0106166.
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