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ABSTRACT OF THE DISSERTATION

Surface Diagrams for Gray-Categories

by

Benjamin Taylor Hummon

Doctor of Philosophy in Mathematics

University of California, San Diego, 2012

Professor Justin Roberts, Chair

We exhibit a calculus of dot, string, and surface diagrams for describing computadic

compositions. A surface diagram is a cube equipped with a stratification of regions, walls,

seams, and nodes. We label the strata with morphisms in a strict 3-category C by codimen-

sion. Away from nodes, horizontal slice stratified squares are string diagrams representing

compositions of 2-morphisms. In particular, a surface diagram has source and target string

diagrams on its bottom and top faces, respectively. We may evaluate a surface diagram

to give a 3-morphism in C. The domain and codomain are given by the evaluation of the

source and target string diagrams. We build a 3-category Sd(C) of surface diagrams labeled

by C in which composition is given by gluing along common faces. More generally, there is a

3-category Sd(G) of surface diagrams for any 3-computad G of generators. We characterize

Sd(G) as the free 3-category on G.

In Sd(G), diagrams are taken up to an isotopy-like relation called evolution. This
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relation destroys the braiding that we expect to have in a tricategory. We wish to capture

braiding without working in the fully weak setting of a tricategory. We instead choose to

work with in the semi-strict setting of Gray-categories. We define Gray surface diagrams

to be those with certain good projection properties. Working up to an appropriate form

of evolution, we construct the free Gray-category SdGray(G) of Gray-surface diagrams on a

Gray-category.

Last, we demonstrate the utility of surface diagrams by studying coherence rela-

tions for equivalence in a Gray-category. We show that the data encoding any incoherent

equivalence may be recast as a coherent equivalence.
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Chapter 1

Introduction

Context

Category theory was discovered in the early 1940s as a language for expressing rela-

tionships in algebraic topology. In their work on Čech cohomology, Eilenberg and MacLane

first wrote about categories, functors, and natural transformations in order to understand

certain limits. In Categories for the Working Mathematician [Mac71], MacLane notes the

remarkable fact that the arrow notation f : X → Y for functions only predates their paper

by about two years. From the beginning, people thought of categories as a tool for writing

and organizing mathematics. We’ll take this “category theory as language” principle quite

seriously. Indeed, in some sense, the central results of this dissertation are all of the form,

“calculations in a higher category may be written using diagrams.” It’s also worth noticing

that higher categories already make an appearance in Eilenberg and MacLane’s first pa-

per: natural transformations should be thought of as the 2-morphisms in a 2-category of

categories.

Our discussion now jumps ahead several decades to the early 1990s. In a series of

papers [JS91a] [JS91b] [JS93], André Joyal and Ross Street give theories of string diagrams

for various types of tensor categories: monoidal categories, braided monoidal categories,

symmetric monoidal categories, balanced, autonomous, pivotal, etc. Of particular interest

to us, they also gave a theory of string diagrams for 2-categories. While these diagrams were

used in the experts’ private calculations, Joyal and Street gave the categorical diagrams a

foundation by building topological models. While one may read Joyal and Street’s theorems

as using topology to build a categorical structure, these theorems may equally well be read

as giving categorical characterizations of topological structure. In [Shu94], Mei Chee Shum

1
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took this another step further by studying tortile tensor categories. These are monoidal

categories equipped with a twist and duals. She describes the free tortile tensor category

using framed tangles. Work of Peter Freyd and David Yetter, as well as, J. Scott Carter,

Joachim Rieger, and Masahico Saito have drawn further connections between knot theory

and higher categories. So not only is category theory a good language for topology, they are

actually fundamentally linked in this way.

We may see recent work on extended topological field theories as a close cousin to

our surface diagrams. In his 2009 dissertation [SP09], Christopher Schommer-Pries gives

a classification of 2D extended TFTs. An extended TFT may be thought of as a tensor

functor from a bicategory of bordisms. He characterizes the bordism bicategory as a free

symmetric monoidal bicategory with certain duals generated by the point. In parallel, Jacob

Lurie developed a sweeping account [Lur09] of TFTs using much fancier technology. Using

a theory of symmetric monoidal (∞, n)-categories, he pulls off a delicate induction which

similarly characterizes a category of n-dimensional bordisms as being generated by a fully-

dualizable point. This result characterizes the n-dimensional extended TFTs.

An extended TFT is different from the theory of surface diagrams we propose in

three important ways. First, bordisms are not allowed to have the singular cones that are

at the center of our theory. Instead, we may think of a bordism as a manifold with corners

with various faces declared as input or output. Second, bordisms are stabilized in that we

may think of them sitting in a very large dimensional ambient space. This means that the

lowest levels of composition just give a symmetric tensor product. We also demand a high

level of duality to capture the various ways that the bordism may sit in its ambient space.

Third, we only need a single label for a bordism in order to define a TFT. That is, we may

think of a TFT has having a single non-region generator. All of the various bordisms are

determined as data recording various duals and adjoints for the generating point. From this

perspective, the coherence data for an equivalence very much resembles the 2-dimensional

bordism category. We hope to explore deeper connections in this direction in future work.

Overview

This dissertation is divided into three main parts. The first part is comprised of

Chapters 2 – 4. Here, we give an informal account of dot, string and surface diagrams. We

aim to explain how to use these diagrams and motivate their definition. We opt to draw

pictures of the diagrams in place of giving precise mathematical definitions and proof.
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In the second part of the dissertation, Chapters 5 – 9, we give a formal account of dot,

string, and surface diagrams. We begin by giving a topological foundation for the diagrams as

manifolds with corners given stratifications. We define dot diagrams for making calculations

in 1-categories, string diagrams for calculations in 2-categories, and surface diagrams for

calculations in 3-categories. We also define variants of these diagrams for calculating in

sesquicategories and Gray-categories. The Gray surface diagrams are more interesting than

their strict 3-categorical counterpart. We wish to capture the interesting phenomena of

tricategories while avoiding their often overwhelming complexity.

Chapters 10 and 11 make up the third main part of the dissertation. This contains

a stand-alone application of surface diagrams. We study adjoint equivalences first in the

context of 2-categories and then in Gray-categories. These results are well known to experts

in the 2-categorical case. Others, including Gurski in [Gur11a] and Lack in [Lac11], have

given similar results in the context of tricategories. Our result demonstrates the utility of

surface diagrams. What would be an essentially incomprehensible series of calculations as

algebra, becomes a much less formidable manipulation of surfaces.

Last, in Chapter 12 we give a brief overview of material that did not make it into

the thesis, but which the author hopes to explore in the future.



Chapter 2

Intuition for Dot Diagrams

A dot diagram is used to display a composition of morphisms in a category. It is an

alternative to the popular diagrams of arrows, and in fact, the two are closely related. Here

is an example of a dot diagram and the corresponding arrow diagram:

Notice that, unlike an arrow diagram, the dimensions of the cells in a dot diagram do not

agree with the degree of the morphism! That is, the (degree 0) objects X,Y, and Z label

(1-D) regions and the (degree 1) morphisms f, h and k label (0-D) dots. Also, notice that

the dot diagram begins and ends with regions instead of dots. The regions adjacent to a dot

give the source and target objects for that morphism. It should be clear how one obtains

an arrow diagram from a dot diagram: we replace each region with a vertex and each dot

with an arrow. We refer to this process as geometric dualization of diagrams. We’re using

the adjective “geometric” to distinguish it from the categorical idea of dualization which

“reverses all arrows.”

Often, as working mathematicians, we wish to draw commutative diagrams of arrows

with several paths of head-to-tail arrows. However, dot diagrams only correspond to arrow

diagrams made of a single path of head-to-tail arrows. What value does such a diagram have

if we can’t even express a commutativity square? The traditional definition of category has

a two-to-one composition operation and a zero-to-one unit operation. But in fact, the

associative and unit laws ensure that composition is well-defined on a path of head-to-tail

morphisms of any length. In short, dot diagrams allow us to record the data going into this

many-to-one form of composition. Incidentally, we’re going to use an outlandish convention

for composition in diagrams: f ◦ g will refer to the composite made by doing f first and
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then doing g.

Just as individual morphisms have source and target objects, we may think of a dot

diagram as having both a source and a target. If the target of a dot diagram matches the

source of another dot diagram, then we may form a composite diagram by gluing.

So not only do dot diagrams encode compositions in a category, they themselves may be

composed! Thus for a given category C, there is a category dd(C) of dot diagrams labeled

in C. The category dd(C) has the same objects as C but the morphisms are dot diagrams

labeled in C. We won’t care about the absolute position of dots, only their ordering.

We will, however, distinguish between a dot diagram with two dots labeled by f and

g and the dot diagram for the composite morphism.

Of course, these diagrams evaluate to the same morphism, but as formal objects, they

are distinct. Similarly, one must be careful when defining the unit for composition of dot

diagrams. It is tempting to think that the identity dot diagram for an object Y is the dot

diagram with a dot labeled by 1Y . However, according to the previous point, composing

with this dot diagram gives a new, distinct diagram. Instead, the identity dot diagram is

just a diagram consisting of a single region labeled by Y . Indeed, gluing this diagram with

any other has essentially no effect.

So far, we’ve been thinking of a category of dot diagrams labeled in a fixed category

C. One might guess that the resulting category dd(C) is a fattened, but equivalent, category.

After all, any dot diagram labeled in C may be evaluated to give a morphism in C, and this

gives us a canonical functor dd(C) → C. This idea falls apart, though, when we look for an

inverse functor C → dd(C). The obvious candidate is the inclusion map which takes each

morphism to a diagram with a single dot labeled by that morphism. However, this map is

not a functor! Indeed, this map only hits dot diagrams with a single dot, but composing

such gives diagrams with multiple dots.
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So if the inclusion is not a functor, what sort of map is it? It preserves domains

and codomains, but it does not satisfy the functoriality relations. With this motivation,

we define a 1-computad to be a structure which records domains and codomains just like

in a category, but doesn’t record, and hence won’t demand respect for, any compositions

or units. We’ll call a 1-computad’s objects degree 0 generators and its (non-composable)

morphisms degree 1 generators. A 1-computad can be thought of as a directed graph in

which the 0-generators are vertices and the 1-generators are arrows. Just as a graph is given

the special name, quiver, when we expect it to generate a path algebra, we call a graph a

1-computad when we expect it to generate a (1-)category.

While we were initially inclined to label dot diagrams with objects and morphisms

from a fixed category, C, we don’t actually need the composition that C afforded us to define

dot diagrams. In fact, we may label dot diagrams with generators from any 1-computad,

G. And while we cannot compose the generators, we may glue the dot diagrams labeled by

generators, and so dd(G) forms a category. Of course, we cannot evaluate the dot diagrams

labeled by G because we don’t know how to compose 1-generators. However, while moving

to 1-computads loses evaluation, we gain the fact that the inclusion G → dd(G) is a map of

1-computads.

To summarize, any 1-computad G gives a category dd(G) of dot diagrams, and

conversely, given any category C, we may forget its composition and regard it as a computad,

forget(C). These constructions give us functors

dd: 1-Cmp −→ Cat

forget : Cat −→ 1-Cmp

These functors are not inverse, but instead, they are adjoint. That is, to define a functor

dd(G) → C, it is enough to say where each of the generating objects and morphisms go in

C. This amounts to defining a map of 1-computads G → forget(C). So the dot diagrams

functor dd gives the the free category on a 1-computad. The counit and unit

dd(forget(C)) −→ C (in Cat)

G −→ forget(dd(G)) (in 1-Cmp)

of the adjunction are the evaluation and inclusion maps.

Let’s analyze this adjunction in the special case of a 1-computad G with a single

0-generator, X, and three 1-generators, a, b, c. Because there is only one 0-generator, the

source and target of each 1-generator must be X. Every dot diagram consists of dots labeled
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by a, b, c and regions labeled by X. Actually, there is no need to label the regions in this

case, and so we won’t.

We might write the previous example more concisely as a word, cabcb. It is clear that dot

diagrams are in one-to-one correspondence with words in the alphabet, G = {a, b, c}. More-

over, gluing dot diagrams corresponds to concatenating words and the blank dot diagram

corresponds to the empty word. Thus, we see that dd(G) is the free monoid on the alphabet

set G. For monoids, the inclusion map tells us to think of each letter as a word of length one.

The counit tells us how to evaluate a word if the letters are elements of a monoid. If, on the

other hand, we regard the letters in a word cabcb as mere formal symbols from an alphabet

set, we lose our ability to evaluate words. Indeed, we need to provide an interpretation for

the letters {a, b, c} → forget(M) in order to evaluate cabcb in some monoid M .

Let’s revisit our dubiously distinct dot diagrams with our newly gained appreciation

of 1-computads.

This example shows that we shouldn’t expect to have unique representation of composites

when we take our labels in a category. Notice that in order to write down the second

diagram, we need to be able to compose f and g. This is fine if f and g are morphisms

in a category, but we are not allowed to compose 1-generators in a 1-computad. This

suggests the correct uniqueness statement: dot diagrams uniquely represent composites for

a 1-computad. Distinct dot diagrams may evaluate to the same morphism under some

interpretation in some category C. However, if two dot diagrams agree on evaluations for

every interpretation in every category, then those diagrams must be the same.

We can say a bit more about the dd / forget adjunction by using a clever trick. Let’s

consider dot diagrams whose dots are labeled by dot diagrams.

Assuming f, h, and k are morphisms in some category C, we may evaluate this diagram

in two ways. On the one hand, we could evaluate each of the labels to produce a dot

diagram labeled in C, which itself can be evaluated. On the other, we could insert the inner
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dot diagrams into the outer to produce a dot diagram labeled in C, which we could then

evaluate. Unsurprisingly, these two approaches will always give the same result.

The previous observation may be thought of as a fancy way to describe the associative

law. Roughly speaking, it says that we may group parts of a dot diagram and evaluate those

parts early without changing the ultimate evaluation. Thus, the diagram

explains why the previously discussed formally distinct diagrams must evaluate to the same

morphism.



Chapter 3

Intuition for String Diagrams

In this chapter we analyze the diagrams, called string diagrams, that we’ll use to

describe composites in a 2-category. In a 2-category, we may compose 2-morphisms over both

0-morphisms and 1-morphisms. These, following tradition, are called horizontal and vertical

composition. We require these compositions to satisfy an interchange law which, roughly

speaking, says that horizontal and vertical compositions commute. It’s not a surprise, then,

that a diagram capturing compositions of 2-morphisms should be 2-dimensional. This extra

dimension makes the diagrams much more interesting but also requires a fair amount of

care. We’re going to give a freeness result for string diagrams very much like the one for dot

diagrams. But there’s plenty new to say about string diagrams along the way.

3.1 2-Morphisms as String Diagrams

String diagrams are meant to capture the possible compositions of 2-morphisms in

a 2-category. Before we think about all the ways that we might compose, let’s first see how

we can draw a single 2-morphism as a string diagram. Consider a 2-morphism α : i → f

going between 1-morphisms i, f : X → Y . We can draw α as an arrow diagram or as a string

diagram as follows.

9
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Unlike an arrow diagram, it is important that we draw a string diagram in a square. Our

2-morphism, α, is drawn as a node between two strings. The string below α is labeled with

α’s domain and the string above has α’s codomain. We label the regions to the left and

right of α with the objects X and Y . So just as was the case for dot diagrams, a string

diagram is the geometric dualization of an arrow diagram. We will follow the conventions

of reading a string diagram left-to-right and bottom-to-top to be consistent with standard

conventions for coordinate axes.

The previous string diagram of a 2-morphism, while not incorrect, is actually overly

simple in an important way. When we actually do mathematics, we’ll often want to think

of a 2-morphism not just going from a 1-morphism to a 1-morphism, but rather going from

a composite of 1-morphisms to a composite of 1-morphisms. String diagrams are very well

suited to capturing this idea. Let’s see such an example of an arrow diagram and the

corresponding string diagram.

Once again, we draw our 2-morphism as a node where strings meet. In this example, the

node β has three strings approaching from below and two approaching from above. We read

the strings below β to see that its source is the composite of 1-morphisms f ◦h◦k. Similarly,

β’s target is f ◦ g. The extra strings in this diagram determine extra regions, as well. We

use these regions to record the various objects being composed over.

3.2 Degrees and Dimensions

In an arrow diagram, the dimension of the cell used to draw an arrow equals the

degree of that morphism. It’s therefore easy to conflate these two ideas and, say, refer to

the dimension of a morphism. As we’ve seen, in dot and string diagrams the degree of a

morphism does not usually match the dimension of the stratum it labels. Thus we must be

much more careful with these terms. In this section, we’ll write down a couple rules to help

us keep degrees and dimensions straight.

In addition to degree and dimension, we’ll be using the ideas of codegree and codi-
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mension. The complement for degree is meant to be taken in the categorical world and the

dimensional complement is to be taken in the geometric world. That is,

codegree = category number − degree of morphism

codimension = dimension of diagram − dimension of stratum

Both dot and string diagrams have been defined as geometric duals of arrow diagrams. The

same will be true when we consider surface diagrams. Thus, we have the following rule for

degrees and dimensions.

Rule. Suppose a morphism labels a stratum in a dot, string, or surface diagram. Then both

of the following statements hold.

degree of the morphism = codimension of the stratum

codegree of the morphism = dimension of the stratum

This rule tells us how to calculate degrees of morphisms appearing in a diagram. It

does not, however, tell us the degree of the morphism obtained by evaluating a diagram.

This important, if subtle, distinction was already present for dot diagrams. In particular,

consider the example of a dot diagram consisting of a single region labeled by X. In this

diagram, we just have a (degree 0) object, X, but the diagram evaluates to a (degree 1)

morphism, 1X .

In a 2-category, we need to be able to describe composites of 1-morphisms as well as com-

posites of 2-morphisms. Dot diagrams work perfectly well to describe composites of 1-

morphisms, and so we’ll use these. In general, we have the following rule about evaluation.

Rule. Suppose a dot, string, or surface diagram D evaluates to a morphism eval(D). Then

deg(eval(D)) = the dimension of the cube that D is drawn in.

In other words, a dot diagram is drawn in a 1-cube, an interval, and so evaluates

to a 1-morphism. A string diagram is drawn in a 2-cube, a square, and so evaluates to a

2-morphism. And a surface diagram will be drawn in a (3-)cube and so will evaluate to

a 3-morphism. Notice that dot, string, and surface diagrams are named after the shape

of their codimension 1 strata. For example, a string diagram consists of (codimension 1)

strings living in a 2-D square. This naming convention will make somewhat more sense once

we have considered these diagrams for monoidal categories.
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3.3 Slicing and Projecting

In this section, we’ll study two fundamental operations that we can perform on

string diagrams: slicing and projecting. We’ll add to our degree and dimension rules from

last section with rules for each of these operations. We’ll begin, though, by thinking about

the source and targets of string diagrams. Consider the following example of a string diagram

with two nodes.

Near the bottom of this diagram, we see the strings f and g. Near the top, there is

a single string, k. It’s tempting to think that this diagram has the composite f ◦ g as its

source and the 1-morphism k as its target. It turns out to be better, though, not to regard

the source and target as 1-morphisms, but intsead as dot diagrams. The string diagram

induces the structure of a dot diagram on the square’s bottom edge. We declare this dot

diagram as the string diagram’s source.

Of course, this dot diagram evaluates to f ◦ g, but it also contains more information. That

is, it tells us how the composite was made, not just the resulting 1-morphism. Similarly, we

regard the top edge of a string diagram’s square as its target dot diagram.

More generally, we may intersect a string diagram with a horizontal line at most any

height to get a dot diagram. This process will be referred to as slicing the string diagram.

We must only avoid slicing at heights containing a node. The previous example of a string

diagram essentially only has three slices.

By reinterpreting height as time, we may regard a string diagram as a movie of dot diagrams

that begins with the source and ends with the target dot diagram. Away from the instant
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that a 2-morphism node takes place, the movie shows a dot diagram evolving. That is, dots

wiggle left and right but maintain their overall order. Around the time of a node, several

adjacent 1-morphism dots fuse together and are replaced by several new dots dispersing.

Motivated by the movie interpretation of a string diagram, we will insist that strings

never travel horizontally in a string diagram. We call this the progressivity rule for strings.

In particular, strings are not allowed to “turn back” in the shape of a cup or cap. We will

insist on progressivity even as strings approach a node. So all of the following strings are

not considered progressive and so won’t be allowed as string diagrams.

As promised, we have a rule for slice degrees and dimensions. We must be careful

when counting these in the slice of a string diagram. Since we don’t slice at any height

containing a node, only strings and regions appear in a slice. Slicing reduces the dimension

of these strata by one. This is better understood working in codimension.

Rule. Slicing preserves codimension and hence preserves degree.

The horizontal and vertical directions play rather different roles in a string diagram

and, as such, it does not make sense to take vertical slices. There is, however, an analogous

vertical operation: projection. Let’s see the projection of our example string diagram.

We may think of projection as flattening the string diagram by removing its width. Of

course, we normally draw dot diagrams horizontally, but it makes much more sense to draw

a projection as a vertical dot diagram. Notice that in a string diagram, the regions are the

only strata to have any horizontal thickness. We are effectively removing these strata when

building the projection. As the lower dimensional strata get squashed together, their labels

become composites. Much like slicing, projection preserves certain statistics of diagrams.

Rule. Projection preserves dimension and hence preserves codegree.
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What does it mean for projection to preserve the codegree of morphisms? Let’s

first observe that projection does not respect codimension. In particular, the codimension

2 strata (labeled by γ or δ) become codimension 1 in the projection, and the codimension

1 strata (f, g, h, k) become codimension 0. Since we expect degree to equal codimension,

it would make sense that degree is not preserved either. So why don’t we consider γ or δ

degree 2 in the projection?

In order to answer these questions, we need the idea of a microcosm category. For

any two objects, X and Y , in a 2-category C, the collection of 1-morphisms HomC(X,Y )

has more structure than just being a set. Indeed, we can think of HomC(X,Y ) as a category,

the microcosm, whose objects are the 1-morphisms of C from X to Y and whose morphisms

are the 2-morphisms of C between those 1-morphisms.

Notice that moving to a microcosm ignores the 0-morphisms of C and shifts the degree of the

other morphisms down by one. This is entirely analogous to what happens to codimension

when we project. Thus we’ll think of a projection as a dot diagram for a microcosm category.

The microcosm category is determined by the left-most and right-most objects from the

string diagram. In our example string diagram, the projection describes a composite of

morphisms in HomC(X,Z). In this microcosm, we’ll regard γ and δ as degree 1 morphisms.

So projection does not preserve the degree of these morphisms, but their codegree, 0, is

preserved!

We’ll end this section by observing an important connection between slicing and

projection. In our description of projections, the projection dot diagram was labeled with

composites of morphisms. While this works if our label morphisms are taken from a 2-

category, it doesn’t make as much sense if our labels are just formal symbols. Labels on dots

in the projection are a composite of both 1-morphisms and 2-morphisms from C. Notice,

however, that the regions in the projection dot diagram are made exclusively from C’s

1-morphisms. We may, thus, replace these labels with dot diagrams.
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This picture suggests we might use the language of fiber bundles to describe slicing and

projection. Over any region in the projection, the fiber is a slice dot diagram, unique up

to evolution. Unlike in a fiber bundle, the fiber is allowed to change in a string diagram,

but only at heights in the string diagram containing nodes. We’ll sometimes ask that nodes

appear at distinct heights in the string diagram, moving them slightly if necessary. In this

case, each node in the string diagram corresponds to a dot in the projection. Moving past

a dot downstairs, then, changes the fiber upstairs in a way controlled by the corresponding

node. We may thus think of a string diagram as being a dot diagram’s worth of dot diagrams.

3.4 2-Computads and the Free 2-Category

In this section, we’ll sketch a definition of the 2-category sd(G) for a 2-computad

G. A 2-computad is a collection of generating morphisms of degrees 0, 1, and 2. In some

sense, sd(G) is the minimal 2-category containing the generators of G. We build sd(G) by

including the fewest possible objects, 1-morphisms, 2-morphisms, and relations. Much like

we did for dot diagrams, we’ll characterize sd(G) as the free 2-category by seeing sd as the

left adjoint to a forgetful functor.

A 2-computad is a significantly more complicated structure than its one dimensional

counterpart. In a 1-computad, 1-generators have 0-generators for their source and target.

This is also true for 1-generators in a 2-computad, but we must be careful for 2-generators.

It would be overly limiting to demand that 2-generators have 1-generators for source and

target. In a diagram, this would mean that every node had exactly one string coming from

below and one string from above. Instead, we’ll allow 2-generators to have source and targets

which are built up from the 1-generators. That is, the source and target of a 2-generator

are dot diagrams labeled in the lower degree generators.

In the sections on dot diagrams and string diagrams, I’ve been consistent in my usage

of which labels X,Y, f, g, α, β are the source and targets of other labels. In other words, I’ve

been drawing all diagrams by using the following 2-computad.
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Notice that we draw degree 1 generators in 1-dimensional cubes and degree 2 generators in

2-cubes. Each direction of a cube will give a direction of composition. Thus, it makes sense

to draw 0-generators, which aren’t composable, as 0-cubes.

Because we allow 2-generators to have dot diagrams for source and target, there is

much more variety in the shapes we draw for them. What then are the allowable shapes for

2-generators? Let’s consider the 2-generator β. Beta has a source dot diagram for f ◦ h ◦ k

and a target dot diagram for f ◦ g. These dot diagrams, themselves, must agree on source

object (X) and target object (Z). We may label the sides of a square with this information.

The string diagram for β is then made by coning the boundary of this square to a central

node which we label as β.

Thus, the shapes used for 2-generators are just cones on the boundary of a square. We place

dot diagrams on the top and bottom sides and make sure their left-most objects agree and

their right-most objects agree. The 2-generators α and δ are drawn using cones very much

like β. The 2-generator γ looks a bit different because its target dot diagram has no dots.

This is perfectly fine and we just get no strings from above in the γ’s cone. We may think

of γ as going from the composition f ◦ h to X, or if we really prefer 1-morphisms, from the
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composite f ◦ h to 1X . It also is allowable to have a 2-generator in which both the source

and target dot diagrams have no dots. In this case the 2-generator resulting from coning is

just a “free floating” node in a single region.

For a fixed 2-computad G of generators, we get string diagrams labeled in G by

stringing together combinations of 2-generators. We’ll understand this process in terms of

gluing. To get a 2-category of string diagrams, we’ll need to be able to glue diagrams both

horizontally and vertically. In order to glue two diagrams horizontally, we just need to check

that they agree on an intermediate object. We get the composite by placing the string

diagrams side by side. Gluing string diagrams over an object Y also has the effect of gluing

their sources over Y and gluing their targets over Y .

When we compose two string diagrams vertically, we need to check that they agree on an

intermediate dot diagram. If they do, we glue the string diagrams along that dot diagram.
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What do our units for vertical composition look like? Given any dot diagram, we

should be able to produce a string diagram so that vertically composing with that string

diagram has no effect. We get such a string diagram by thickening a dot diagram in height.

As a movie, this string diagram shows the dots f and g staying put. In fact, any string

diagram which has no nodes can be thought of as a movie in which very little happens.

Indeed, the dots in the movie must maintain their order. We’ll call such a node-less string

diagram an evolution of dot diagrams.

How do we get units for horizontal composition? Well, any object can be regarded

as a dot diagram without any dots. By the thickening this vertically, we get the string

diagram for the identity on the identity. In sum, we can regard this as thickening a 0-cube

both horizontally and vertically.

Let us summarize our various compositions and units by making a definition. For

any 2-computad G, there is a 2-category sd(G) of string diagrams labeled in G, defined

roughly as follows.

• A 0-morphism of sd(G) is a 0-cube labeled by a degree 0 generator of G.

• A 1-morphism of sd(G) is a dot diagram labeled by degree 0 and 1 generators of G.

• A 2-morphism of sd(G) is a string diagram labeled by G.
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We’ll consider two dot diagrams to be equal in sd(G) if they are related by some evolution.

We’ll similarly define an evolution of strings diagrams to be a movie of string diagrams in

which the strings and nodes may move around over time, but no strata are fundamentally

changed. String diagrams in sd(G) are then also only taken up to string evolution.

Composition in sd(G) is done by the horizontal and vertical gluing we’ve outlined

so far. Working smoothly and up to evolutions, there are some technical issues to sort out.

For example, two string diagrams may agree on an intermediate dot diagram but the strings

don’t meet up in smooth manner. We’ll show any string diagram may be straightened using

a string evolution so that the strings meet the top and bottom faces in a perpendicular

manner.

We might also wish to glue together string diagrams whose dot diagrams only agree up to a

dot evolution. In this case, we may regard the dot evolution as a string diagram in between

the other string diagrams. Now, the string diagrams agree on intermediate dot diagrams,

and after normalizing, we may achieve the desired gluing.

We may build quite large complex string diagrams by gluing together smaller dia-

grams. Conversely, any large string diagram may be decomposed by splitting it into simple

pieces. Any string diagram may be given a brick decomposition.
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In such a decomposition, each brick is a string diagram with a simple stratification. If the

string diagram is labeled in a 2-category, we may evaluate the diagram by evaluating each

brick. We think of the diagram as a vertical composite of horizontal composites. Brick

decompositions have the nice property that any two have a common refinement made by

intersecting the bricks. This will allow us to see that evaluation is actually independent of

the brick decomposition used.

We use evaluation to build an adjunction, much as we had for dot diagrams. Indeed,

evaluation of diagrams gives us a counit

sd(forget(C)) −→ C,

and inclusion of generators as singleton diagrams gives a unit

G −→ forget(sd(G)).

These give us our main theorem for string diagrams.

Theorem. Suppose G is a 2-computad. Then the 2-category of string diagrams sd(G) is

the free 2-category on the generators in G.

We were able to express a bracketing rule for dot diagrams by labeling the dots

of a dot diagrams with dot diagrams. We may similarly take a string diagram and label

its strings with dot diagrams and its nodes with string diagrams. Rather than use labels

explicitly, it’s easier to replace the nodes with the string diagrams that should label them.

We’ll also replace the strings labeled by dot diagrams with multi-strand strings. We call the

result a rope diagram.
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A general associative law for 2-morphisms then would state that evaluating inner string

diagrams and ropes first has no effect on what the diagram ultimately evaluates to.

3.5 Monoidal Categories

Just as dot diagrams with unlabeled regions allow us to write words in monoids,

string diagrams with unlabeled regions will be good for describing compositions in a familiar

mathematical object: monoidal categories. Roughly speaking, a monoidal category is a

category with an extra operation ⊗, called tensor. For any two objects X and Y , there is an

object X ⊗ Y , their tensor product, picked out. We may think of this as a classical tensor

product or just as some abstract operation. We ask that ⊗ be associative and that there be an

object which functions as an identity for the tensor product. Further, given any morphisms

f : W → X and g : Y → Z, we may tensor to get a morphism f ⊗ g : W ⊗ Y −→ X ⊗ Z.

More precisely, what we are describing here is actually a strict monoidal category. We will

later discuss a more general structure, and hence more commonly found in nature, the weak

monoidal category.

Any strict monoidal category C defines a 2-category C↑ as follows. There is only one

object, ∗, in C↑. Every object of C is a 1-morphism in C↑, thought of as an endomorphism

of ∗. Every morphism of C is regarded as a 2-morphism of C↑. The horizontal composition

for C↑ is given by C’s tensor product, ⊗, and vertical composition is taken to be C’s usual

composition of morphisms. By moving from a monoidal category to a 2-category, we view

morphisms as being one degree higher. Going the other way, any 2-category D with a single

object, ∗, may be thought of as a monoidal category D↓ by ignoring the object and viewing

morphisms as one degree lower. More generally, for any 2-category D with a chosen favorite

object ∗, we may define D↓ as the microcosm category HomD(∗, ∗). We get the tensor

product for D↓ by taking the tensor product to be D’s horizontal composition.
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What does this mean for diagrams in a monoidal category C? We should be able to

describe compositions in C by using dot and string diagrams for C↑. Spelling this out, we’ll

have dot diagrams which describe the tensor products of objects of C. There is no need for

labeling the regions of these dot diagrams because they all would read ∗. A string diagram

will have strings labeled by objects of C and nodes labeled by morphisms of C. Regions do

not need to be labeled. Notice that by not labeling regions, there is nothing to be checked

for horizontal composition. Indeed, any two objects or any two morphisms may be tensored

in a monoidal category.

There are variants of monoidal categories whose compositions are better captured

not by strings in a 2-D square, but by strings in higher dimensional space. Compositions in

a braided monoidal category may be described using strings in 3-space. There is much more

room for strings to pass each other in 3-space than 2, but we can account for this by allowing

braidings. If we consider strings in 4-space, we are looking at compositions for a symmetric

monoidal category. Here, there’s so much room that “over” and “under” crossing information

is no longer meaningful. Also, there is no need to move to any higher dimensional ambient

space — all tangling of strings has already disappeared by dimension four.

From this perspective, the plain (non-braided) monoidal category is quite special.

Unlike in 3 or 4-space, strings separate regions in the square. If this disseration were focused

on high-dimensional ambient spaces and, say, symmetric monoidal categories, then the term

“string diagram” would probably be used refer to a 4-cube with strata of dimension at most

1. Instead, we will be interested in the case in which the cube has many regions, separated

by strata. As such, we use “string diagram” to refer to stratified 2-cubes. Similarly, “dot

diagrams” are named by their codimension 1 strata, dots. Even if a stratified 2-cube has

no 1-strata, we’ll still consider it a string diagram, albeit a degenerate one. This point is

especially confusing when we consider a stratified 3-cube without 2-strata. While one might

be tempted to call this a “string diagram,” we will consider it a degenerate surface diagram.

In practice, we don’t actually find many examples of strict monoidal categories.

Consider the category of vector spaces over C and linear maps. This nearly forms a monoidal

category, except the tensor product of vector spaces is not strictly associative. That is,

(U ⊗ V )⊗W and U ⊗ (V ⊗W )

are not equal “on the nose,” but rather there is a canonical isomorphism which describes

“how they are the same.” We call this invertible map

(U ⊗ V )⊗W −→ U ⊗ (V ⊗W )
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the associator for U, V, and W . Similarly, the field C, thought of as a vector space over

itself, functions as a unit for the tensor product. But once again, we don’t have an equality,

but rather just a canonical isomorphism

V ⊗ C −→ V

which we’ll call the right unitor for V . A weak monoidal category, then, is a category with a

monoidal product ⊗ which is associative and unital in this weaker sense. Further, we don’t

just demand that these data exist, but we demand that the category come equipped with

associators and unitors for each choice of objects. We’ll also demand that this data satisfy

certain coherence laws which make sure we don’t get into trouble when making calculations.

In many ways, the weak monoidal category is the more natural definition. We do

not, as a general principle, want to require equalities when isomorphisms will do. After all,

an isomorphism is a more structured statement that tells how two things are the same. On

the other hand, strict monoidal categories have much nice formal properties. Indeed, we can

just “do algebra” with tensor products of objects in the strict realm. That is, the ⊗ is really

an honest multiplication making the object set into a monoid. It turns out that every weak

monoidal category is equivalent, in some precise sense, to a strict monoidal category. The

proof of this fact constructs a 2-category from a bicategory by using the Yoneda embedding

into a large presheaf 2-category. So at least in principle, we can replace any weak monoidal

category that we find in nature with a strict one. Or maybe more to the point, we may work

with a weak monoidal category as if it were strict.

The string diagrams we’ve considered so far are used to describe compositions in a

strict monoidal category. The previous discussion, though, suggests we should be able to

modify our theory of string diagrams in order to encode compositions for a weak monoidal

category. More generally, a bicategory is the weak analog of a 2-category. By studying

string diagrams for bicategories, then, we’ll actually be including the case of weak monoidal

categories. Indeed, any weak monoidal category may be thought of as a bicategory with

a single object. Therefore a diagram for a weak monoidal category will just be a string

diagram for a bicategory in which we have unlabeled regions.

3.6 Bicategories

In order to evaluate a dot diagram as a 1-morphism in a bicategory, we need to

record more information than we did for a 2-category. For example, the 3-fold composite of

1-morphisms is no longer uniquely defined.
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Indeed, we might choose evaluate this as (fh)k or as f(hk). While the results are guaranteed

to be isomorphic, they are not equal. This suggests we might need a binary tree in order to

decide such orders of compositions.

In fact, there are other ways we could choose to evaluate this diagram. We are also allowed

to take as many units as we like from any of the regions. For example, we would evaluate

the following dot diagram

as (f ◦ 1Y ) ◦ (h ◦ k). By decorating our dot diagrams in this manner, we may uniquely

evaluate such a diagram in a bicategory.

While we may think of a decoration as a list of instructions on how to disassemble

a dot diagram, we may also regard it as giving a record of how the diagram was built up.

We think of decorated dot diagrams as being built from two basic types of building block:

• The dot diagram with a single region and decorated with a single region leaf.

• The dot diagram with a single dot and decorated with a single dot leaf.

When we glue together two decorated dot diagrams, we get a decoration for the composite

by joining the decorations for the factors. We will therefore call such a decoration a history.

Notice that composition of decorated dot diagrams cannot be associative. Indeed, having a

history prevents the two candidates from being equal. Similarly, we’ll require every history

to have at least one leaf, and so it is impossible for any decorated dot diagram to be an

identity.

So if a history allows us to evaluate dot diagrams in a bicategory, what do we need

to evaluate a string diagram? Certainly, the source and target dot diagrams should be

equipped with histories. One might think that intermediate slices should also be equipped

with histories so that we have a preferred way to evaluate them, as well. In fact, the
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coherence relations in a bicategory ensure that we don’t need histories on intermediate

slices. We therefore define a decorated string diagram to be one that has histories just for

its source and target dot diagrams.



Chapter 4

Intuition for Surface Diagrams

Surface diagrams are a tool used to describe composites of 3-morphisms between

composites of 2-morphisms. We begin by interpreting surface diagrams in the strict world

of 3-categories. It’s relatively easy to write down a theory of such diagrams. Following the

example of 2-categories and bicategories, one might expect that we would get a theory of

surface diagrams for tricategories by putting decorations on the surface diagrams we made

for 3-categories. In fact, this does not work. Indeed, while every bicategory is (bi-)equivalent

to a 2-category, the analogous result does not hold for tricategories. We will thus attempt

to define a more sophisticated theory of surface diagrams for tricategories, but this proves

to be too arduous. In the end, we settle on a theory of surface diagrams for Gray-categories.

The definition of a Gray-category is a compromise between the generality of tricategories

and the strictness of 3-categories. We’ll see that the topology of surface diagrams, then,

helps explain why this compromise is a good one.

In order to speak about surface diagrams, we’ll need to work in three dimensions.

For the categorical constructions we’ll want, the following conventions work well:

In R3, the x-coordinate will go from back to front, the y-coordinate will go from
left to right, and the z-coordinate will go from bottom to top.

Also, we’ll allow ourselves to omit labels for ease of reading.

26
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4.1 3-Categories

In many respects, surface diagrams are a straightforward generalization of string

diagrams, one dimension up. We may perform many of the same operations: coning, thick-

ening, gluing, slicing, projecting, etc. We’ll take a tour of these operations in order to get a

feel for the diagrams. We draw a surface diagram as a stratification of the cube. As usual,

we label the strata with morphisms according to codimension.

• We label the 3-strata, called regions, with 0-morphisms.

• We label the 2-strata, called walls, with 1-morphisms.

• We label the 1-strata, called seams, with 2-morphisms.

• We label the 0-strata, called nodes, with 3-morphisms.

We get basic examples of surface diagrams by coning. Suppose we have a 3-morphism

Γ which we want to display as a surface diagram. First, we must choose representations for

its source and target 2-morphisms as string diagrams. These string diagrams must agree on

source dot diagrams and on target dot diagrams.

We place these string diagrams on the bottom and top faces of a cube, paying careful

attention to our direction conventions. We draw dot evolutions on the left and right sides of

the cube to connect up the corresponding strings. And we place a single region on the back

face of the cube and a single region on the front face. Coning from the faces to a center

point gives a surface diagram. We may think of Γ as labeling the node at the center.

We also get examples of surface diagrams by thickening any string diagram in the z-

direction. Note that while the x and y-directions are forward and right in a surface diagram,

we’ll usually continue to draw them as right and up, respectively, in a string diagram.
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In a surface diagram, we only allow regions to intersect the front and back faces of

the cube. If the object labeling the front region of one surface diagram agrees with the object

labeling the back region of another, then we may glue these diagrams in the x-direction.

On the left and right faces of a surface diagram, we only allow dot evolutions. Up to string

evolution, these are just dot diagrams. When these sufficiently match up, we may glue in

the y-direction. We may think of this as a fancy version of composing over 1-morphisms.

We say, “fancy,” because we are really composing over a composite of 1-morphisms.

The top and bottom faces of a surface diagram are string diagrams. We may compose over

these in the z-direction.

Away from z-heights containing a node, we may take horizontal slices of a surface

diagram to get string diagrams.
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These slices describe compositions of 2-morphisms in a 3-category. We may think of a surface

diagram as being a vertical dot-diagram’s worth of these horizontal slices. In order to ensure

that these slices make sense, we insist that surface diagrams satisfy two progressivity rules.

• Seams must be transverse to every horizontal plane.

• Walls must be transverse to every line parallel to the x-axis.

These rules ensure that both seams and walls always travel some amount in the z-direction.

Further, the progressivity rule for walls ensures that each horizontal slice of a string diagram

is progressive in the y-direction. Here are two examples of strata that fail progressivity.

Notice that in the drawing of the non-progressive wall, we drew lines to indicate the wall

turning back. These fold lines are not actual seams in the surface, but just an artifact of the

perspective drawing. We chose the x-direction to be drawn back-to-front in surface diagrams

so that fold lines in walls would correspond to places of non-progressivity.

While we may think of a surface diagram as a dot diagram’s worth of string diagrams,

it is also worth thinking of a surface diagram as a string diagram’s worth of dot diagrams.

We may project a surface diagram to get a string diagram on the x-plane which
has slice x-direction dot diagrams.

This projection takes nodes to nodes, seams to strings, walls to regions, and it ignores the

regions of the surface diagram.

We’ll include crossing information when seams cross in the projection. In the string diagram,

these should just be regarded as a special type of node. We may think of these projection

string diagrams as describing composites in the microcosm 2-category. Indeed, fixing two

objects X and Y in a 3-category, Hom(X,Y ) has the structure of a 2-category.

We can run across a few problems when we try to project a surface diagram. For

instance, in the projection two seams might kiss, a node might land on a seam that it’s not

incident to, or three seams might create a triple point.
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We’ll call a surface diagram photogenic if it does not have any of these sorts of configurations

of strata in projection. We’ll also consider evolutions of surface diagrams which at each time

are either photogenic or are mid-move corresponding to one of these three projections.

The string diagrams for the microcosm 2-category have crossing information that

looks very much like the sort of thing we’d use for braids or knots. Although the word

“seam” suggests that it is the meeting place of walls, we allow surface diagrams to have

seams with no adjacent walls. Thus a diagram of strings in a cube can be thought of a

special degenerate case of a surface diagram. At least informally, we’ll allow ourselves to

use “string” to refer to a seam lacking adjacent walls.

Recall that we were able to think of monoidal categories as bicategories with a single

unlabeled 0-morphism. We had to shift degrees by one, labeling our strings with objects

and nodes with morphisms. Similarly, we make think of a braided monoidal category as a

tricategory with a single unlabeled 0-morphism and a single unlabeled 1-morphism, namely

the identity for the 0-morphism. Here, we should shift degrees by two. We should therefore

expect the diagrams of a braided monoidal category to consist of strings in a cube that are

allowed to meet at nodes. We’ll label the strings with objects and the nodes with morphisms.

The single region will remain unlabeled. Roughly speaking, a braided monoidal category

is a monoidal category equipped with isomorphisms, called braidings, which half-twist two

objects past each other. These braidings do not need to satisfy symmetry relations: two

half-twists need not be equal to the identity!

Recall, though, that when we defined our dot, string, and surface diagrams we always

identify diagrams that are related by an evolution. We cannot therefore distinguish between

the above two diagrams. Indeed, we do not anchor nodes in the source and target string

diagrams, and so we may just pull one of the strings around the other in the top face.

Our problem is that a braided monoidal category is a doubly-generate tricategory, not a

doubly-degenerate 3-category. Doubly-degenerate 3-categories are automatically symmetric
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monoidal. If we’re going to see this braiding, can’t quotient out by evolution willy-nilly.

This also means that we’re going to be forced to leave the strict world of 3-categories.

4.2 Tricategories

As we’ve seen, 3-categories are so strict that the braiding of 1-morphisms cannot

be detected. Tricategories do not suffer from this deficiency. A tricategory comes equipped

with many structural morphisms. These include 3-morphisms which observe the associativity

and units for composition of 2-morphisms. Such 3-morphisms, themselves, satisfy coherence

relations. There are also structural 2-morphisms that record the associativity and units

for composition of 1-morphisms. As we are being fully weak, these structural 2-morphisms

don’t satisfy coherence relations, but rather there exist coherence 3-morphisms observing

their coherence and themselves satisfy some coherence relations.

We expect the 2-morphisms of a 2-category (or bicategory) to satisfy an interchange

relation:

(α ◦ β)⊗ (γ ◦ δ) = (α⊗ γ) ◦ (β ⊗ δ)

In a tricategory such a relation is too strict. Instead, we record an invertible 3-morphism,

the interchanger, to observe an interchange for any four 2-morphisms. These interchangers

satisfy coherence rules meaning that they “play nice” with the associators and unitors.

Consider a pair of 2-morphisms α, β : 1X → 1X : X → X in a tricategory whose

sources and targets are a 0-morphism, X. We can get the braiding for α and β by composing

unitors and interchangers in various directions:

α ◦ β → (1X ⊗ α) ◦ (β ⊗ 1X) → (1X ◦ β)⊗ (α ◦ 1X) → β ⊗ α

→ (β ◦ 1X)⊗ (1X ◦ α) → (β ⊗ 1X) ◦ (1X ⊗ α) → β ◦ α

→ (1X ⊗ β) ◦ (α⊗ 1X) → (1X ◦ α)⊗ (β ◦ 1X) → α⊗ β

→ (α ◦ 1X)⊗ (1X ◦ β) → (α⊗ 1X) ◦ (1X ⊗ β) → α ◦ β

This is great, except it’s a bit of a pain to write out all of these unit and interchange

rules explicitly. If we’re going to use surface diagrams to describe compositions in a tricat-

egory, we’ll need to use many decorations to keep of all this straight. This actually proves

to be quite a challenge.

When it came to decorating string diagrams to use in a bicategory, we only needed

decorations on the source and target dot diagrams. Coherence ensured that any intermediate
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bracketings of slices would not affect which 2-morphism the diagram would evaluate to.

Similarly, for surface diagrams, we shouldn’t need to decorate all of the slices of a surface

diagram, but rather just the source and target string diagrams. That said, what kind of

decorations would we need to uniquely evaluate a string diagram in a tricategory?

Recall the picture of a string diagram as a dot diagram’s worth of dot diagrams:

We’ll need to keep track of units and bracketing for each of the slices and for the projec-

tion. Let’s begin by thinking about the associators and unitors for the projection. These

control the composition in the y-direction, that is, the composition of 2-morphisms over

1-morphisms. We’ll think of these as node-less surface diagrams from a string diagram with

one history to the same string diagram with another history. None of this is too much

trouble because these associators and unitors are 3-morphisms and so their coherence comes

in the form of equalities.

The above slice dot diagrams also need histories to describe their evaluation. We’ll

need to be able to describe the 2-morphism associators and unitors for these slices. These

don’t show up in a string diagram. Perhaps, though, we should none-the-less indicate the

existence of such an associator or unitor as a node in the projection dot diagram. That is,

nodes in the projection dot diagram should indicate changes in slice dot diagrams. This may

be an interesting change due to a node in the string diagram, or it may be a less interesting

change due to a rebracketing of a slice. We’ll refer to a node of the latter type as virtual.

We also need to be able to display the coherence 3-morphisms for the associator and unitor

2-morphisms. These would be node-less surface diagrams that allow us to manipulate the

virtual nodes. We won’t spend time going into these detail, though, because we have larger

problems with this approach.
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Our idea of a string diagram is as a composite in the y-direction of composites in

the x-direction. That’s all well and good in 2-categories or even in bicategories because any

composition is equal to one in this form. But in a tricategory, we also need to be able to

describe an x-direction composite of y-direction composites. Indeed, one of these may be

unequal to any of the previous form. Really, we need to allow multiple iterations back and

forth of such compositions. We’ll briefly explore what this might look like for non-unital

associativity. So we really need to be using Mondrians to encode the horizontal and vertical

composition orders.

We still need bracket trees in order to make up for the lack of strict associativity or units.

The interchanger surface diagram allows us to reinterpret a vertical composition of horizontal

compositions as a horizontal composition of vertical compositions.

We conclude that it should be possible to give an elaborate theory of decorations in

order to evaluate string diagrams in tricategories. That said, trying to make a calculation in

such a theory would involve many tedious manipulations. These diagrams would be “fully

general” but at the expense of making them too cumbersome to be much use to anyone.
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4.3 Gray-Categories

Let’s have a quick introduction to Gray-categories. A Gray-category is defined to be

a category enriched over the monoidal category, Gray. We won’t spend time here defining

Gray, but rather we discuss how one can think about a Gray-category. A Gray-category

C has morphisms of degree 0, 1, 2, and 3. We require a rather strict condition for the

lowest levels: the objects and 1-morphisms form a (1-)category. Further, for any pair of

objects, (X,Y ), there is a 2-category HomC(X,Y ) of C’s 1-morphisms, 2-morphisms, and

3-morphisms. So far, this description sounds a lot like a 3-category. There is an important

difference:

In a Gray-category, we may not compose 2-morphisms over objects.

At first glance, it might seem that we lose a lot by excluding horizontal composition of

2-morphisms. We do, however, allow ourselves whiskering : we may horizontally compose

2-morphisms with 1-morphisms. So given a pair of 2-morphisms,

α : f → f ′

β : g → g′

we may not form the horizontal composite

α⊗ β : f ⊗ g −→ f ′ ⊗ g′

but we may form the vertical composites

(α⊗ g) ◦ (f ′ ⊗ β) : f ⊗ g −→ f ′ ⊗ g′

(f ⊗ β) ◦ (α⊗ g′) : f ⊗ g −→ f ′ ⊗ g′.

In a 3-category, these vertical composites would equal the horizontal composite, and in

a tricategory, they would be coherently isomorphic. So we should regard both vertical

composites as viable replacements for the horizontal composite. Indeed, drawing the string

diagrams, we see that the vertical composites may be obtained by slightly nudging the

2-morphisms of the horizontal away from the same height.
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As part of the data defining a Gray-category, we pick out interchange isomorphisms

that relate the candidate horizontal composites:

(α⊗ g) ◦ (f ′ ⊗ β) −→ (f ⊗ β) ◦ (α⊗ g′)

Of course, these interchangers must satisfy properties that ensure they are well-behaved and

coherent.

What sort of structure do we get if we truncate a Gray-category by forgetting its 3-

morphisms? We may compose 1-morphisms over objects and 2-morphisms over 1-morphisms.

These operations are strictly associative and unital. We lose the interchangers because

they are 3-morphisms. This sort of structure is called a sesquicategory. Composition of

2-morphisms in a sesquicategory can be described by ordered string diagrams. A string

diagram is ordered if we insist that its nodes occur at distinct y-heights. Evolution of ordered

string diagrams, then, preserves the ordering. Note that we cannot horizontally glue ordered

string diagrams and expect the result to be ordered: two nodes might accidentally end up

at the same height after gluing. We won’t worry about this, though, since we’ll only expect

there to be a sesquicategory of ordered string diagrams.

Given a Gray-category C (or more generally, a Gray-computad), we will define a

Gray-category sd(C) of surface diagrams labeled in C as follows:

• An object in sd(C) is a dot labeled by an object of C.

• A 1-morphism in sd(C) is a dot diagram, up to evolution.

• A 2-morphism in sd(C) is an ordered string diagram, up to ordered evolution.

• A 3-morphism in sd(C) is a (Gray) surface diagram, up to (Gray) evolution.

We need to be careful to spell out what we mean by a surface diagram between or-

dered string diagrams. As we are only looking to get a Gray-category of surface diagrams, we

don’t need to worry composing string or surface diagrams in the x-direction. This is a good

thing, because our Gray-category C doesn’t understand the corresponding compositions.

More interesting is how we represent interchangers as surface diagrams. We may

slice a surface diagram with a horizontal plane at any height, except those containing nodes,

to get a string diagram. Actually, we’ll require a bit more: at all but finitely many heights,

the slice of a surface diagram is an ordered string diagram. Exceptional heights then may

contain a node or have two seams cross in x-projection. Here is an example of such a seam

crossing.
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Let’s revisit the case of two strings braiding. The braiding for

α, β : 1X → 1X : X → X

is easier to write down for a Gray-category than it was for a tricategory. In fact, it is just

the composite of two interchangers.

α ◦ β = (1X ⊗ α) ◦ (β ⊗ 1X) −→ (β ⊗ 1X) ◦ (1X ⊗ α) = β ◦ α

= (1X ⊗ β) ◦ (α⊗ 1X) −→ (α⊗ 1X) ◦ (1X ⊗ β) = α ◦ β

We can draw this as the following string diagram.

We require that evolution of surface diagrams restrict to evolution of ordered string diagrams

on the bottom and top faces. Thus, we cannot untwist the previous diagram by because we

cannot disturb the y-order of the nodes in the source and target string diagrams. On the

other hand, we do allow full evolution on the interior of surface diagrams. We may undo a

counter-clockwise half twist by following it with a clockwise half twist.

The Gray-interchangers allows us to braid strings in surface diagrams!



Chapter 5

Topological Background

5.1 Manifolds with Corners

In this dissertation, we’ll be defining dot, string, and surface diagrams by putting

stratifications on intervals, squares, and cubes. One could therefore probably get away with

only defining stratifications on these particular spaces. We’ll find it useful, however, to work

in a bit more generality. In particular, spheres will feature prominently in our recursive

definition of stratified spaces. We therefore wish to work in the context of manifolds with

corners. We expect the reader to be more or less acquainted with the basic theory of smooth

manifolds with and without boundary. Lee’s introductory text [Lee03] has the requisite

background. We’ll have no need for topological manifolds, so all manifolds will be smooth

without further mention.

Let’s begin by recalling a few facts about manifolds and about manifolds with bound-

ary. A manifold with boundary M is a space for which each point p may be locally identified

with the origin in either Euclidean space Rm or in the half-space R≥0 × Rm−1. We accord-

ingly classify p as an interior point or boundary point. We may think of a manifold, then,

as a manifold with boundary but which just happens to lack boundary points. Going the

other direction, “taking interior” turns a manifold with boundary M into a manifold int(M)

by discarding the boundary points. We have a second way to turn manifolds with boundary

into manifolds: “taking boundary” turns an m-dimensional manifold with boundary into an

(m − 1)-dimensional manifold, ∂(M). We therefore regard these operations, int and ∂, as

well-behaved for the class of manifolds with boundary. The topological operation of “taking

products,” however, does not take manifolds with boundary to manifolds with boundary.

Suppose p ∈ ∂(M) and q ∈ ∂(N) are boundary points of M and N . Then a neighborhood

37
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of (p, q) in M ×N locally looks like

(R≥0 × R
m−1)× (R≥0 × R

n−1) ∼= R
2
≥0 × R

m+n−2.

This is not a half-space but rather a corner.

We will call the spaces Ra
≥0 × Rm−a for a ≥ 2 the standard corners. These include,

for example, the quadrant R2
≥0 in the plane, the octant R3

≥0 in Euclidean 3-space, and also

the quarter space R2
≥0 × R in Euclidean 3-space. An m-dimensional manifold with corners

will be defined as a space locally modeled on the various Ra
≥0 × Rm−a for 0 ≤ a ≤ m. Any

manifold with boundary is therefore an example of a manifold with corners which just lacks

corner points. We may get a manifold by “taking the interior” of any manifold with corners.

And it’s clear, at least locally, that the product of manifolds with corners is a manifold with

corners. Things are a bit more complicated, however, when we wish to “take the boundary”

of a manifold with corners. One should not expect the boundary of a manifold with corners

to be a manifold with corners. Instead, we will see that the boundary decomposes into faces

of various dimensions.

Definition. Suppose M is a topological space that we intend to give the structure of a

manifold with corners. An m-dimensional chart for M is a homeomorphism

Φ: U → Φ(U),

where U ⊂ M and Φ(U) ⊂ Ra
≥0 × Rm−a are open subsets and 0 ≤ a ≤ m.

Two m-dimensional charts

(Φ, U ⊂ M, Φ(U) ⊂ R
a
≥0 × R

m−a) and (Ψ, V ⊂ M, Ψ(V ) ⊂ R
a′

≥0 × R
m−a′)

for a space M are compatible if either

• U and V are disjoint or

• the transition functions made by composing Φ and Ψ restricted to the overlap

Φ(U ∩ V )
Φ−1

−−→ U ∩ V
Ψ

−−→ Ψ(U ∩ V ) and Ψ(U ∩ V )
Ψ−1

−−−→ U ∩ V
Φ

−−→ Φ(U ∩ V )

are smooth.

Note that while Φ(U ∩ V ) is an open subset of Ra1
≥0 × Rm−a1 , it need not be open

in Rm. Therefore, to say a transition function is smooth at a point of the boundary in

Rm, we’ll need to check that it has a smooth extension to some neighborhood in Rm. See

Appendix A for details.
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Definition. An m-dimensional atlas for a space M is a collection of m-dimensional charts.

We require

• the charts are pairwise compatible and

• every point of M is in at least one chart.

We’ll say that a chart Φ is compatible with an atlas A if Φ is compatible with every chart in

A.

Proposition. Suppose M is a topological space and A is an m-dimensional atlas for M .

Then the set of charts,

{Φ : Φ is compatible with A},

is an atlas and, moreover, is the largest atlas containing A.

Definition. An m-dimensional manifold with corners is a Hausdorff second countable topo-

logical space M equipped with a maximal m-dimensional atlas.

When using the word “manifold” informally in this dissertation, we will mean it to

include the possibility of having boundary or corners. Also, we no longer have need to talk

about charts for arbitrary topological spaces and so from here on a “chart” will always refer

to one taken from a manifold’s atlas.

Proposition. Every chart Φ for a manifold with corners M is a diffeomorphism.

Proof. We will always equip Ra
≥0 × Rm−a with the atlas generated by the single chart,

1: Ra
≥0 × R

m−a −→ R
a
≥0 × R

m−a.

Then Φ may therefore be locally represented by the identity map,

1Φ(U) : Φ(U) → Φ(U).

Proposition. Suppose M and N are manifolds with corners. Then the product M ×N is

a manifold with corners and dim(M ×N) = dim(M) + dim(N).

Proof. We just note that the map reordering factors

(Ra
≥0 × R

dim(M)−a)× (Ra′

≥0 × R
dim(N)−a′) −→ R

a+a′

≥0 × R
(dim(M)+dim(N))−(a+a′)

is a diffeomorphism.



40

Proposition. Suppose p is a point in a manifold with corners M . Then there exists a chart

Φ centered at p in the atlas for M . That is, Φ(p) = 0.

Proof. Our definition of atlas ensures that p is in some chart

(Ψ, U ⊂ M, Ψ(U) ⊂ R
a
≥0 × R

m−a).

We’ll use the maximality of M ’s atlas to show that there is another chart, Φ, which is

centered at p. To this end, let’s divide the indices i ∈ {1, . . . ,m} for xi into three camps:

1. i where 1 ≤ i ≤ a and xi(p) = 0;

2. i where 1 ≤ i ≤ a and xi(p) 6= 0;

3. i where a+ 1 ≤ i ≤ m.

The camp 1 and camp 2 coordinates may appear in any order in Ra
≥0 for Ψ. Choose a

diffeomorphism Γ: Ra
≥0 × Rm−a → Ra

≥0 × Rm−a which permutes the factors so that the

coordinates of Γ ◦Ψ appear in order according to camp.

Let a1 denote the number of indices in camp 1. Note that a1 ≤ a and so

R
a
≥0 × R

m−a = R
a1
≥0 × R

a−a1
≥0 × R

m−a ⊂ R
a1
≥0 × R

m−a1 .

This shows that Γ(Ψ(U)) is a subset of Ra1
≥0 × Rm−a1 , however it may not be open. In any

case, we may choose a smaller neighborhood V ⊂ U of p so that Γ(Ψ(V )) is open as a subset

of Ra1
≥0 × Rm−a1 . For instance, we may take

V = Ψ−1(Ψ(U) ∩ the open ball of radius ε centered at q),

where ε = min{xi(p) : i is in camp 2}. By definition, Γ(Ψ(p)) has the first a1 coordinates

all zero. We may therefore define Φ: V → R
a1
≥0 × Rm−a1 by

Φ(q) = Γ(Ψ(q))− Γ(Ψ(p)).

Restrict Φ to its image. We claim that Φ is a chart in M ’s atlas. Since the domain of Φ is

contained in the domain of Ψ, it suffices to check Φ’s compatibility with Ψ. But this is clear

because the transition function is a reordering of coordinates followed by a translation.

Definition. Suppose Φ is a chart centered at a point p with Φ(U) ⊂ Ra
≥0 × Rm−a. We’ll

say that (for Φ),

• p is an interior point of M if a = 0;
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• p is on the boundary of M if a ≥ 1;

• p is a corner point of M if a ≥ 2.

We’ll show later in this section that these definitions don’t depend on the choice of chart Φ.

Our next task is to define the tangent space for a manifold with corners. Consider the

set C∞(M) of smooth R-valued functions on M . This is an R-algebra with the operations

of pointwise addition and pointwise multiplication. Smooth functions f : M → N induce

algebra homomorphisms

C∞(N) −→ C∞(M).

Definition. A linear map D : C∞(M) → R is a derivation at a point p ∈ M if it satisfies

D(fg) = g(p)D(f) + f(p)D(g).

Example. Suppose γ : R → M is a curve taking 0 to p ∈ M . We get a derivation Dγ at p

defined by taking a single-variable derivative as follows:

Dγ

(

M
α
−→ R

)

=
d

dx
(α ◦ γ)

∣

∣

∣

∣

x=0

.

Note that γ need not be defined on all of R. Rather, any open interval I ⊂ R neighborhood

of the origin would suffice.

Definition. A derivation D ∈ Tp(M) is locally represented by a curve γ : I → M with

γ(0) = p if it satisfies

D(α) =
d

dx
(α ◦ γ)

∣

∣

∣

∣

x=0

.

for all α ∈ C∞(M).

The tangent space of M at p, written Tp(M), is the vector space of all derivations

at p. We’ll let Rp(M) ⊂ Tp(M) denote the set of representable derivations at p. Given a

smooth map f : M → N , we may push-forward tangent vectors giving a linear map

Tp(M)
f∗

−−→ Tf(p)(N).

Representable derivations are taken to representable derivations, so we may also see the

push-forward as a map

Rp(M)
f∗

−−→ Rf(p)(N).
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Proposition. The tangent space Tp and the set of representable derivations Rp are local

invariants:

Tp(U) = Tp(M) and Rp(U) = Rp(M)

for any neighborhood U of p.

Proposition. We may understand Tp and Rp on our standard models as follows.

1. The inclusion Ra
≥0 × Rm−a −֒→ Rm induces an isomorphism

T0(R
a
≥0 × R

m−a) ∼= T0(R
m)

on tangent spaces.

2. The inclusion Rm−a −֒→ Ra
≥0 × Rm−a induces a bijection

R0(R
a
≥0 × R

m−a) ∼= R0(R
m−a)

on representable sets.

3. In Euclidean space, every derivation at the origin is representable:

R0(R
k) = T0(R

k).

Proof Sketch.

1. We may show this isomorphism by investigating the kernel and image. In both cases,

the key fact is that any smooth map α : Ra
≥0 × Rm−a −→ R may be extended to a

smooth function α̃ : Rm −→ R.

2. The standard projection Ra
≥0 × Rm−a −→ Rm−a is an inverse at the level of repre-

sentable sets. Any derivation represented by a curve γ : I → Ra
≥0 × Rm−a may be

equally well represented by the composite curve γ : I → Ra
≥0 × Rm−a → Rm−a.

3. It is a standard fact that every tangent vector is representable as a curve in a manifold

without boundary.

Proposition. Rp(M) is a subspace of Tp(M). Further,

a+ dim(Rp(M)) = m

where a is determined by any chart (Φ, U ⊂ M, Φ(U) ⊂ Ra
≥0 × Rm−a) centered at p.
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Proof. First, we’ll show that R0(R
a
≥0 ×Rm−a) is a subspace of T0(R

a
≥0 ×Rm−a). Note that

the inclusion f : Rm−a −→ Ra
≥0 × Rm−a induces a linear map

T0(R
m−a) −→ T0(R

a
≥0 × R

m−a) and a bijection R0(R
m−a) −→ R0(R

a
≥0 × R

m−a).

Since R0(R
m−a) = T0(R

m−a) is a vector space, we may use the bijection to equip the set

R0(R
a
≥0×Rm−a) with this structure. The linear map ensures that this structure agrees with

T0(R
a
≥0 × Rm−a).

Next, we’ll show that Rp(M) is a subspace of Tp(M). Suppose Φ is a chart centered

at p. This gives us a linear isomorphism

Tp(M) −→ T0(R
a
≥0 × R

m−a) and a bijection Rp(M) −→ R0(R
a
≥0 × R

m−a).

We make Rp(M) a vector space by identifying it with R0(R
a
≥0 × Rm−a) and the linear

isomorphism ensures that this makes Rp(M) a subspace of Tp(M). For the dimension

result, we just note that we have isomorphisms

Rp(M) ∼= Rp(R
a
≥0 × R

m−a) ∼= Rp(R
m−a) = Tp(R

m−a).

The previous proposition tells us that we may associate a number to each point of

a manifold with corners in a chart-independent way. We’ll call a = m − dim(Rp(M)) the

index of p. We use this number to define the faces of a manifold.

Definition. Suppose M is a manifold with corners. A face of M of codimension a is a

connected component of the subspace

{p ∈ M : p has index a} ⊂ M.

We may decompose a manifold with corners into faces of various dimensions. The

faces of codimension at least 1 form the boundary and the faces of codimension at least 2

consist of the corner points. We may also refer to the connected components of the interior

as faces of codimension 0. We’ll show that each face is a manifold without boundary. In

fact, the closure of a face is very nearly a manifold with corners in its own right.

Example. Let’s understand the faces of Rm
≥0. Consider functions

ϕ : {1, 2, . . . ,m} −→ {{0}, (0,∞)}.
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We may decompose

R
m
≥0 =

∐

ϕ

∏

1≤i≤m

ϕ(i).

If we let |ϕ| denote the number of times ϕ chooses {0}, then for a fixed index k, we may

write

{p ∈ R
m
≥0 : p has index k} =

∐

|ϕ|=k

∏

1≤i≤m

ϕ(i).

So Rm
≥0 has

(

m
k

)

many faces of codimension k.

Example. Faces of Ra
≥0 × Rm−a are in bijection with the faces of Ra

≥0 in a codimension

preserving manner. In particular, each face of Ra
≥0 × Rm−a is of the form





∏

1≤i≤a

ϕ(i)



× R
m−a,

for some function

ϕ : {1, 2, . . . , a} −→ {{0}, (0,∞)}.

Thus there are
(

a
k

)

faces of Ra
≥0 × Rm−a of codimension k corresponding to the ways of

choosing {0} exactly k times out of the first a coordinates.

Lemma. Suppose V is an open subset of a manifold with corners M and F is a face of M .

Then V ∩ F decomposes as the disjoint union of the faces of V which intersect F .

Proof. The index of each point p ∈ M is determined locally and so the index for p in V

agrees with the index for p in M . Suppose p is a point of index a which is contained in a

face F of M and a face F ′ of V . The points of F ′ are all index a and so

F ′ ⊂ {q ∈ M : q has index a}.

Since F ′ is connected, it must sit in one connected component. We know F is the connected

component containing p and so F ′ ⊂ F . As F ′ ⊂ V , we have F ′ ⊂ V ∩ F .

Proposition. Suppose F is a face of a manifold with corners M and

(Φ, U ⊂ M, Φ(U) ⊂ R
a
≥0 × R

m−a)

is a chart centered at p ∈ F . Then there is a neighborhood V ⊂ U of p which satisfies:

• The face of V containing p is V ∩ F .

• Φ(V ∩ F ) = Φ(V ) ∩ {0}a × Rm−a.
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Proof. Note that {0}a ×Rm−a is the only face of Ra
≥0 ×Rm−a of codimension a. Since Φ is

a diffeomorphism, it preserves index and thus

Φ(U ∩ F ) ⊂ Φ(U) ∩ ({0}a × R
m−a).

Choose a smaller neighborhood V ⊂ U of p so that Φ(V )∩ {0}a ×Rm−a is connected. This

ensures that Φ(V ) ∩ {0}a × Rm−a is the only face of Φ(V ) of codimension a. Therefore V

also has only one face of codimension a. By our lemma, V ∩ F is the union of codimension

a faces for V . But as there is only one such, we conclude V ∩ F is it. So all index a points

of V are in V ∩ F , and hence,

Φ(V ∩ F ) = Φ(V ) ∩ {0}a × R
m−a.

Corollary. Each face F of a manifold with corners M is a manifold without boundary. If p

is a point in F , then the index of p is equal to codim(F ). Further, as subspaces of Tp(M),

Tp(F ) = Rp(M).

Proof. Recall that the standard inclusion Rm−a →֒ R≥0 × Rm−a induces an isomorphism

T0(R
m−a) = R0(R

m−a) ∼= R0(R
a
≥0 × R

m−a).

Since Φ: V → Φ(V ) locally identifies F ⊂ M with {0}a×Rm−a ⊂ Ra
≥0×Rm−a, we may use

naturality to conclude

Tp(F ) = Rp(F ) ∼= Rp(M).

Corollary. The interior of a manifold with corners M is a manifold without boundary.

In our standard models Ra
≥0×Rm−a the closure of a face is a manifold with corners.

The following example shows that this need not always be the case.

Example (Teardrop). Consider the 2-dimensional manifold with corners M made with one

0-face, one 1-face, and one 2-face. One may think of the 1-face as a curve whose ends meet at

a corner. The closure of the 1-face is not a 1-manifold with corners. That is, the boundary

of R2
≥0 cannot be locally modeled by R or R≥0 at the origin. We see this as a problem of

taking the closure in M : what should be two distinct points (the endpoints) of the 1-face

have been glued together in M .
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Proposition. Suppose F is a face of a manifold with corners M . Then there is a manifold

with corners G of the same dimension, an embedding F →֒ G, and a quotient map to the

closure of F ,

G ։ F ⊂ M.

Proof Sketch. This dissertation will not use this result, so we only provide a brief outline of

proof. Suppose p is a point in F and

(Φ, U ⊂ M, Φ(U) ⊂ R
a
≥0 × R

m−a)

is a chart centered at p. It is possible for F to approach p in multiple faces of Ra
≥0 ×Rm−a.

Roughly speaking, we’ll produce G by taking the closure locally in each of these faces

separately. Consider the following property (*) for a chart Φ:

Φ−1
(

{0}a × R
dim(F ) × {0}m−a−dim(F )

)

⊂ F.

We’ll say that two such charts Φ and Ψ centered at p agree if the transition function Ψ◦Φ−1

takes {0}a × Rdim(F ) × {0}m−a−dim(F ) to itself. Agreement is an equivalence relation. We

define

G = {(p, [Φ]) : p ∈ F and Φ satisfying (*)}.

We give G a topology and smooth structure using the charts satisfying (*). If p ∈ F , all

special charts agree and so F →֒ G.

Definition. Suppose M is an m-dimensional manifold with corners. We define a submani-

fold X ⊂ M of dimension m′ ≤ m as follows. For each point p in X, we ask that there be

a submanifold chart

(Φ, U ⊂ M, Φ(U) ⊂ R
a
≥0 × R

m−a)

centered at p which identifies U ∩X with

Φ(U) ∩
(

R
a′

≥0 × {0}a−a′
)

×
(

R
m′−a′ × {0}(m−a)−(m′−a′)

)

,

for some a′ ≤ a.

Example. Each face F of a manifold with corners M is a submanifold. We found a sub-

manifold chart for F with a′ = 0 and m′ = m− a:

{0}a × R
m−a ⊂ R

a
≥0 × R

m−a.
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Definition. Suppose X and Y are submanifolds of a manifold with corners M . We’ll say

that X and Y intersect transversely if at every point p ∈ X ∩ Y ,

Tp(M) = Tp(X) + Tp(Y ).

Proposition. The intersection of transverse submanifolds X,Y ⊂ M is a submanifold of

both X and Y whose dimension satisfies the following relation:

dim(X ∩ Y ) + dim(M) = dim(X) + dim(Y ).

Definition. A submanifold X is properly embedded in a manifold with corners M if X

intersects each face of M transversely.

Lemma. Suppose X is a properly embedded submanifold of a manifold with corners M .

The index of p ∈ X as a point in X agrees with the index of p as a point in M .

Proof. Suppose

Φ: U −→ Φ(U) ⊂ R
a
≥0 × R

m−a

is a submanifold chart for X centered at p:

Φ(U ∩X) = Φ(U) ∩
(

R
a′

≥0 × {0}a−a′
)

×
(

R
m′−a′ × {0}(m−a)−(m′−a′)

)

.

We wish to show a′ = a.

Suppose F is the face of M containing p. Let V ⊂ U be a neighborhood of p which

makes

Φ(V ∩ F ) = Φ(V ) ∩ {0}a × R
m−a

the face of Φ(V ) containing the origin. Since X is properly embedded, it is transverse to F

and hence Φ(V ∩X) is transverse to Φ(V ∩ F ). But this means in Ra
≥0 × Rm−a,

(

R
a′

≥0 × {0}a−a′
)

×
(

R
m′−a′ × {0}(m−a)−(m′−a′)

)

is transverse to {0}a × Rm−a, and hence a′ = a.

Proposition. Suppose X is a properly embedded submanifold of a manifold with corners

M and F is a face of M . Then X ∩ F decomposes as the disjoint union of the faces of X

which intersect F .

Proof. The proof of the special-case lemma, where X = V is an open subset, goes through

since index is preserved in X.
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5.2 Stratified Spaces

In this section, we’ll give a definition of stratified spaces that will be sufficient for

our theory of string and surface diagrams. A stratified space is a manifold equipped with

distinguished submanifolds, called strata, which fit together in nice ways. Our definition of

stratified spaces will be inductive to allow complex strata to be built out of less complex

ones. We will first, however, make a definition of a pre-stratified space. This definition may

be regarded as a lawless precursor to the correct definition. That is, a stratified space will

be defined as a pre-stratified space that satisfies extra rules.

Definition. Suppose M is a manifold with corners. A pre-stratification for M consists of a

set of properly embedded submanifolds SM called strata. We require the following.

• Each stratum S ∈ SM is connected, and in particular, is non-empty.

• Every point p of M is in some stratum: p ∈ S ∈ SM .

• The strata are disjoint: for S, T ∈ SM ,

S ∩ T 6= ∅ =⇒ S = T.

• The closure of a stratum may be decomposed into strata:

S ∩ T 6= ∅ =⇒ S ⊂ T .

The strata are given a pre-order as follows:

S ≺ T := S ⊂ T .

A pre-stratified space refers to a space equipped with a pre-stratification. We’ll sometimes

refer to M as the ambient manifold.

Definition. A map of pre-stratified spaces is a smooth map f : M → N and a map of

pre-orders ϕ : SM → SN which satisfy:

p ∈ S ∈ SM =⇒ f(p) ∈ ϕ(S).

An isomorphism of pre-stratified spaces is therefore a diffeomorphism M ∼= N which restricts

to diffeomorphisms of strata, S ∼= ϕ(S).

Example. We may equip any manifold with a pre-stratification by taking the strata to be

its connected components.
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Example. Any pre-stratified space M can be thickened with a line to a pre-stratified space

M × R. The strata of M × R are of the form

S × R

where S ∈ SM .

Example. Similarly, any pre-stratified space may be thickened with a half-line to a pre-

stratified space M × R≥0.

Example. Suppose SSn−1 is a pre-stratification for the (n − 1)-sphere. Then we may give

Rn a cone pre-stratification cone(Sn−1) as follows.

• The origin {0} ∈ SRn is the unique 0-stratum for Rn.

• Each stratum S ∈ SSn−1 contributes a stratum for Rn of 1 dimension greater:

{rx ∈ R
n : x ∈ S and r ∈ (0,∞)} ∈ SRn .

Example. Suppose U is an open subset of a pre-stratified space M . Then U inherits

a pre-stratification by intersecting each stratum S ∈ SM with U and taking connected

components.

Definition. We’ll define stratified space recursively by complexity.

• A stratified space M of complexity 0 is a pre-stratified space in which the strata are

the connected components of M .

• A stratified space M of complexity k > 0 is a pre-stratified space in which all strata

have codimension less than or equal to k. We require the following.

Suppose p is a point in M . We demand that there are:

– a triple of natural numbers (a, b, c) satisfying a+ b+ c = dim(M),
– a neighborhood U ⊂ M of p,
– a stratification of the (c− 1)-sphere Sc−1 of complexity k − 1,
– an open subset

Φ(U) ⊂ R
a
≥0 × R

b × (Rc, cone(Sc−1)),

– and an isomorphism of pre-stratified spaces,

Φ: U
∼

−−→ Φ(U),

taking p to 0.
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A few remarks about the definition are in order.

• In the case c = 0, we do not have a (c− 1)-sphere. Instead, we give Rc = pt its unique

stratification.

• A stratified space M (of arbitrary complexity) is one where the complexity equals

dim(M).

• A map of stratified spaces is just a map of the underlying pre-stratified spaces. Thus,

we have already required Φ to be an isomorphism of stratified spaces.

• We’ll call the Φ in the stratified spaces definition a stratification chart to distinguish

it from the charts of M which only preserve the manifold with corners structure.

• The isomorphism Φ preserves the codimension of strata and the codimension of faces.

Thus if p sits in a stratum S and in a face F , then a = codim(F ) and c = codim(S).

Each of our constructions for building new pre-stratified spaces out of old take strat-

ified spaces to stratified spaces.

Proposition. Suppose M is a stratified space. Then

• M × R is a stratified space.

• M × R≥0 is a stratified space.

• If U ⊂ M is an open subset, the pre-stratification that U inherits makes U a stratified

space.

Proposition. Suppose Sn−1 is equipped with a stratification. Then Rn equipped with

cone(Sn−1) is a stratified space.

Proof. Certainly, the origin in Rn looks locally like a cone. Let p be any other point in Rn

and S′ ∈ SRn be the stratum containing p. But S′ must be a radial thickening of a stratum

S ∈ SSn−1 . Therefore, near p, S′ ∼= R× S. We’re done since Sn−1 has lower complexity.

Proposition. Each face F of a stratified space M inherits a stratification so that the

inclusion F →֒ M is a map of stratified spaces.

Proof. Suppose p is a point in F and suppose we have a stratified chart for M

Φ: U −→ Φ(U) ⊂ R
a
≥0 × R

b × (Rc, cone(Sc−1,SSc−1))
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centered at p. Let V ⊂ U be a neighborhood of p for which V ∩ F the face of V containing

p and

Φ(V ∩ F ) = Φ(V ) ∩ {0}a × R
b × (Rc, cone).

Restricting Φ to V ∩ F and its image gives a stratification chart for F .

Proposition. The product of two stratified spaces is a stratified space.

Proof. Suppose (Rc, (cone(Sc−1))) and (Rc′ , (cone(Sc
′−1))) are two cone stratifications. Note

that Sc−1×Sc
′−1 is not a sphere nor is it even the correct dimension to help in showing that

Rc+c′ has a cone stratification. Instead, we take the strata for Rc+c′ to be of the form S×S′

where S ∈ SRc and S′ ∈ S
Rc′ . This is a cone stratification: {0} is the unique 0-stratum and

each of the other strata are radially consistent. So Sc+c′−1 is transverse to the stratification

for Rc+c′ and thereby inherits its stratification. Taking the cone recovers the stratification

for Rc+c′ .

Proposition. Suppose S and T are strata in a stratified space M .

• If S ⊂ T and T ⊂ S, then S = T .

• If S ⊂ T and S 6= T , then dim(S) < dim(T ).

Proof. These statements follow easily by induction on the complexity of stratified spaces.

Proposition. Suppose X is a properly embedded submanifold of a stratified space M which

intersects each of the strata S ∈ SM transversely. Then X inherits a stratification by taking

the connected components of the X ∩ S.

Proof. Suppose p ∈ X lies in a stratum S of M . Let

Φ: U −→ Φ(U) ⊂ R
a
≥0 × R

b × (Rc, cone(Sc−1))

be a stratification chart centered at p. Since X is transverse to S, we know that Φ(U ∩X)

is transverse to

Φ(U ∩ S) = Φ(U) ∩ R
a
≥0 × R

b × {0}c.

We’ll assume that U was chosen small enough so that U ∩ F is the face of U containing p.

Since X is properly embedded, we also know that Φ(U ∩X) is transverse to the face

Φ(U) ∩ {0}a × R
b × (Rc, cone).
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Let k = codim(X). Each map

ϕ : {1, . . . ,m− k − a− c} −→ {{0},R}

with |ϕ| = k determines a submanifold of codimension k as follows:

R
a
≥0 ×

(

∏

i

ϕ(i)

)

× (Rc, cone) ⊂ R
a
≥0 × R

b × (Rc, cone).

For at least one of the ϕ, taking a projection and section will set up an isomorphism near p:

X ∼= R
a
≥0 ×

(

∏

i

ϕ(i)

)

× (Rc, cone).



Chapter 6

Dot Diagrams

6.1 1-Computads

Definition. A 1-computad G consists of two sets, G0 and G1, along with a pair of maps

s, t : G1 −→ G0

called source and target. We will refer to the elements of Gi as degree i generators. A map

f : G −→ H of 1-computads consists of maps

f0 : G0 −→ H0

f1 : G1 −→ H1

which preserve the source and target maps: (g ∈ G1)

s(f1(g)) = f0(s(g)) t(f1(g)) = f0(t(g)).

We’ll use 1-Cmp to denote the category of 1-computads.

One might hope that there were a 2-category of 1-computads analogous to the 2-

category of small 1-categories. But since 1-computads lack composition, there is no good

way to define a “natural transformation of maps of computads.”

Example. Any directed graph may be thought of as a 1-computad in which the 0-generators

are the vertices and the 1-generators are the arrows.

Example. Any (small) category may be thought of as a 1-computad. We take the 0-

generators to be the objects and the 1-generators to be the morphisms. This amounts to

forgetting the category’s composition and units.

53
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Example. The terminal 1-computad T has a single 0-generator, ∗, and a single 1-generator,

⋆. We define s(⋆) = ∗ and t(⋆) = ∗. For any 1-computad G, there is a unique map of 1-

computads G → T .

6.2 Dot Diagrams

In order to define dot diagrams, we will first define dot pre-diagrams. A dot pre-

diagram is a stratified space which becomes a dot diagram when it is given labels. One

might be tempted to call such spaces “unlabeled dot diagrams.” However, we will reserve

this term for dot diagrams labeled by the terminal 1-computad.

Definition. A dot pre-diagram d consists of a closed interval [x0, x1], with x0 < x1, and

equipped with a stratification that has finitely many strata. In a dot pre-diagram, we will

call the codimension 0 strata regions and the codimension 1 strata dots.

Proposition. Each dot a in a dot pre-diagram d is locally modeled on

(R, {(−∞, 0), {0}, (0,∞)}).

We’ll use the ordering on [x0, x1] to call the regions incident to a “left” and “right.”

Proof. Consider ±∂/∂x|a ∈ Ta. Each tangent vector sits in some region of Ta, which may

be thought of as a region of d.

A dot pre-diagram is determined by the location of its dots. Our rules of stratified

spaces require the dots to appear in the interior of the diagram. Between any two consecutive

dots there is a region consisting of an open interval. There is also an region starting at, and

including, x0 and ending at the left-most dot. Similarly, there is a region from the right-most

dot to, and including, x1.

Definition. Any dot pre-diagram d has an underlying 1-computad comp(d) which takes the

regions as 0-generators and the dots as 1-generators. We declare the source of a dot to be

the region incident on the left and the target of a dot to be the region incident on the right.

Definition. A dot diagram consists of a dot pre-diagram d on an interval [x0, x1], a 1-

computad G of labels, and a map of 1-computads comp(d) −→ G. The source of d is the

0-generator sx(d) which labels the region containing x0. Similarly, the target of d is the 0-

generator tx(d) which labels the region containing x1. We may write d : X → Y to indicate

sx(d) = X and tx(d) = Y . Note, however, if we take X and Y as objects in a category C,

this notation is not meant to imply that d is a morphism in C.
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Example (cone). Suppose a is a 1-generator in a 1-computad G. We define the cone dot

diagram coneG(a) on [−1, 1] as follows. We give [−1, 1] three strata, [−1, 0) ∐ {0} ∐ (0, 1].

We label [−1, 0) with the source of a, (0, 1] with the target of a, and {0} with a, itself.

We may think about dot diagrams being built up by gluing together cone dot dia-

grams. This allows us to construct dot diagrams with any positive number of dots. However,

there is one other important kind of dot diagram.

Example (dot-less). Suppose X is a 0-generator in a 1-computad G. There is a dot-less

dot diagram 1X on [x0, x1]. The whole space is a single region, [x0, x1], and we label it with

X. We may also call 1X a degenerate dot diagram for its lack of dots.

6.3 Dot Evolutions

Dot evolutions are stratified spaces which will be playing the role of ambient isotopy

for dot diagrams. In fact, one can show that any ambient isotopy can be thought of as a dot

evolution. A dot evolution does not track where individual points of a region travel through

time, but just tracks the region as a whole. This difference makes gluing dot evolutions

considerably easier. We will see in the next chapter that dot evolutions are examples of

string diagrams.

Definition. A pre-evolution of dot diagrams, or dot pre-evolution, δ consists of a stratified

square [x0, x1]× [t0, t1] satisfying certain rules. We’ll still call the strata of codimensions 0

and 1, regions and dots, despite their being thickened in a time direction.

• There are no strata of codimension 2.

• The left and right faces, {x0} × [t0, t1] and {x1} × [t0, t1], only intersect regions.

• At any point p, the tangent vectors ±∂/∂x|p are not contained in any dot.

A few remarks are in order.

• In this and all future definitions of diagrams and evolutions we will assume that our

closed intervals have non-trivial length: x0 < x1 and t0 < t1.

• We will use the words “square” and “cube” to refer to products of closed intervals even

when those intervals have different lengths.
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• According to our work on manifolds with corners, {x0} × [t0, t1] is not a face of the

square, but rather it consists of three faces of the square: {x0} × {t0}, {x0} × (t0, t1),

and {x0} × {t1}. That said, we’ll allow ourself to use “face” informally to refer to the

closure of a face.

Proposition. Suppose δ is a dot pre-evolution on [x0, x1]× [t0, t2]. Each slice [x0, x1]×{t1}

for a fixed t1 ∈ [t0, t2] inherits a stratification making it a dot pre-diagram, δ|t=t1 .

Proof. We have defined dot pre-evolutions in such a way that each slice [x0, x1] × {t1} be

transverse to all strata in δ. So the slice inherits a stratification. By progressivity, the slice

may only intersect each dot once. So the slice has finitely many dots, hence finitely many

regions as well.

Proposition. The computadic structure of a slice dot pre-diagram is preserved across time

in a pre-evolution.

Proof. Suppose δ is a dot pre-evolution on [x0, x1]× [t0, t1] and suppose S is a dot. We may

choose ε > 0 small enough so that

A = {(x, t) : p < x < p+ ε with (p, t) ∈ S} ⊂ [x0, x1]× [t0, t1]

does not intersect any dots. Since A is connected, it must sit in a single region to the right

of S. We may similarly choose a small ε′ > 0 so that

{(x, t) : p− ε′ < x < p with (p, t) ∈ S} ⊂ [x0, x1]× [t0, t1]

picks out the region to the left of S.

Definition. A dot pre-evolution δ has an underlying 1-computad comp(δ) in which the

0-generators are the regions of δ and the 1-generators are the dots. We may take the source

and target of a dot in any of the slice dot pre-diagrams.

Definition. A dot evolution consists of a dot pre-evolution δ, a 1-computad G, and a map

of 1-computads, comp(δ) −→ G. We define:

• sx(δ) = δ|x=x0 is the dot-less dot diagram on the left face.

• tx(δ) = δ|x=x1 is the dot-less dot diagram on the right face.

• st(δ) = δ|t=t0 is the dot diagram on the initial face.
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• tt(δ) = δ|t=t1 is the dot diagram on the final face.

We’ll write δ : d → e to mean that st(δ) = d and tt(δ) = e. In this case, we may also say

that d is evolution-related to e by δ.

Example. Each dot diagram d on [x0, x1] has a constant dot evolution 1d on [x0, x1]×[t0, t1].

Example. Any dot evolution δ : d → e has a reverse evolution δrev : e → d.

We’re interested in dot evolutions to give us an equivalence relation on dot diagrams.

We may regard the previous examples of evolutions as demonstrations of reflexivity and

symmetry for our relation. We’ll also get a transitivity statement for evolutions by gluing

in the time direction. This is a bit trickier to define, so it will wait until the next section.

Proposition. Suppose δ is a dot evolution on [x0, x1] × [t0, t2]. Each slice δ|t=t1 inherits

labels making it a dot diagram.

Proof. Slicing preserves the codimension of strata and it preserves the x-ordering. So the

inclusion [x0, x1]× {t1} induces a map of underlying 1-computads,

comp(δ|t=t1) −→ comp(δ),

which allows us to pull back the labeling from δ.

Proposition. Suppose d and e are dot diagrams on [x0, x1]. If d and e have the same labels

in the same order, then d and e are related by a dot evolution.

Proof. Locate d at [x0, x1]× {−1} and locate e at [x0, x1] × {1}. We give [x0, x1] × [−1, 1]

a stratification by taking the strata of codimension 1 as lines from the kth dot of d to the

kth dot of e. The regions are determined as the connected components of the complement

of the union of the lines.

6.4 Gluing and Normalization

Suppose d is a dot diagram on [x0, x2] and x1 ∈ [x0, x2] is a point in a region of

d. Then we may split d into two dot diagrams, d|[x0,x1] and d|[x1,x2]. These dot diagrams

inherit their stratifications and labelings from d. Going the other direction, we’ll say that d

can be made by gluing d|[x0,x1] and d|[x1,x2]. To emphasize this perspective, we’ll write

d = d|[x0,x1] ∪x d|[x1,x2].
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Proposition. Suppose d on [x0, x1] and e on [x1, x2] are dot diagrams, and suppose

tx(d) = sx(e).

Then we may glue d and e. That is, we may form d ∪x e.

Proof. Suppose T is the region in d containing x1 and S is the region in e containing x1.

We take T ∪S as a stratum in d∪x e. Near x1, T ∪S looks like the stratified space (R, {R}).

We take all other strata from d and e as strata for d ∪x e. We label the strata for d ∪x e

according to their labels in d and e. There is no ambiguity for the label on T ∪ S because

the label on T is tx(d) and the label on S is sx(e).

Definition. Suppose δ is a dot evolution on [x0, x2]× [t0, t2].

• Suppose x1 ∈ (x0, x2) is a point for which [x0, x1] × [t0, t2] and [x1, x2] × [t0, t2] in-

herit the structure of a dot evolution from δ. Then we’ll say that δ can be made by

horizontally gluing :

δ = δ|[x0,x1]×[t0,t2] ∪x δ|[x1,x2]×[t0,t2].

• Suppose t1 ∈ (t0, t2) is any point. Then [x0, x2] × [t0, t1] and [x0, x2] × [t1, t2] inherit

the structure of a dot evolution from δ. We’ll say that δ can be made by gluing in

time:

δ = δ|[x0,x2]×[t0,t1] ∪t δ|[x0,x2]×[t1,t2].

Proposition. Suppose δ and ǫ are dot evolutions and tx(δ) = sx(ǫ). Then we may horizon-

tally glue δ and ǫ.

Proof. Suppose δ is located on [x0, x1]× [t0, t1] and ǫ is located on [x1, x2]× [t0, t1]. The face

{x1} × [t0, t1] intersects a single region T of δ and a single region S of ǫ. Gluing these, we

get a stratum S ∪T for δ ∪x ǫ. Indeed, near points (x1, t), S ∪T looks like R2 for t ∈ (t0, t1)

and S ∪ T looks like R × R≥0 for t ∈ {t0, t1}. All other strata of δ and ǫ become distinct

strata for δ ∪x ǫ. We label according to the labels from δ and ǫ.

It is harder to glue dot evolutions in time. Indeed, suppose δ and ǫ are dot evolutions

which satisfy tt(δ) = st(ǫ). We may not be able to glue δ and ǫ because their dots do not

line up in a smooth manner. By working with dot evolutions that have their dots approach

the boundary in a perpendicular manner, we may work around this issue.

Definition. Suppose δ is a dot evolution defined on [x0, x1]× [t0, t1]. We will say
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• δ is normal near st if δ agrees with the constant evolution 1st(δ) on some neighborhood

of the initial face [x0, x1]× {t0}.

• δ is normal near tt if δ agrees with the constant evolution 1tt(δ) on some neighborhood

of the final face [x0, x1]× {t1}.

Proposition (normal replacement). Suppose d and e are dot diagrams that are related by

a dot evolution. Then there is a dot evolution δ : d → e which is normal near st, or near tt,

or both.

Proof. Suppose ǫ : d → e is a dot evolution on [x0, x1]× [t0, t1]. For ease of argument, we’ll

assume that t0 = 0 and t1 = 5. We define a normal dot evolution δ : d → e on [x0, x1]× [0, 5]

as follows. Let f : [0, 5] → [0, 5] be an increasing smooth function that is constantly 0 on

[0, 1], the identity on [2, 3], and constantly 5 on [4, 5]. Each stratum S of ǫ contributes a

stratum

S′ = {(x, t) : (x, f(t)) ∈ S}.

to δ. In other words, each slice δt=k of δ agrees with each slice ǫt=f(k) of ǫ. For t ∈ [0, 1],

each slice of δ is ǫt=0, and for t ∈ [4, 5], each slice of δ is ǫt=5.

Definition. Suppose δ : d → e and ǫ : e → f are dot evolutions. Then we may compose δ

and ǫ in time by taking normal replacements and then gluing. That is, take δ′ normal near

tt and take ǫ′ normal near st. We define

δ ◦t ǫ = δ′ ∪t ǫ
′

as a dot evolution d → f .

6.5 The Category dd(G)

Given any dot diagram d on [x0, x1], we may produce many other geometrically

similar dot diagrams:

• For any k ∈ R, we get a dot diagram on [x0 + k, x1 + k] by translating each of the

strata in d by k to the right.

• For any positive number c, we get a dot diagram on [cx0, cx1] by dilating each of the

strata in d by a factor of c.
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Both of these geometric operations induce isomorphisms on the underlying 1-computads.

They also preserve the source and target of a dot diagram. We may also think of horizontal

translation and dilation acting on dot evolutions. So we may check whether two dot diagrams

are related by an evolution before or after translating or dilating the diagrams. We will

quotient the collection of dot diagrams by translation, dilation, and dot evolution to get our

category of dot diagrams.

Definition. For any 1-computad G there is a category dd(G) of dot diagrams labeled by G.

Objdd(G) = G0.

Homdd(G)(X,Y ) =
{dot diagrams d : X → Y labeled by G}

translation, dilation, dot evolution
.

We compose dot diagrams by gluing. We have also seen that dot evolutions may also be

horizontally glued, which ensures that gluing descends to the evolution-related equivalence

classes of dot diagrams. Also, dot evolution preserves the source sx and target tx of a dot

diagram, and so these make sense on equivalence classes. We get units for objects by taking

dot-less dot diagrams.

Proposition. Suppose Y is a 0-generator. Recall that 1Y denotes the dot-less dot diagram

labeled by Y . In dd(G), 1Y is the identity on Y .

Proof. Suppose d : X → Y is a dot diagram on [0, 1]. Let’s view 1Y on [1, 2] so that the

gluing d ∪x 1Y is on [0, 2]. There is a dot evolution linearly interpolating 1Y ∪x d to the ·2

dilation of d. This shows that 1Y cancels on the right. Similarly, if we take 1Y on [−2,−1]

and any e : Y → Z on [−1, 0], we see that 1Y also cancels on the left.

6.6 Evaluation

In this section, we’re interested in evaluating dot diagrams that are labeled in a fixed

category C. Our procedure will be to break a dot diagram d into bite-sized pieces, convert

each of these into morphisms in C, and then compose them up. There is some ambiguity

in exactly what manner we choose our pieces. We’ll record this as extra structure for a dot

diagram, use it to define evaluation, and then show that evaluation doesn’t actually depend

on the structure.

Definition. A dot diagram is a brick if it has 0 or 1 dots.
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Definition. Suppose d is a dot diagram on [x0, x1]. A set M of mortar points for d is a

finite subset of [x0, x1]. Each point of M is located in a region of d. We require that M

include both {x0} and {x1}. Between any two successive points p < q ∈ M we require the

dot diagram d|[p,q] to be a brick.

Definition. Suppose d is a dot diagram labeled in a category C and M is a mortar set for

d. We’ll define the morphism

s(d)
evalMC (d)
−−−−−−→ t(d)

in C as follows.

• Suppose M is empty and d is dot-less. Let X be the object labeling the unique region

of d. We define,

evalMC (d) = 1X .

• Suppose M is empty and d is a cone. Let a be the label on the single dot of d. We

define,

evalMC (d) = a.

• Suppose p ∈ M is a splitting point for d. We define,

evalMC (d) = eval
M∩[x0,p]
C (d|[x0,p]) ◦ eval

M∩[p,x1]
C (d|[p,x1]).

To be very precise, we should decide on a convention for which splitting point p ∈ M

we use to evaluate. We could, for example, always take the splitting point with smallest

x-coordinate. The associativity for composition in C ensures that a different choice of

convention will not change our definition in any way.

Lemma. Suppose M ⊂ M ′ are mortar sets for M . Then, evalMC (d) = evalM
′

C (d).

Proof. We’ll consider the case M ′ = M ∪ {p}. Let B be the brick of M containing p.

• Suppose B is a dot-less brick labeled by X. Then for M , we evaluate B as 1X . For

M ′, we evaluate B as 1X ◦ 1X .

• Suppose B is a cone bricked labeled by a. For M , we evaluate B as a. For M ′, we

evaluate B as either 1 ◦ a or a ◦ 1 depending on which region p is located in.

We get the result for arbitrary M ′ ⊃ M by repeatedly adjoining points.

Proposition. Evaluation is independent of a dot diagram’s mortar set.
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Proof. Suppose M and M ′ are mortar sets for a dot diagram d. By the previous lemma,

evalMC (d) = evalM∪M ′

C (d) = evalM
′

C (d).

Last, we wish to show that evaluation is independent of evolution of dot diagrams.

That is, any two dot diagrams related by a dot evolution should evaluate to the same

morphism. Notice that given enough time in a dot evolution, a dot may intersect a mortar

point for the initial dot diagram. However, at least for a short period of time, the mortar

point will remain valid. This will be enough for us.

Definition. A dot evolution is a brick if it contains 0 or 1 dots.

Lemma. Suppose δ is a dot evolution on [x0, x1] × [t0, t4]. For any t2 ∈ (t0, t4), there are

t1, t3 satisfying:

• t0 ≤ t1 < t2 < t3 ≤ t4,

• δ|[x0,x1]×[t1,t3] may be written as a layer of bricks :

δ|[x0,x1]×[t1,t3] = B1 ∪x · · · ∪x Bk.

Proof. We choose a mortar set for the slice dot diagram δ|[x0,x1]×{t}. We note that |∂x/∂t| is

bounded for each of the dots in a dot evolution and so there is some amount of time before

a dot intersects a mortar point.

We may also find a layer of bricks near t = t0 and near t = t4. A t-mortar set for

a dot evolution δ is a finite set of points Mt ⊂ [t0, t4], including both t0 and t4. Between

successive points, we require δ to decompose as a layer of bricks. Each layer of bricks gets

its own x-mortar set describing the placement of the bricks.

Proposition. Suppose d and e are dot diagrams that are related by a dot evolution. Then,

evalC(d) = evalC(e).

Proof. Let δ : d → e be a dot evolution on [x0, x1] × [t0, t1]. We use compactness of [t0, t1]

and the previous lemma to produce a t-mortar set for δ. It suffices to show that for each

layer of bricks, the evaluation of the source agrees with the evaluation of the target. But

this is clear since for any brick B, we have evalC(s(B)) = evalC(t(B)).
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6.7 Characterizing dd(G) as the Free Category

We now have the tools that we need to characterize dd(G) as the free category on

the 1-computad G. Recall that we defined 1-Cmp to be the category of 1-computads. We’ll

let Cat denote the category of (small) categories. Notice that by viewing each category as

a 1-computad, we get a functor

forget : Cat −→ 1-Cmp .

Our construction of a category of dot diagrams gives us a functor going in the other direction,

dd: 1-Cmp −→ Cat .

Indeed, any map of 1-computads f : G → H induces a functor dd(G) −→ dd(H) by relabel-

ing,

comp(d) −→ G
f

−−→ H.

Definition. For any 1-computad G, there is a natural map of 1-computads,

coneG : G −→ forget(dd(G)),

called conical inclusion. Degree 0 generators may be thought of as objects in dd(G). Each

1-generator is sent to its cone dot diagram.

Definition. For any category C, we may view evaluation as a functor

evalC : dd(forget(C)) −→ C.

This functor takes objects of C to themselves and evaluates dot diagrams as described in

the previous section. We note that this functor is natural in C.

Lemma (Zig-Zag). The composite of the conical inclusion and the evaluation maps

forget(C)
coneforget(C)
−−−−−−−−→ forget(dd(forget(C)))

forget(evalC)
−−−−−−−−→ forget(C)

equals the identity on forget(C).

Proof. Let’s analyze the composite. The first half asks us to view any morphism a : X → Y

as a dot diagram by conical inclusion. That is, we label the center of a cone on S0 with

a. The second half asks us to evaluate this dot diagram. According to our definition of

evaluation, we get a back.
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Lemma (Zig-Zag). The composite of the conical inclusion and the evaluation maps

dd(G)
dd(coneG)
−−−−−−→ dd(forget(dd(G)))

evaldd(G)
−−−−−→ dd(G)

equals the identity on dd(G).

Proof. The above composition takes a dot diagram d to the following dot diagram e, built

as follows:

• At each dot of d, replace the 1-generator a of G labeling the dot with the conical dot

diagram, cone(a).

• Create a dot diagram e by gluing together the various cone(a) according to d.

Since e has the same dots in the same order as d, these dot diagrams are related by a dot

evolution and hence equal in dd(G).

Theorem. The category dd(G) is the free category on G. More precisely, there is a bijection

Hom1-Cmp(G, forget(C)) ∼= HomCat(dd(G), C),

which is natural in 1-computads G and categories C.

Proof. This is a straightforward formal consequence of our two Zig-Zag lemmas. See Ap-

pendix B for details. We’ll sketch the proof in any case.

It’s easy to see that a functor f : dd(G) −→ C determines a map of 1-computads

G −→ forget(C). Consider f as a map of 1-computads forget(dd(G)) −→ forget(C). We

get the desired map by pre-composing with conical inclusion, G −→ forget(dd(G)).

If, on the other hand, we are given an interpretation f : G −→ forget(C) of a 1-

computad G, we should be able to extend this to a functor sd(G) −→ C used to evaluate

dot diagrams. We regard f on dot diagrams, dd(G) −→ dd(forget(C)), and then post

compose with evaluation dd(forget(C)) −→ C. So, given a dot diagram d and a labeling

comp(d) −→ G, we use our interpretation G −→ forget(C) to label d in C. We may

therefore think of d in dd(forget(C)), and hence we may evaluate to get a morphism in

C.
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String Diagrams

7.1 2-Computads

Definition. A 2-computad G consists of three sets of generators G0, G1, and G2. We equip

G with source and target maps

s, t : G1 −→ G0

which allow us to generate the free category, dd(G). Note that the set dd(G)1 of dot diagrams

taken up to dot evolution comes with source and target maps dd(G)1 −→ G0 extending the

above maps G1 −→ G0. We also equip G with source and target maps

s, t : G2 −→ dd(G)1.

We require all 2-generators α ∈ G2 be globular:

s(s(α)) = s(t(α)) and t(s(α)) = t(t(α)).

So not only does a 2-generator α have source and target 1-generators, globularity allows us

to talk about α having source and target 0-generators.

A morphism of 2-computads f : G −→ H is a triple of maps fi : Gi −→ Hi for

i = 0, 1, 2. We require these maps to commute with the source and target maps.

s(f1(a)) = f0(s(a)) ∈ H0 t(f1(a)) = f0(t(a)) ∈ H0,

s(f2(α)) = f1(s(α)) ∈ dd(H)1 t(f2(α)) = f1(t(α)) ∈ dd(H)1.

Note that relation s(f2(α)) = f1(s(α)) is only enforced “up to evolution” in dd(H)1.

Example. Any 1-computad may be thought of as a 2-computad with no 2-generators.
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Example. There is a 2-computad T with a single 0-generator, ∗, a single 1-generator ⋆, and

a single 2-generator for every pair of dot diagrams. This is the terminal 2-computad. For

any 2-computad G, there is a unique map G → T .

Example. Any 2-category C may be thought of a 2-computad forget(C) in which every

morphism is a generator. More precisely, we take

forget(C)0 = ObjC ,

forget(C)1 =
∐

X,Y ∈ObjC

HomC(X,Y ),

forget(C)2 =
∐

a,b∈dd(forget(C))1

{(a, b, α) : α ∈ 2-HomC(eval(a), eval(b))}.

Notice that each 2-morphism α contributes many 2-generators to forget(C): one for each

pair of dot diagrams that evaluate to the domain and codomain. This evaluation happens

in the 1-category made by truncating C.

7.2 String Diagrams

Definition. A string pre-diagram δ is a stratified square [x0, x1]× [y0, y1] with finitely many

strata. We call the codimension 0 strata regions, the codimension 1 strata strings, and the

codimension 2 strata nodes. We require the following boundary and progressivity rules.

• The left and right faces, {x0} × [y0, y1] and {x1} × [y0, y1], only intersect regions.

• At any point p, the tangent vectors ±∂/∂x|p are not contained in any string.

We only need to enforce the progressivity rule at points p located in strings or nodes since

it holds automatically in regions for dimension reasons. We define

• sx(δ) = δ|x=x0 and tx(δ) = δ|x=x1 are the dot pre-diagrams on the left and right faces.

• sy(δ) = δ|y=y0 and ty(δ) = δ|y=y1 are the dot pre-diagrams on the bottom and top

faces.

Definition. We’ll say that a string pre-diagram ǫ is focused on a stratum S if all other strata

in ǫ are incident to S. In particular, S is the stratum of ǫ with the highest codimension.

Lemma. Suppose S is a stratum in a string pre-diagram δ and suppose p is a point in S.

Then there is a string pre-diagram ǫ which contains p and is focused on S. We’ll say ǫ is

made by cropping δ about p. If p is in the interior of δ, we may take ǫ so that p is also in

the interior of ǫ.
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Proof. Suppose δ is located on [x0, x4] × [y0, y4] and p has coordinates (x2, y2). We claim

that there are x1, x3, y1, and y3 making ǫ = δ|[x1,x3]×[y1,y3] a string diagram focused on S

about p. We must be careful to satisfy the boundary rule for a string pre-diagram: the left

and right faces may only intersect regions. We choose [x1, x3] ∋ x2 so that δ|[x1,x3]×{y2} is a

dot pre-diagram focused on S. We note that since strings may not travel horizontally, there

is some small interval [y1, y3] ∋ y2 for which {x1, x3} × [y1, y3] only intersects regions. Thus

δ|[x1,x3]×[y1,y3] is a string pre-diagram focused on S.

Definition. Suppose δ is a string pre-diagram and d is a slice dot pre-diagram focused on

a string S of δ. We’ll define the source of S to be sd(S) = sx(d) and the target of S to be

td(S) = tx(d), both thought of as regions of δ.

Lemma. Suppose d and e are slice dot pre-diagrams focused on a string S of a string

pre-diagram δ. Suppose further that d and e both intersect δ at a point p. Then

sd(S) = se(S) and td(S) = te(S).

Proof. The intersection d ∩ e is a string pre-diagram focused on S. Certainly,

sd(S) = sd∩e(S) = se(S) and td(S) = td∩e(S) = te(S).

Proposition. Suppose S is a string in a string pre-diagram δ and suppose that d and e are

any slice dot pre-diagrams focused on S. Then

sd(S) = se(S) and td(S) = te(S).

Proof. Our cropping lemma allows us to cover S with string pre-diagrams focused on S.

For any two points p and q in S, we may choose a path from p to q in S. We cover the

image of the path with a finite sequence ǫ1, . . . , ǫn of string pre-diagrams focused on S. The

source and target of S are preserved when taken as slices for any single ǫi. We’ll index the

ǫi so that each pair (ǫi, ǫi+1) has non-trivial overlap. Notice that ǫi ∩ ǫi+1 is also a string

pre-diagram focused on S. Let d be a slice dot pre-diagram focused on S in ǫi ∩ ǫi+1. We

may see d as part of a slice of ǫi and also part of a slice of ǫi+1. By the previous lemma, we

may calculate the source and target of S for both ǫi and ǫi+1 as sd(S) and td(S).

Definition. Suppose δ is a string pre-diagram. There is a 1-computad comp1(δ) underlying

δ as follows. We take the regions of δ to be 0-generators and the strings of δ to be 1-

generators. The source and target of a string are given by sd(S) and td(S) for any slice dot

pre-diagram d focused on S.
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Definition. Suppose N is a node in a string pre-diagram δ. For any string pre-diagram ǫ

focused on N , we’ll define the following.

• The source of N is a dot diagram sǫ(N) = sy(ǫ) of strata approaching N from below.

• The target of N is a dot diagram tǫ(N) = ty(ǫ) of strata approaching N from above.

We view sǫ(N) and tǫ(N) as being labeled in comp1(δ). We label each stratum in the slice

with itself, but thought of in δ.

Proposition. The dot diagrams sǫ(N) and tǫ(N) are independent of the choice of string

pre-diagram ǫ focused on N .

Proof. Suppose N is located at (x2, y2) and suppose

ǫ = δ|[x1,x3]×[y1,y3] and ǫ′ = δ|[x′

1,x
′

3]×[y′1,y
′

3]

are string diagrams focused on N . Then the intersection

ǫ ∩ ǫ′ = δ|[max(x1,x′

1),min(x3,x′

3)]×[max(y1,y′1),min(y3,y′3)]

is also a string diagram focused on N . We claim that in dd(comp1(δ)),

sǫ(N) = sǫ∩ǫ
′

(N) = sǫ
′

(N),

and similarly for targets. This follows from,

sǫ(N) = δ|[x1,x3]×{y1}

= δ|[x1,x3]×{max(y1,y′1)}

= δ|[max(x1,x′

1),min(x3,x′

3)]×{max(y1,y′1)}

= sǫ∩ǫ
′

(N),

where we use a dot evolution δ|[x1,x3]×[y1,max(y1,y′1)]}
and we horizontally glue dot-less dot

diagrams δ|[x1,max(x1,x′

1)]×{max(y1,y′1)}
and δ|[min(x3,x′

3),x3]×{max(y1,y′1)}
.

Definition. Any string pre-diagram δ has an underlying 2-computad comp2(δ). This ex-

tends the 1-computad comp1(δ) of region 0-generators and string 1-generators by including

the nodes of δ as 2-generators.
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Definition. A string diagram consists of a string pre-diagram δ on a square [x0, x1]×[y0, y1],

a 2-computad G of labels, and a map of 2-computads comp2(δ) −→ G. The faces sx(δ),

tx(δ) sy(δ), and ty(δ) each inherit labels making them dot diagrams. Note that sx(δ) and

tx(δ) are dot-less and so each only intersect a single region. We’ll write δ : d → e to mean

sy(δ) = d and ty(δ) = e.

Example. Every dot evolution δ on [x0, x1]× [t0, t1] is a node-less string diagram when we

regard time, t, as height, y.

7.3 String Evolutions

Definition. A string pre-evolution is a finite stratification of a cube [x0, x1]×[y0, y1]×[t0, t1]

satisfying certain rules. Despite being thickened in time, we will still refer to the codimension

0 strata as regions, the codimension 1 strata as strings, and the codimension 2 strata as nodes.

• There are no strata of codimension 3.

• The left and right faces, {x0} × [y0, y1] × [t0, t1] and {x1} × [y0, y1] × [t0, t1], only

intersect regions.

• The bottom and top faces, [x0, x1] × {y0} × [t0, t1] and [x0, x1] × {y1} × [t0, t1], only

intersect regions and strings.

• At any point p, the tangent vectors ±∂/∂x|p are not contained in any string.

• At any point p, the only tangent vector in 〈∂/∂x|p, ∂/∂y|p〉 allowed to be in a node is

the trivial vector, 0.

We define

• sx(∆) = ∆|x=x0 and tx(∆) = ∆|x=x1 are the string pre-diagrams on the left and right

faces.

• sy(∆) = ∆|y=y0 and ty(∆) = ∆|y=y1 are the string pre-diagrams on the bottom and

top faces.

• st(∆) = ∆|t=t0 and tt(∆) = ∆|t=t1 are the string pre-diagrams on the initial and final

faces.

Proposition. Suppose ∆ is a string pre-evolution. For a fixed time t1 ∈ [t0, t2], the slice

∆|t=t1 is a string pre-diagram.
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Proof. We’ve chosen our definition of string pre-evolution so that the strata of ∆ are trans-

verse to any t = t1 slice. Further, the boundary and progressivity rules of ∆ give the

appropriate boundary and progressivity rules for the slice.

Suppose ∆ is a string pre-evolution. Just as with string pre-diagrams, for any stra-

tum S we may crop ∆ to produce a string pre-evolution Λ focused on S. That is, Λ only

intersects strata incident to S. And we may choose Λ to be about any point p of S. The

definitions of source and target of strata in a string pre-evolution are are almost identical to

those for a string pre-diagram.

Definition. Suppose ∆ is a string pre-evolution and S is a string in ∆. Suppose d is a dot

pre-diagram focused on S. We define the source of S to be sd(S) = sx(S) and the target of

S to be td(S) = tx(S), both thought of as regions in ∆.

Proposition. Suppose d and e are dot pre-diagrams focused on a string S in a string

pre-evolution ∆. Then

sd(S) = se(S) and td(S) = te(S).

Proof. The proof for string pre-diagrams also holds for string pre-evolutions after minor

adjustments.

Definition. Any string pre-evolution ∆ has an underlying 1-computad comp1(∆). We take

the regions as 0-generators and strings as 1-generators.

Definition. Suppose N is a node in a string pre-evolution ∆. Suppose δ is a slice string

pre-diagram focused on N . We define the source of N to be sδ(N) = sy(δ) and the target

of N to be tδ(N) = ty(δ), both thought of as dot diagrams labeled by comp1(∆).

Proposition. Suppose ∆ is a string pre-evolution and N is a node in ∆. Suppose δ and ǫ

are string pre-diagrams focused on N . Then

sδ(N) = sǫ(N) and tδ(N) = tǫ(N).

Proof. If δ and ǫ happen to both intersect N at a point p, then δ ∩ ǫ is a string pre-diagram

focused on N and we see

sy(δ) = sy(δ ∩ ǫ) = sy(ǫ) and ty(δ) = ty(δ ∩ ǫ) = ty(ǫ).

For arbitrary δ and ǫ, we take a path in N from δ ∩ N to ǫ ∩ N and cover it with string

pre-evolutions focused on N . The source and target of N are preserved in each pre-evolution
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focused on N . If two pre-evolutions focused on N overlap, then we see that source and target

is preserved by considering a slice in the overlap.

Definition. Any string pre-evolution ∆ has an underlying 2-computad comp2(∆) extending

comp1(∆). We take the regions as 0-generators, the strings as 1-generators, and the nodes

as 2-generators.

Definition. A string evolution, or an evolution of string diagrams, consists of a string pre-

evolution ∆ on a cube [x0, x1]× [y0, y1]× [t0, t1], a 2-computad G, and a map of 2-computads

comp2(∆) −→ G. We note that sx(∆) and tx(∆) only intersect regions. Also, sy(∆) may

be viewed as a dot evolution sy(δ) → sy(ǫ) and ty(∆) may be viewed a dot evolution

ty(δ) → ty(ǫ). We will write ∆: δ → ǫ to mean st(∆) = δ and tt(∆) = ǫ.

Example. Any string diagram δ may be thickened to give a constant string evolution 1δ.

Example. Any string evolution ∆: δ → ǫ may be reversed to give a string evolution

∆rev : ǫ → δ.

Proposition. Suppose ∆ is a string evolution. Then for each fixed t1 ∈ [t0, t2], the slice

∆|t=t1 inherits labels making it a string diagram.

7.4 Gluing and Normalization

In this section, we’ll discuss gluing both for string diagrams and for string evolutions.

In fact, it’s a bit easier to split a diagram than it is to glue.

Definition. Suppose δ is a string diagram on [x0, x2]× [y0, y2].

• Suppose {x1} × [y0, y2] only intersects regions for some point x1 ∈ (x0, x2). Then

we may horizontally split δ at x = x1. That is, δ restricts to string diagrams ǫ =

δ|[x0,x1]×[y0,y2] and ζ = δ|[x1,x2]×[y0,y2]. We may also say that δ is made by horizontally

gluing :

δ = ǫ ∪x ζ.

• Suppose [x0, x1]×{y1} only intersects regions and strings for some point y1 ∈ (y0, y2).

Then we may vertically split δ at y = y1 by restricting to string diagrams: ǫ =

δ|[x0,x2]×[y0,y1] and ζ = δ|[x0,x2]×[y1,y2]. We may also say that δ is made by vertically

gluing :

δ = ǫ ∪y ζ.
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Proposition. Suppose δ and ǫ are string diagrams satisfying tx(δ) = sx(ǫ). Then we may

glue δ and ǫ horizontally. That is, we may form δ ∪x ǫ.

Proof. Suppose δ is located on [x0, x1]× [y0, y1] and ǫ is located on [x1, x2]× [y0, y1]. Since

tx(δ) is dot-less, δ must agree with [x0, x1]× tx(δ) on some neighborhood of {x1} × [y0, y1].

Similarly, ǫ must agree with [x1, x2]× sx(ǫ) on some neighborhood of {x1} × [y0, y1]. These

glue together in [x0, x2]× [y0, y1] to locally look like R× [y0, y1].

Definition. Suppose δ is a string diagram defined on [x0, x1]× [y0, y1].

• We will say δ is normal near sy if on some neighborhood of [x0, x1] × {y0}, δ agrees

with the constant evolution 1sy(δ) = sy(δ)× [y0, y1].

• We will say δ is normal near ty if on some neighborhood of [x0, x1] × {y1}, δ agrees

with the constant evolution 1ty(δ) = ty(δ)× [y0, y1].

Proposition. Suppose δ and ǫ are string diagrams satisfying ty(δ) = sx(ǫ). If δ is normal

near ty and ǫ is normal near sy, then we may vertically glue δ and ǫ.

Proof. Suppose δ and ǫ are located on [x0, x1] × [y0, y1] and [x0, x1] × [y1, y2], respectively.

We give [x0, x1] × [y0, y2] a stratification by taking all of the strata in δ and ǫ and gluing

strata that intersect [x0, x1]×{y1}. The result of gluing two strata along y = y1 is a stratum

because near the gluing, the strata agree with a thickened s(δ).

Proposition (string diagram normalization). Suppose δ : d → e is a string diagram. Then

there is a string evolution ∆ from δ to a normal string diagram δ′ : d → e. Further, we may

take ∆ so that sy(∆) is the constant evolution 1d and ty(∆) is the constant evolution 1e.

Proof. This proposition should be regarded as a strengthening of a similar result for dot

evolutions. We build a normal replacement in the same manner, being careful to leave

any nodes the range that stays stationary. We may also build a family of string diagrams

that interpolate from the δ to the normal replacement by smoothly interpolating from the

identity [0, 5] → [0, 5] to the normalization map [0, 5] → [0, 5].

There are three directions, x, y, and t, in which we may glue string evolutions. We

define gluing in much the same way that we did for string diagrams. That is, two evolutions

glue together if they are made by splitting a larger string evolution.

Definition. Suppose ∆ is a string evolution on [x0, x2]× [y0, y2]× [t0, t2].
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• Suppose {x1} × [y0, y2] × [t0, t2] only intersects regions for some point x1 ∈ (x0, x2).

Then we may horizontally split ∆ at x = x1 to produce string evolutions Λ =

∆|[x0,x1]×[y0,y2]×[t0,t2] and Ω = ∆|[x1,x2]×[y0,y2]×[t0,t2]. We may also say that ∆ is made

by horizontally gluing :

∆ = Λ ∪x Ω.

• Suppose [x0, x2] × {y1} × [t0, t2] only intersects regions and strings for some point

y1 ∈ (y0, y2). Then we may vertically split ∆ at y = y1 to produce string evolutions

Λ = ∆|[x0,x2]×[y0,y1]×[t0,t2] and Ω = ∆|[x0,x2]×[y1,y2]×[t0,t2]. We may also say that ∆ is

made by vertically gluing :

∆ = Λ ∪y Ω.

• Suppose t is any point in (t0, t2). Then we may split ∆ at time t = t1 to produce string

evolutions Λ = ∆|[x0,x2]×[y0,y2]×[t0,t1] and Ω = ∆|[x0,x2]×[y0,y2]×[t1,t2]. We may also say

that ∆ is made by gluing in time:

∆ = Λ ∪t Ω.

If two string evolutions ∆ and Ω agree on a common face, tx(∆) = sx(Ω), then we

may horizontally glue to get a string evolution ∆∪xΩ. Indeed, since the only strata allowed

to intersect these faces are regions, the faces are already normal. On the other hand, to

glue string evolutions in other directions we will need to normalize near the sy, ty, st, and

tt faces.

7.5 The 2-Category sd(G)

Definition. For any 2-computad G, there is a 2-category sd(G) of string diagrams labeled

by G.

Objsd(G) = G0

Homsd(G)(X,Y ) =
{dot diagrams d : X → Y }

translation, dilation, dot evolution

2-Homsd(G)(d, e) =
{string diagrams δ : d → e}

translation, dilation, string evolution

In order for this definition to make sense, we’ll need to be able to compose string diagrams δ

and ǫ vertically when ty(δ) only agrees with sy(ǫ) up to a dot evolution. We do not currently

have such a definition, so we’ll make one.



74

Definition. Suppose δ and ǫ are string diagrams and ζ : ty(δ) → sy(ǫ) is a dot evolution.

We define the vertical composite of δ and ǫ over ζ by taking normal replacements δ′, ζ ′, and

ǫ′ and gluing:

δ′ ∪y ζ
′ ∪y ǫ

′.

Proposition. Vertical composites of string diagrams over dot evolutions are unique up to

string evolution.

Proof. Suppose δ0, ǫ0, δ1, and ǫ1 are string diagrams and suppose ζ0 : ty(δ0) → sy(ǫ0) and

ζ1 : ty(δ1) → sy(ǫ1) are dot evolutions. Assume

• δ0 and δ1 are normal near ty;

• ζ0 and ζ1 are normal near both sy and ty;

• ǫ0 and ǫ1 are normal near sy.

Suppose ∆: δ0 → δ1 and Ω: ǫ0 → ǫ1 are string evolutions. We’ll show that there is a string

evolution

δ0 ∪y ζ0 ∪y ǫ0 −→ δ1 ∪y ζ1 ∪y ǫ1.

We begin rechoosing ∆ and Ω as ∆′ and Ω′ so that ∆′ is normal near ty and Ω′ is normal near

sy. We may choose any string evolution Ψ with sy(Ψ) = ty(∆
′), ty(Ψ) = sy(Ω

′), st(Ψ) = ζ0,

and tt(Ψ) = ζ1. We then rechoose Ψ as Ψ′ so that it is normal near all of its faces. Then

∆′ ∪y Ψ
′ ∪y Ω

′ is the desired string evolution.

In the above, we should think of the dot evolution ζ as a degenerate string diagram.

We may also define horizontal composition of string diagrams over an intermediate diagram.

In this case, we should compose over string diagrams without nodes nor strings. We’ll call

such string diagrams doubly degenerate. Certainly, the compositions for sd(G) are associative

and satisfy the interchange rule. The degenerate string diagrams serve as units for vertical

composition and the doubly degenerate string diagrams are units for horizontal composition.

To be very careful, we should check that our definition of composition is indepen-

dent of dilating one of the factors. This is relatively easy, though, since dilating a normal

replacement does not affect the normality. We should also check that if vertically composing

is a generalization of gluing.

Proposition. Suppose δ and ǫ are vertically gluable string diagrams. Then in sd(G),

δ ◦y ǫ = δ ∪y ǫ.
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Proof. Let δ′ and ǫ′ be normal replacements for δ and ǫ. Using the normalization lemma, we

may choose string evolutions ∆: δ → δ′ and Λ: ǫ → ǫ′ that are gluable in the y-direction.

So in sd(G), we have

δ ◦y ǫ = δ′ ∪y 1ty(δ) ∪y ǫ
′

= δ′ ∪y ǫ
′

= δ ∪y ǫ.

7.6 Cone Diagrams

Suppose α is a 2-generator in a 2-computad G. We define the cone string diagram

coneG(α) on the square [−1, 1] × [−1, 1], as follows. We’ll think of s(α) and t(α) as dot

diagrams defined on [−1, 1]×{−1} and [−1, 1]×{1}, respectively. Radial projection allows

us to view the each of the strata in s(α) on the lower quarter of the circle,
{

5

8
· 2π ≤ θ ≤

7

8
· 2π

}

⊂ S
1.

Similarly, the may view the strata of t(α) on the upper quarter of the circle,
{

1

8
· 2π ≤ θ ≤

3

8
· 2π

}

⊂ S
1.

We glue the left-most region of s(α) to the left-most region of t(α) using the left quarter of

the circle,
{

3

8
· 2π ≤ θ ≤

5

8
· 2π

}

⊂ S
1.

We also glue the right-most region of s(α) to the right-most region of t(α) using the right

quarter of the circle,
{

−
1

8
· 2π ≤ θ ≤

1

8
· 2π

}

⊂ S
1.

This gives S1 a stratification. We cone to get a stratification of the plane R2, which

we then restrict to the desired stratification of the square, [−1, 1] × [−1, 1]. Note that

coneG(α) extends the stratifications we gave to the faces of the square. We label the strata

according to their labels in s(α) and t(α). By globularity of α, the source 0-generator of

α labels the left face {−1} × [−1, 1] and the target 0-generator of α labels the right face

{1} × [−1, 1].
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The origin is the only stratum in coneG(α) which doesn’t correspond to a stratum in

either s(α) or t(α). We label the origin with α. Note that all strata in coneG(α) are incident

to the origin. In the language of the string pre-diagrams section, may say that coneG(α) is

focused on the origin. Our construction, therefore, has produced a string diagram in which

the source and target dot diagrams of the origin node agree with the source and target of α

as a 2-generator in G.

7.7 Evaluation

In this section, we will use brick decompositions to evaluate strings diagrams labeled

in a 2-category. As usual, we’ll see that every string diagram has a many brick decomposi-

tions and that evaluation is independent of which we choose to equip the diagram with.

Definition. A string diagram δ is a brick if it is focused on a stratum. That is, all strata

in δ are incident to some stratum S.

Definition. Suppose δ is a string diagram on [x0, x1] × [y0, y1]. A y-layer of bricks for δ

consists of a finite set Mx ⊂ [x0, x1] of x-mortar points. We require the following.

• x0, x1 ∈ Mx.

• For each x-mortar point p ∈ Mx, the set {p} × [y0, y1] only intersects a region of δ.

• Between successive x-mortar points p < q, the string diagram δ|[p,q]×[y0,y1] is a brick.

Definition. Suppose δ is a string diagram on [x0, x1] × [y0, y1]. A brick wall or brick

decomposition for δ consists of a finite set My ⊂ [y0, y1] of y-mortar points. We require the

following.

• y0, y1 ∈ My.

• For each y-mortar point p ∈ My, the set [x0, x1] × {p} only intersects regions and

strings of δ.

• Between successive y-mortar points p < q, the string diagram δ|[x0,x1]×[p,q] has a y-layer

of bricks. We call the mortar set Mp,q
x .

Given two brick decompositions, we may find a common refinement by intersecting

their bricks. Roughly speaking, this amounts to taking unions of their mortar sets.
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Definition. Suppose δ as above has two brick decompositions, D = (My,M
∗,∗
x ) and E =

(Ny, N
∗,∗
x ). Then there is a brick decomposition D ∩ E defined as follows.

• The y-mortar set for D ∩ E is the union My ∪Ny.

• Suppose r < s are successive y-mortar points in My∪Ny. We take the y-mortar points

rM , sM ∈ My so that rM and sM are successive in My and [r, s] ⊂ [rM , sM ]. Similarly

take successive rN , sN ∈ Ny about [r, s]. Then the x-mortar set for My ∪Ny between

r and s is M rM ,sM
x ∪N rN ,sN

x .

Proposition. We may build the refinement D∩E by starting with D and using the following

two operations repeatedly.

• We may split a brick into two by adding an extra x-mortar point.

• We may split a y-layer of bricks into two by adding an extra y-mortar point.

Proof. We begin by splitting each of the rows of bricks D vertically turn the y-mortar set

My into My ∪ Ny. For each x-mortar point of E, we split bricks of D ∩ E horizontally in

the appropriate y-layers.

Proposition. Every string diagram has a brick decomposition.

Proof. We must be able to separate strings from strings, strings from nodes, and nodes from

nodes.

• We may always separate two strings with x-mortar points by choosing enough y-mortar

points.

• By choosing y-mortar points just above and just below a node, we may separate it

from non-incident strings using x-mortar points.

• If two nodes are at distinct y-heights, we may choose a y-mortar point between them.

• If two nodes share a y-height, we may choose y-mortar points just above and below

the nodes and an x-mortar point between them.

Definition. Suppose δ is a string diagram equipped with a brick decomposition D. Suppose

further that δ is labeled by a 2-category C. We define the 2-morphism in C

evalC(s(δ))
evalDC (δ)
−−−−−−→ evalC(t(δ))

as follows.
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• If δ is a brick focused on a region that is labeled by an object X, then we define

evalDC (δ) = 11X .

• If δ is a brick focused on a string that is labeled by 1-morphism a, then we define

evalDC (δ) = 1a.

• If δ is a brick focused on a node that is labeled by a 2-morphism α, then we define

evalDC (δ) = α.

• If δ is a y-layer of bricks B1, . . . , Bn, we define

evalDC (δ) = evalDC (B1) ◦x · · · ◦x eval
D
C (Bn).

• For general δ made of y-layers L1 . . . , Lm, we define

evalDC (δ) = evalDC (L1) ◦y · · · ◦y eval
D
C (Lm).

Proposition. Evaluation does not depend on the brick decomposition.

Proof. We’ll show that refining a brick decomposition does not change what the string

diagram evaluates to. Since any two brick decompositions have a common refinement, we’ll

be done.

splitting a brick horizontally Suppose δ is a brick which is focused on a stratum S.

Splitting the brick horizontally, we get two bricks δ = δl ∪x δr, one must be focused

on S and the other must be focused on a region. Suppose, δl is focused on S and δr is

focused on a region labeled by an object X. Then

evalC(δ) = evalC(δl) = evalC(δl) ◦x 11X = evalC(δl) ◦x evalC(δr).

splitting a y-layer of bricks vertically We prove this case by induction on the number

of bricks in a y-layer.

• Suppose δ is a y-layer of bricks consisting of a single brick. Splitting vertically,

we get lower and upper bricks: δ = δl ∪y δu. One of these bricks, say δu, must be

a node-less string diagram. So evalC(δu) = 1evalC(s(δu)) and hence

evalC(δ) = evalC(δl) ◦y 1evalC(t(δl)) = evalC(δl) ◦y evalC(δu).
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• Suppose δ is a y-layer of bricks consisting of two bricks ǫ and ζ. Splitting δ gives

four bricks. This comes down to the interchange rule in C.

evalC(ǫ) ◦x evalC(ζ)

= evalC(ǫl ∪y ǫu) ◦x evalC(ζl ∪y ζu)

= (evalC(ǫl) ◦y evalC(ǫu)) ◦x (evalC(ζl) ◦y evalC(ζu))

= (evalC(ǫl) ◦x evalC(ζl)) ◦y (evalC(ǫu) ◦x evalC(ζu))

= (evalC(ǫl ∪x ζl)) ◦y (evalC(ǫu ∪x ζu)).

• For a layer with more than two bricks, we inductively apply the interchange rule.

We also wish to show that evaluation is independent of string evolution. To do this,

we’ll extend our definition of brick decomposition to string evolutions.

Definition. A string evolution ∆ is a brick if it is focused on a single region.

Definition. Suppose ∆ is a string evolution on [x0, x1]× [y0, y1]× [t0, t1]. A y-layer of bricks

for ∆ consists of a finite set Mx ⊂ [x0, x1] of x-mortar points. We require the following.

• x0, x1 ∈ Mx.

• For each x-mortar point p ∈ Mx, the set {p}× [y0, y1]× [t0, t1] only intersects a region

of ∆.

• Between successive x-mortar points p < q, the string evolution ∆|[p,q]×[y0,y1]×[t0,t1] is a

brick.

Definition. Suppose ∆ is a string evolution on [x0, x1]× [y0, y1]× [t0, t1]. A t-layer of bricks

for ∆ consists of a finite set My ⊂ [y0, y1] of y-mortar points. We require the following.

• y0, y1 ∈ My.

• For each y-mortar point p ∈ My, the set [x0, x1]× {p} × [t0, t1] only intersects regions

and strings of ∆.

• Between successive y-mortar points p < q, the string evolution ∆|[x0,x1]×[p,q]×[t0,t1] has

a y-layer of bricks. We call the mortar set Mp,q
x .
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Definition. Suppose ∆ is a string evolution on [x0, x1] × [y0, y1] × [t0, t1]. A brick de-

composition for ∆ consists of a finite set Mt ⊂ [t0, t1] of t-mortar points. We require the

following.

• t0, t1 ∈ Mt.

• Between successive t-mortar points p < q, the string evolution ∆|[x0,x1]×[y0,y1]×[p,q] has

a t-layer of bricks. We call the mortar set Mp,q
y .

Proposition. Every string evolution has a brick decomposition.

Proof. Suppose ∆ is a string evolution on [x0, x1]× [y0, y1]× [t0, t2] and let t1 ∈ [t0, t2] be any

time. Then we may equip the slice ∆|t=t1 with a brick decomposition for a string diagram.

We may thicken this to a t-layer, at least for small |t − t1|. In this manner, we may cover

[t0, t2] and, by compactness, we need only finitely such overlapping t-layers. By shrinking

the t-layers in time to remove overlap, we produce a brick decomposition for ∆.

Proposition. Suppose δ and ǫ are string diagrams labeled in a 2-category C. Suppose

further that δ and ǫ are related by a string evolution ∆. Then

evalC(δ) = evalC(ǫ).

Proof. Suppose ∆ is located on [x0, x1]×[y0, y1]×[t0, t1]. We choose any brick decomposition

for ∆. It is clear that evaluation is preserved across time for each brick. So evaluation is

preserved across time for each y-layer of bricks. And hence evaluation is preserved across

time for each t-layer of bricks.

7.8 Characterizing sd(G) as the Free 2-Category

Let’s denote the category of 2-computads by 2-Cmp and let’s denote the category

of small 2-categories and strict 2-functors by 2-Cmp. We have made associations

forget : 2-Cat −→ 2-Cmp

sd: 2-Cmp −→ 2-Cat

which are easily seen to be functors.

Definition. For any 2-computad G, there is a natural map of 2-computads, called conical

inclusion,

coneG : G −→ forget(sd(G)).
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A 0-generator in G can be regarded as an object of sd(G). A degree 1 generator is sent to

its cone dot diagram and a degree 2 generator is sent to its cone string diagram.

Definition. For any 2-category C, there is a natural 2-functor, called evaluation,

evalC : sd(forget(C)) −→ C.

This 2-functor was described in the previous section.

The following two lemmas show that inclusion and evaluation are the unit and counit

of an adjunction.

Lemma (Zig-Zag). The composite of the inclusion and evaluation maps

forget(C)
coneforget(C)
−−−−−−−−→ forget(sd(forget(C)))

forget(evalC)
−−−−−−−−→ forget(C)

equals the identity on forget(C).

Proof. The first half of this composition takes a 2-morphism of C and views it as a cone

string diagram. The second half evaluates this string diagram, recovering the original 2-

morphism.

Lemma (Zig-Zag). The composite of the inclusion and evaluation maps

sd(G)
sd(coneG)
−−−−−−→ sd(forget(sd(G)))

evalsd(G)
−−−−−→ sd(G)

equals the identity on sd(G).

Proof. This composition n : sd(G) −→ sd(G) takes a string diagram δ labeled in G, breaks

it up into bricks according to a brick decomposition, and then composes those bricks. Any

individual brick is unchanged by n, at least up to evolution. Further, since horizontal

composition may be enacted by gluing, a y-layer of bricks is unchanged by n. Last, we

showed that vertical composition may be enacted by vertical gluing, at least when the

factors are gluable. Each y-layer of bricks is made by splitting δ and so these are certainly

gluable.

Theorem. Suppose G is a 2-computad. The 2-category sd(G) of string diagrams is the free

2-category on G.

Proof. This is a formal consequence of the Zig-Zag lemmas.
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Surface Diagrams

8.1 3-Computads

Definition. A 3-computad G consists of four sets of generators, G0, G1, G2, and G3. We

require G have source and target maps

s, t : G1 −→ G0.

We may now speak about the category dd(G) of dot diagrams. In particular, dd(G)1 is the

set of dot diagrams, taken up to dot evolution. Extending the source and target maps as

usual, we get maps dd(G)1 −→ dd(G)0 = G0. We require that G have globular source and

target maps

s, t : G2 −→ dd(G)1.

This allows us to now speak about the 2-category sd(G) of string diagrams. Note that

sd(G)2 is the set of string diagrams, taken up to string evolution. We get source and target

maps sd(G)2 → sd(G)1 = dd(G)1. We require that G have globular source and target maps

s, t : G3 −→ sd(G)2.

A map of 3-computads f : G −→ H is a quadruple of maps fi : Gi −→ Hi that commute

with the source and target maps.

Example. Every 2-computad is a 3-computad without 3-generators.
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Example. A 3-category C has an underlying 3-computad, forget(C).

forget(C)0 = ObjC ,

forget(C)1 =
∐

X,Y ∈ObjC

HomC(X,Y ),

forget(C)2 =
∐

a,b∈dd(forget(C))1

{(a, b, α) : α ∈ 2-HomC(eval(a), eval(b))},

forget(C)3 =
∐

α,β∈sd(forget(C)2)

{(α, β,Γ) : Γ ∈ 3-HomC(eval(α), eval(β))}.

8.2 Surface Diagrams

Definition. A surface pre-diagram ∆ is a stratified cube [x0, x1] × [y0, y1] × [z0, z1] with

finitely many strata. We’ll call the codimension 0 strata regions, the codimension 1 strata

walls, the codimension 2 strata seams, and the codimension 3 strata nodes. We require the

following rules.

• The x-faces {x0, x1} × [y0, y1]× [z0, z1] only intersect regions.

• The y-faces [x0, x1]× {y0, y1} × [z0, z1] only intersect regions and walls.

• At any point p, the tangent vectors ±∂/∂x|p are not contained in any wall.

• At any point p, the only tangent vector in 〈∂/∂x|p, ∂/∂y|p〉 allowed to be in a seam is

the trivial vector.

We define the usual sx, tx, sy, ty, sz, tz. We note that the z-faces are string pre-diagrams,

the y-faces are degenerate string pre-diagrams, and the x-faces are doubly degenerate string

pre-diagrams.

We have defined a surface pre-diagram ∆ so that almost every z-slice is a string

pre-diagram. Indeed, we need only miss z-coordinates containing nodes in order to ensure

that a z-slice is transverse to all of the strata. We define source and targets for a stratum

in a surface pre-diagram by using slice pre-diagram focused on the stratum in question. We

get uniqueness for these definitions by covering strata with focused surface diagrams made

by cropping ∆.

Definition. The source and target of a stratum S in a surface pre-diagram ∆ are defined

as follows.
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• If S is a wall, we take the source sx and target tx in any yz-slice dot pre-diagram d

focused on S.

• If S is a seam, we take the source sy and target ty in any z-slice string pre-diagram δ

focused on S.

• If S is a node, we take the source sz and target tz in any surface pre-diagram Λ focused

on S.

Definition. Any surface pre-diagram ∆ has an underlying 3-computad comp3(∆). We take

the regions as 0-generators, the walls as 1-generators, the seams as 2-generators, and the

nodes as 3-generators.

Definition. A surface diagram consists of a surface pre-diagram ∆, a 3-computad of labels

G, and a map of 3-computads, comp(∆) −→ G. We write ∆: δ → ǫ to mean sz(∆) = δ and

tz(∆) = ǫ.

8.3 Surface Evolutions

Definition. A surface pre-evolution k is a finite stratification of a 4-cube

[x0, x1]× [y0, y1]× [z0, z1]× [t0, t1]

subject to rules. As usual, we retain the naming conventions for strata from surface diagrams

despite the strata being thickened in time.

• There are no strata of codimension 4.

• The x-faces, {x0, x1} × [y0, y1]× [z0, z1]× [t0, t1], only intersect regions.

• The y-faces, [x0, x1]× {y0, y1} × [z0, z1]× [t0, t1], only intersect regions and walls.

• The z-faces, [x0, x1] × [y0, y1] × {z0, z1} × [t0, t1], only intersect regions, walls, and

seams.

• At any point p, the tangent vectors ±∂/∂x|p are not contained in any wall.

• At any point p, the only tangent vector in 〈∂/∂x|p, ∂/∂y|p〉 allowed to be in a seam is

the trivial vector.

• At any point p, the only tangent vector in 〈∂/∂x|p, ∂/∂y|p, ∂/∂z|p, 〉 allowed to be in

a node is the trivial vector.
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Suppose k is a surface pre-evolution on [x0, x1]× [y0, y1]× [z0, z1]× [t0, t2]. For any

fixed t1 ∈ [t0, t2], we see that the slice k|t1 is a surface pre-diagram. Further, the computadic

structure of the slices is preserved across time. Indeed, any surface pre-diagram focused on

a stratum S in a slice may be thickened in time to be a surface pre-evolution focused on S,

at least for some small time interval. During this time, the computadic structure is fixed.

We may need to use another surface pre-evolution focused on S to continue the argument.

This is fine, since any overlapping surface pre-evolution focused on S must agree on the

computadic structure for S in the overlap.

Definition. Any surface pre-evolution k has an underlying 3-computad comp3(k) in which

the regions are 0-generators, the walls are 1-generators, the seams are 2-generators, and the

nodes are 3-generators.

Definition. A surface evolution consists of a surface pre-evolution k, a 3-computad G, and

a map of 3-computads, comp3(k) −→ G. st(k) = ∆ and tt(k) = Ω. We note that

• sz(k) and tz(k) are degenerate surface diagrams,

• sy(k) and ty(k) are doubly degenerate surface diagrams, and

• sx(k) and tx(k) are triply degenerate surface diagrams.

Example. Any surface diagram ∆ may be thickened in time to give a constant surface

evolution, 1∆ = ∆× [t0, t1].

Example. Any surface evolution k : ∆ → Ω has a reverse surface evolution krev : Ω → ∆

made by reversing time.

8.4 The 3-Category Sd(G)

We may glue surface diagrams in the x, y, and z-directions if two diagrams have

a face in common. Of course, we typically need to take normal replacements in order to

ensure that we may glue strata along the face. The x-faces only intersect regions and so

these strata already meet the x-faces in a normal manner. Gluing will allow us to define the

composition for a 3-category of surface diagrams.
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Definition. For any 3-computad G, there is a 3-category Sd(G) of surface diagrams labeled

by G.

ObjSd(G) = G0

HomSd(G)(X,Y ) =
{dot diagrams d : X → Y }

translation, dilation, dot evolution

2-HomSd(G)(d, e) =
{string diagrams δ : d → e}

translation, dilation, string evolution

3-HomSd(G)(δ, ǫ) =
{surface diagrams ∆: δ → ǫ}

translation, dilation, surface evolution

We note that the by ignoring the surface diagrams, we recover the 2-category sd(G)

of string diagrams. It is therefore our job now to give compatible composition for the surface

diagrams. Composition in the x-direction is easy. We may compose by gluing, or if we prefer,

we may glue over triply degenerate surface diagrams.

We must work harder to show that there are meaningful compositions in the y and z-

directions. First we note that while surface diagrams are not globular, they become globular

in Sd(G). That is, for any surface diagram ∆, the dot diagrams s(s(∆)) and s(t(∆)) agree

up to evolution, and so therefore sit in the same equivalence class. The same goes for t(s(∆))

and t(t(∆)).

Definition. Suppose ∆ and Ω are surface diagrams and Ψ: tz(∆) → sz(Ω) is a string

evolution. Then we may compose ∆ and Ω over Ψ by taking normal replacements, ∆′, Λ′

and Ω′, and gluing:

∆′ ∪z Λ′ ∪z Ω′.

Proposition. Composing surface diagrams in the z-direction over string evolutions is unique

up to surface evolution.

Proof. Suppose ∆0, Ω0, ∆1, and Ω1 are surface diagrams and suppose Ψ0 : tz(∆0) → sz(Ω0)

and Ψ1 : tz(∆1) → sz(Ω1) are string evolutions. Assume

• ∆0 and ∆1 are normal near tz;

• Ψ0 and Ψ1 are normal near both sz and tz;

• Ω0 and Ω1 are normal near sz.

Suppose A : ∆0 → ∆1 and B : Ω0 → Ω1 are surface evolutions. We’ll show that there is a

surface evolution

∆0 ∪z Ψ0 ∪z Ω0 −→ ∆1 ∪z Ψ1 ∪z Ω1.
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We rechoose A and B as A′ and B′ so that A′ is normal near tz and B′ is normal near

sz. We may choose a surface evolution D with the following string evolutions as faces:

sz(D) = tz(A), tz(D) = sz(B), st(D) = Ψ0, and tt(D) = Ψ1. We rechoose D as D′ so that

it is normal near all of its faces. Then A′ ∪z D
′ ∪z B

′ is the desired surface evolution.

We make a similar definition for composing in the y-direction.

Definition. Suppose ∆ and Ω are surface diagrams and Ψ: ty(∆) → sy(Ω) is a string

evolution. Then we may compose ∆ and Ω over Ψ by taking normal replacements, ∆′, Λ′

and Ω′, and gluing:

∆′ ∪y Λ′ ∪y Ω′.

We note that, if anything, composition in the y-direction is simpler than composition

in the z-direction. They y-faces are degenerate string diagrams and so the string evolution

Ψ is a doubly degenerate surface diagram. We may show that composition in the y-direction

is unique up to surface evolution using the same argument as we used in the z-direction.

8.5 Cone Diagrams

Suppose Γ is a 3-generator in a 3-computad G. We’ll define the cone surface diagram

coneG(Γ) for Γ. We begin by setting up a bijective correspondence of points between the

boundary of the cube [−1, 1]3 and the unite sphere S2 by radially projecting. On each of

the faces of the cube, this correspondence is smooth. We give the sphere a stratification

by placing stratifications on the faces of the cube and observing their image under the

projection.

• We locate s(Γ) on [x0, x1]× [y0, y1]× {z0}.

• We locate t(Γ) on [x0, x1]× [y0, y1]× {z1}.

• We required s(s(Γ)) and s(t(Γ)) be related by a dot evolution. We choose a dot

evolution for [x0, x1] × {y0} × [z0, z1] which will glue with the adjacent strata on the

top and bottom faces in projection.

• We required t(s(Γ)) and t(t(Γ)) be related by a dot evolution. We choose a dot

evolution for [x0, x1] × {y1} × [z0, z1] which will glue with the adjacent strata on the

top and bottom faces in projection.

• We give {x0} × [y0, y1]× [z0, z1] a single region and no other strata.
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• We give {x1} × [y0, y1]× [z0, z1] a single region and no other strata.

Notice that we must carefully choose the dot evolutions for the left and right faces. Oth-

erwise, the 1-strata for the top and bottom faces would not meet the 1-strata for the left

and right faces in a smooth manner on the sphere. We give R3 the cone stratification for

our stratified S2. When we restrict the stratification for coneG(Γ) by restricting this to the

cube, [−1, 1]3. We give the strata labels according the labels on s(Γ) and t(Γ). We label

the node located at the origin with Γ. This makes coneG(Γ) a surface diagram focused on

the origin node.

8.6 Evaluation

We evaluate a surface diagram labeled in a 3-category by equipping the diagram

with a brick decomposition.

Definition. A surface diagram ∆ is a brick if it is focused on a stratum.

Definition. Suppose ∆ is a surface diagram on [x0, x1] × [y0, y1] × [z0, z1]. A y-layer of

bricks for ∆ consists of a finite set Mx ⊂ [x0, x1] of x-mortar points. We require:

• x0, x1 ∈ Mx.

• For each x-mortar point p ∈ Mx, the set {p}× [y0, y1]× [z0, z1] only intersects a region

of ∆.

• Between successive x-mortar points p < q, the string diagram ∆|[p,q]×[y0,y1]× [z0, z1] is

a brick.

We define a z-layer of bricks for a surface diagram to consist of a set of y-mortar

points. Between any two successive y-mortar points is a y-layer of bricks. Further, a brick

decomposition for a surface diagram is a choice of z-mortar points. Between successive

z-mortar points is a z-layer of bricks. Every surface diagram may be given a brick decom-

position. By choosing enough z-mortar points, we may ensure that no seam or wall moves

too much in the x or y-directions in any one z-layer. In each z-layer, we choose enough

y-mortar points so that seams do not move too much in the x-direction. This allows us to

choose x-mortar points giving bricks.

We evaluate a surface diagram labeled in a 3-category by using a brick decomposition.

That is, we always evaluate a diagram as a z-composite of y-composites of x-composites.
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We note that any two brick decompositions have a common refinement and that evaluation

is fixed under refinement. We may also extend brick decompositions to evolution of surface

diagrams by having t-layers of bricks. This allows one to see that evaluation of surface

diagrams is fixed under evolution, as well.

8.7 Characterizing Sd(G) as the Free 3-Category

We’ve defined

forget : 3-Cat −→ 3-Cmp

Sd: 3-Cmp −→ 3-Cat

which are easily seen to be functors. We also have a natural conical inclusion map,

coneG : G −→ forget(Sd(G)),

and a natural evaluation functor,

evalC : Sd(forget(C)) −→ C.

Lemma (Zig-Zag). The composite of the inclusion and evaluation maps

forget(C)
coneforget(C)
−−−−−−−−→ forget(Sd(forget(C)))

forget(evalC)
−−−−−−−−→ forget(C)

equals the identity on forget(C).

Proof. For any 3-morphism Γ in C,

evalC(coneforget(C)(G)) = G.

Lemma (Zig-Zag). The composition of the inclusion and evaluation maps

Sd(G)
Sd(coneG)
−−−−−−→ Sd(forget(Sd(G)))

evalSd(G)
−−−−−→ Sd(G)

equals the identity on Sd(G).

Proof. This is clear on bricks. We get the result for y-layers of bricks, z-layers of bricks,

and then composites for a full brick decomposition by noting that each composition may be

enacted by the appropriate direction of gluing in Sd(G).

Theorem. Suppose G is a 3-computad. Then the 3-category of surface diagrams Sd(G) is

the free 3-category on G.

Proof. This follows from the Zig-Zag lemmas.



Chapter 9

Surface Diagrams for Gray-Categories

9.1 The Free Sesquicategory of Ordered String Diagrams

We’re interested in defining surface diagrams for Gray-categories. If we truncate

a Gray-category, leaving the objects, 1-morphisms, and 2-morphisms, we do not get a 2-

category. Instead, these morphisms form a sesquicategory. See Appendix C for definitions

of sesquicategory and Gray-category. In this section, we’ll show that ordered string diagrams

are the correct diagrams for describing compositions in a sesquicategory. This will be an

important tool for our next section on surface diagrams for Gray-categories.

Definition. An ordered string diagram δ is a string diagram in which each node is located

at a distinct y-height.

We think about the set of nodes getting an order according to their y-height. When

we vertically glue two ordered string diagrams, the result is also an ordered string diagram.

However, the same cannot be said for horizontal gluing. A node in one of the factors may

be at the same y-height as a node in the other. Instead, we’ll be satisfied with whiskering

an ordered string diagram with a dot diagram.

Definition. Suppose δ : d → e is an ordered string diagram and suppose f is a dot diagram

whose source 0-generator matches the target 0-generator of δ. We define the whiskering of

δ by f on the right as

δ ◦x f = δ ∪ 1f ,

where 1f is the constant dot evolution on f .
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We similarly define whiskering by dot diagrams on the left. Notice that since 1f

lacks nodes, δ ◦x f is an ordered string diagram. We expect ordered string diagrams to

preserve their ordering of nodes across evolution.

Definition. An ordered string evolution is a string evolution in which the slice string dia-

grams are ordered at every time.

We may compose ordered string evolutions in the y-direction and in time. We may

also whisker ordered string evolutions with dot diagrams. This amounts to gluing on a

doubly degenerate string evolution in the x-direction. It’s easy to check that the collection

of ordered string diagrams form a sesquicategory.

Definition. For any 2-computad G, there is a sesquicategory sdord(G) of ordered string

diagrams labeled by G.

Obj = G0

Hom(X,Y ) =
{dot diagrams d : X → Y }

translation, dilation, dot evolution

2-Hom(d, e) =
{ordered string diagrams δ : d → e}

translation, dilation, ordered string evolution

We wish to show that sdord(G) is the free sesquicategory on the 2-computad G. We’ll

follow our argument for 2-categories. We may use the same conical inclusion map since cone

string diagrams are ordered. We also know that evaluation is well-defined for ordered string

diagrams labeled in a 2-category. We need something slightly stronger though: we need

evaluation to work when the ordered string diagram is labeled in a sesquicategory.

Definition. Suppose δ is an ordered string diagram labeled in a sesquicategory C. An

ordered brick decomposition is a brick decomposition which satisfies one extra rule:

• Each layer of bricks contains at most one node.

We may choose an ordered brick decomposition for any ordered string diagram δ. In

fact, any brick decomposition may be refined to become ordered for δ by including extra y-

mortar points, as necessary. Our evaluation functor may now be thought of, not as a vertical

composite of horizontal composites, but rather, as a vertical composite of whiskerings. We

may therefore evaluate ordered string diagrams in a sesquicategory.

Just as we had in the 2-categorical case, we have functors,

forget : Sesqui -Cat −→ 2-Cmp,

sdord : 2-Cmp −→ Sesqui -Cat .
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We also have a natural conical inclusion map

coneG : G −→ forget(sdord(G))

and a natural evaluation functor

evalC : sdord(forget(C)) −→ C.

These satisfy the Zig-Zag lemmas just as their 2-categorical counterparts did. Thus, we may

characterize sdord(G) as the free sesquicategory on the 2-computad G.

9.2 Gray Surface Diagrams

Definition. A Gray-computad G consists of four sets of generators G0, G1, G2, and G3.

We have source and target maps

s, t : G1 −→ G0

which let us form the free category dd(G) of dot diagrams. We also have globular source

and target maps

s, t : G2 −→ dd(G)1

which allow us to generate the free sesquicategory sdord(G) of ordered string diagrams. We

take globular source and target maps

s, t : G3 −→ sdord(G)2.

We note that sdord(G)1 = dd(G)1 and sdord(G)0 = G0.

Consider a surface pre-diagram ∆ on [x0, x1] × [y0, y1] × [z0, z1]. We may x-project

the foams, seams, and nodes of ∆ to get subspaces of [y0, y1]×[z0, z1]. Gray surface diagrams

are surface diagrams that have certain nice properties in the x-projection.

Definition. A Gray surface pre-diagram is a surface pre-diagram ∆ on a cube

[x0, x1]× [y0, y1]× [z0, z1]

which satisfies the following rules.

• The z-faces

[x0, x1]× [y0, y1]× {z0} and [x0, x1]× [y0, y1]× {z1}

are ordered string pre-diagrams.
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• All but finitely many z-slices are ordered string pre-diagrams.

A Gray surface pre-diagram will be called photogenic if the following also hold.

• If a line segment [x0, x1]×{j}×{k} intersects a node of ∆, then it intersects no other

nodes nor any seams.

• Each line segment [x0, x1] × {j} × {k} intersects at most two seams S1, S2 of ∆. In

this case, we require that the x-projections πx(S1), πx(S2) ⊂ [y0, y1]× [z0, z1] intersect

transversely. We’ll call the point (j, k) ∈ [y0, y1]× [z0, z1] a seam crossing.

Remark. A Gray surface pre-diagram is, in particular, a surface diagram and so has an un-

derlying 3-computad. It is also true that any Gray-computad has an underlying 3-computad.

It would be a mistake, however, to label a Gray surface pre-diagram with a map between

these 3-computads.

There are only finitely many z-coordinates in which seams need not by ordered.

As such, near a node, the seams approaching must have a defined y-ordering on some

neighborhood. When we crop a Gray-surface diagram in order to find a Gray-surface diagram

focused on a node, we’ll choose it small enough so that the seams maintain their order. This

allows us to make the following definition.

Definition. Suppose ∆ is a Gray surface pre-diagram. Then ∆ has an underlying Gray-

computad compGray(∆).

Definition. A Gray surface diagram consists of a Gray surface pre-diagram ∆, a Gray-

computad G, and a map of Gray-computads compGray(∆) −→ G.

Example. Suppose Γ is a 3-generator in a Gray-computad G. The cone coneG(Γ) is a Gray

surface diagram focused on the origin node. Indeed, sz and tz are ordered and so all slices

are therefore ordered.

We may compose Gray surface diagram in the y and z-directions, at least after

normal replacements. We won’t define gluing Gray surface diagrams in the x-direction.

That said, we may whisker a Gray surface diagram with a dot diagram by thickening the

dot diagram twice and gluing.

Definition. A Gray surface pre-evolution is a surface pre-evolution k in which for each

l ∈ [t0, t1], the time slice k|t=l is a Gray surface pre-diagram.
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Just as a Gray surface diagram has an underlying Gray-computad, so too does any

Gray surface pre-evolution k. Indeed, computadic structure is preserved across time in a

pre-evolution by standard arguments.

Definition. A Gray surface evolution is a Gray surface pre-evolution k labeled by a Gray-

computad G. We’ll write k : ∆ → Λ to indicate st(k) = ∆ and tt(k) = Λ. We note that

each time slice k|t=l is a Gray surface diagram.

We’ll say that a Gray surface evolution k is photogenic if all but finitely many

time-slices are photogenic Gray surface diagrams. Further, we require that submanifolds of

[y0, y1] × [z0, z1] × [t0, t1] made by x-projecting the seams and nodes of k intersect trans-

versely. In x-projection, seams of evolutions are codimension 1 and nodes of evolutions are

codimension 2. So at most three seams may intersect in x-projection and nodes may not

intersect. In any case, a node may intersect a seam in x-projection.

We may compose Gray surface evolutions in the y, z, and t-directions by normalizing

near the appropriate face and then gluing. We may also whisker Gray surface evolutions

by gluing triply thickened dot diagrams in the x-direction. Note also that each of these

operations take photogenic evolutions to photogenic evolutions.

Definition. For any Gray-computad G, there is a Gray-category SdGray(G) of Gray surface

diagrams labeled by G.

ObjSd(G) = G0

HomSd(G)(X,Y ) =
{dot diagrams d : X → Y }

translation, dilation, dot evolution

2-HomSd(G)(d, d
′) =

{ordered string diagrams δ : d → d′}

translation, dilation, ordered string evolution

3-HomSd(G)(δ, δ
′) =

{photogenic Gray surface diagrams ∆: δ → δ′}

translation, dilation, photogenic evolution

We evaluate a photogenic Gray surface diagram by equipping it with a brick decom-

position. We ask that brick decompositions be of a particularly nice form.

Definition. A brick decomposition for a photogenic Gray surface diagram is one in which

each y-layer has either a single seam crossing, a single node, or neither. Also, each z-mortar

point is taken at a height k so that the z = k slice string diagram is ordered.

To evaluate a photogenic Gray surface diagram, we send each seam crossing to

its Gray interchanger. More precisely, consider a y-layer of bricks ∆ in which two seams
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S1 and S2 sit above a seam crossing (i, j) ∈ [y0, y1] × [z0, z1]. We’ll assume, at least to

start, that the first brick is focused on S1 and the last brick is focused on S2. We record

of the walls and regions between S1 and S2 with a dot diagram δ. Evaluating this dot

diagram gives a 1-morphism evalC(δ). We then define evalC(∆) to be the Gray interchanger

Θλ(S1),evalC(δ),λ(S2), where λ(S1) and λ(S2) are the labels on the seams. Of course, if there

were other bricks before S1 or after S2, we would evaluate these as usual and whisker the

Gray interchanger.

We note that evaluation is independent of refining brick decomposition for pho-

togenic Gray surface diagrams. We should also check that evaluation is independent of

photogenic evolution. For any photogenic Gray surface evolution k, we may choose a brick

decomposition in which each brick ג is of one of the following four forms:

(I) Every time slice of ג is a photogenic Gray surface diagram.

(II) There is a single time slice of ג which is not photogenic. In the x-projection of this

time slice, three seams cross.

(III) There is a single time slice of ג which is not photogenic. In the x-projection of this

time slice, two seams intersect in a non-transverse manner.

(IV) There is a single time slice of ג which is not photogenic. In the x-projection of this

time slice, a node intersects a seam.

If a brick is of type (I), then it is clear that evaluation is preserved:

evalC(st(k)) = evalC(tt(k)).

We claim that evaluation is preserved for each of the other types of brick. For type (II), we

note that evalC(st(k)) and evalC(tt(k)) are related by a braid relation in the Gray-category

C. Evaluation for type (III) bricks is preserved by canceling a Gray interchange with its

inverse. Last, type (IV) bricks respect evaluation by naturality of the Gray interchange.

This discussion allows us to define evaluation,

evalC : SdGray(forget(C)) −→ C.

The same Zig-Zag formalism goes through for Gray surface diagrams. So we get our main

result.

Theorem. Suppose G is a Gray-computad. Then the Gray-category SdGray(G) of Gray

surface diagrams is the free Gray-category on G.



Chapter 10

Equivalence in 2-Categories

10.1 About Coherence for Equivalence

In this last part of the dissertation, we’ll be investigating coherence relations for

equivalence. One may see this as an advertisement for the value of string and surface

diagrams. The first chapter reviews a proof that any incoherent equivalence in a 2-category

may be improved to a coherent equivalence. This argument is not new. However, it functions

as a nice illustration of string diagrams. We will use the ideas in this chapter as a starting

off point to investigate equivalence in a Gray-category. Indeed, the same sort of techniques

will work with surface diagrams to coherify any incoherent equivalence in a Gray-category.

There are, however, both more data and many more relations to keep track of in this context.

That said, all arguments come down to “topologically reasonable” manipulations of surfaces.

The diagrams in this part of the dissertation are not, strictly speaking, examples of

string and surface diagrams as we’ve defined them. In particular, these diagrams are drawn

in a non-progressive manner. So, for example, when we draw a string turning around,

we actually intend to splice in a node at the extremum. We similarly splice in nodes to

seams that turn around, and we splice seams into walls that turn around. Further, we must

deform the diagram slightly so as to make the strata approaching other strata progressive.

This gives our diagrams a “pointy” appearance. In this way, we may interpret each of the

non-progressive strings and surfaces as progressive diagrams.
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10.2 Coherification

Definition. In a 2-category, an (incoherent) equivalence of objects

and

consists of 1-morphisms

as well as 2-morphisms

which satisfy inverse relations:

We’ll think of f and g as allowing us to compare X and Y . To say that f and g

were inverse, we’d demand the relations f ◦ g = 1X and g ◦ f = 1Y . It’s not really fair to

demand such relations of 1-morphisms in a 2-category, so we’ll instead just ask for invertible

2-morphisms to make these comparisons. That is, we demand the existence of α and α−1

in order to compare f ◦ g with 1X , and β and β−1 to compare g ◦ f with 1Y . Our relations

ensure that α and α−1 really are inverse to each other, as are β and β−1.

Consider the statement,

f ◦ g ◦ f ∼= f.

This is a statement of existence: there is an isomorphism from f ◦ g ◦ f to f . When working

with equalities, we don’t typically need to know why two things are the same, just that
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they are. But in fact, there are two perfectly good reasons that f ◦ g ◦ f is isomorphic to f .

We might cancel g using the f on its left or the f on its right. Put another way, we could

build an automorphism f ∼= f ◦ g ◦ f ∼= f of f by, say, uncanceling on the left followed by

canceling on the right. While we might expect this automorphism to be 1f , there’s nothing

in our definition that requires this. As a result, we must be somewhat careful when making

calculations with f and g. Carelessly making cancellations might lead us to think we have

equalities where we don’t actually. This explains the modifier, “incoherent,” in our definition.

Definition. In a 2-category, a pair of 1-morphisms

are adjoint if there are 2-morphisms

satisfying zig-zag relations

We may say that (g, f) are an adjoint pair with unit β and counit α. Note that

this definition is not symmetric in f and g. One should look to the unit for the left adjoint

to be on the left and the right adjoint to be on the right. This definition is meant to

generalize the definition of adjoint functors in the 2-category of categories, functors, and

natural transformations.

Lemma. In an adjunction, the unit and counit determine each other.

Proof. Suppose both α and α′ satisfy the zig-zag relations with β. Then
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Definition. The previous lemma allows us to define an exponent ∼ which swaps between

corresponding units and counits.

α∼ = β and β∼ = α.

This should be thought of as playing a similar a role to the exponent −1 for inversion.

Definition. A coherent equivalence is an equivalence in which the 2-morphisms satisfy all

four possible zig-zag relations:

• β and α demonstrate (g, f) as an adjoint pair;

• α−1 and β−1 demonstrate (f, g) as an adjoint pair.

Theorem (equivalence coherification). Given an incoherent equivalence as defined above,

we may rechoose β and β−1 so as to get a coherent equivalence. Moreover, there is a unique

such choice.

Proof. The reader is encouraged at this point to ignore the following and discover a proof

for herself. To start, one may solve

for α∼ using only the inverse relations. We choose

and

We will demonstrate (α, α−1, α∼, α−∼) give a coherent equivalence. It is straightforward

to see that α∼ and α−∼ are inverse. We must show that our data satisfy the four zig-zag

relations. One of the four may be seen by the following:
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Next, notice

which allows us to show a second zig-zag relation:

The remaining two zig-zag relations are can be proved by using arguments whose

diagrams are top-bottom reflections of the given ones. Uniqueness follows from uniqueness

of inverses and the previous unit/counit uniqueness lemma.

To make labels unnecessary, we can put orientations on the data of a coherent

equivalence:

Then we just make a convention, say, X is to the right and Y is to the left as we travel

along the string.

Once we have a coherent equivalence, it is easy to work with the 2-morphisms defining

such an equivalence. One can prove, in a certain Morse-theoretic sense, that the zig-zag

relations generate all topological relations of strings in the plane. So one is free to manipulate

any composition of coherent equivalence data using topological relations without changing

the 2-morphism being described.

10.3 Application: Morita Equivalence of Rings

Let’s take a quick digression to discuss the definitions and results of the previous

section for the bicategory, Rng, whose 0-morphisms are rings, 1-morphisms are bimodules,

and 2-morphisms are linear maps. Horizontal composition of bimodules is given by taking

tensor product. In this category, incoherent equivalence is given the name Morita equiva-

lence. The definition of adjoint pair gives the usual handed definition of dual bimodules. Of

course, we would need to decorate our string diagrams with histories in order to evaluate
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them in this bicategory. Any choice of histories will do and this choice has no real effect on

the theory.

Example. We may think of column vectors Matn,1(R) as forming an (R,R)-bimodule by

using left and right scalar multiplication. We can similarly get a bimodule of row vectors,

Mat1,n(R). We can recognize (Mat1,n(R),Matn,1(R)) as a dual pair with the maps

R −→ Mat1,n⊗R Matn,1

r 7→
∑

i

rei ⊗ ei

Matn,1⊗R Mat1,n −→ R

trace of the product.

We can also recognize (Matn,1(R),Mat1,n(R)) as a dual pair with the maps

R −→ Matn,1⊗R Mat1,n

r 7→
∑

i

rei ⊗ ei

Mat1,n⊗R Matn,1 −→ R

dot product.

It’s worth noting, though, that these maps don’t satisfy the inverse relations of a

coherent equivalence: when we take the trace of the n × n identity matrix, we get n, not

1. So for R = Z, or even worse, Z/nZ, this ambidextrous adjunction is quite far from a

coherent equivalence.

Example. We may also think of column vectors Matn,1(R) as forming a (Matn,n(R), R)-

bimodule by using left and right matrix multiplication. Similarly, row vectors Mat1,n(R)

form an (R,Matn,n(R))-bimodule. The matrix multiplication maps,

Mat1,n⊗Matn,n Matn,1 −→ R

Matn,1⊗R Mat1,n −→ Matn,n

are both invertible. To invert the first, we rely heavily on the Matn,n-middle linearity. The

inverse of the second can be thought of as, “regard a matrix as a sum of rank 1 matrices.”

These maps give us the data for a coherent equivalence which demonstrates that any

ring R is Morita equivalent to its ring of square matrices, Matn,n(R). It follows that the rings

of m ×m and n × n matrices are Morita equivalent. In fact, one can directly demonstrate

this equivalence by considering the bimodule Matm,n(R) and its dual, Matn,m(R).
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In the previous example, our choice of maps

α : Mat1,n⊗Matn,n Matn,1 −→ R

β−1 : Matn,1⊗R Mat1,n −→ Matn,n

as matrix multiplication gave a coherent equivalence of rings. We can fiddle with α as

follows: given r, s ∈ R invertible, we define α′(x) = r(α(x))s. This α′ is invertible. It will,

however, usually only demonstrate an incoherent equivalence with β. We can similarly fiddle

with β by left and right multiplying by invertible matrices. Coherification improves these

less-than-wonderful choices of α′ and β′ by normalizing one using the other.



Chapter 11

Equivalence in Gray-Categories

11.1 Semi-Coherification

Definition. An incoherent equivalence in a Gray-category between 0-morphisms

and

consists of 1-morphisms

2-morphisms

and 3-morphisms

103
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We require the 3-morphisms to satisfy invertibility relations:

Several remarks on the diagrams are in order.

• In our surface diagrams, we have composition across 0-morphisms in the x-direction,

across 1-morphisms in the y-direction, and across 2-morphisms in the z-direction. We

will choose our axes as follows.

• We color one side of each surface. This is meant to be interpreted according to the

following convention: the region on the non-colored side of a surface corresponds to

the object X and the region on the colored side corresponds to Y .

• One could write the 2-morphisms on the fold lines of the surfaces. (Fold lines are

boundaries of the projection which aren’t boundary of the surface.) We have chosen

not to do this, however, as it makes the diagrams busier and is not necessary given

the coloring convention.

• As an example of our conventions, we note that the saddle ∆ is a map from 1f◦xg to

α ◦y γ.

• We will need to reference various symmetries of the cube that act on the diagrams.

Rx refers to reflection in the x-direction, and similarly for Ry and Rz. Further, we’ll

refer to swapping the colored side of a surface as Rc. We allow ourselves to refer to

Rc as a reflection for convenience.
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• When we write a relation in the above definition, we actually mean to impose all

relations of that form. To get the other relations, we act by all compositions of

Rx, Ry, Rz and Rc.

Next, we define a variant of equivalence in which we demand that the morphisms

at levels 0-2 form an up-to-isomorphism adjoint equivalence. This amounts to taking the

coherence relations for a 2-categorical adjoint equivalence as data.

Definition. A semi-coherent equivalence in a Gray-category is an incoherent equivalence

with extra 3-morphism data:

We require this extra data to satisfy invertibility relations:

Theorem (semi-coherification). Any equivalence can be semi-coherified.

Proof. We define γ′ and δ′ in terms of α, β, γ, and δ as follows:

and

Proofs from the 2-categorical case now become data that we record. The cups, caps, and

saddles for γ′ and δ′ can be defined as

and
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or various reflections thereof. We define cusps

and

and get the other cusps as Rx, Rz, and RxRz reflections of these. We automatically get

the desired invertibility relations. Indeed, the Rz reflection of a diagram gives the inverse

morphism.

11.2 Morse-Cancellation

We will now consider a coherence relation on the 3-data: the Morse-cancellation.

This relation has a Rx symmetry, so there are |〈Ry, Rz, Rc〉| = 8 Morse-cancellation relations.

We can regard these relations as zig-zag relations. Indeed, in Hom(X,X), we have Γ,Γ−1,∆,

and ∆−1, which form an incoherent 2-equivalence. This is straightforward to see: just flatten

out the x-direction of a surface diagram to get a two dimensional diagram. In other words,

the fold lines of a surface diagram give 1-morphisms in the microcosm 2-category. According

to the 2-categorical coherence argument, we can rechoose Γ and Γ−1 as

and

to give an adjoint equivalence with the ∆,∆−1 saddles. One could equally well rechoose the

saddles instead of the cup and cap. The reader may find it amusing to draw these, as well.
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11.3 Swallowtail

We consider another coherence relation on 3-morphisms: the swallowtail.

The swallowtail has a RxRz symmetry (rotation about the y-axis) and so there are

8 variants. It can be thought of as a twisted zig-zag relation. Following this assertion, we

will recreate the arguments for 2-categorical coherification, but in a twisted manner.

Definition. For any cusp, there is at most one cusp

satisfying the swallowtail relations, which we’ll call the swallowtail partner.

Proof. Consider making the right and left cancellations:

Lemma (existence of swallowtail partners). Given cusps,

we may rechoose Ψ and Ψ−1 so that the cusps satisfy the swallowtail relations.

Proof. Let’s define Φ⋉ and Φ−⋉ based on Φ,Φ−1,Ψ, and Ψ−1 as follows:

and
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We now claim that Φ and Φ⋉ satisfy their two swallowtail relations, as do Φ−1 and Φ−⋉.

We’ll show the relations for Φ and Φ⋉ and just note that the relations for the inverses may

be proved as Rz reflections. We get one swallowtail relation as follows:

Now consider the following

which lets us make the following reduction:

We can simplify the right-most diagram by using a RxRyRc reflection of the argument for

the other swallowtail relation.

11.4 Cusp-Flip

In this section, we analyze the cusp-flip relations. We will assume that we have

a semi-coherent equivalence with the Morse-cancellation and swallowtail relations at our

disposal. The cusp-flip relation is given by the following diagram.
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We can think of this rule as asserting that the the down and up deformations of a horizontal

cusp must describe the same morphism. The cusp-flip relation has a RxRzRc symmetry, so

there are 8 variants.

Lemma (solving for saddle). The following relations imply each other:

and

Proof. For the forward direction, consider

The reverse direction follows from

Lemma (solving for cusp). The following relations imply each other:

and
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Proof. For the forward direction, consider

The reverse direction follows from

The last three lemmas of this section each say that a cusp-flip relation implies a

reflected cusp-flip relation. Of course, each converse immediately holds, so we may regard

each lemma as giving a logical equivalence.

Lemma (Rz). A cusp-flip relation implies its Rz reflection cusp-flip.

implies

Proof. The data in the relation on the right are the inverses of the data in the relation

on the left. The proof only involves vertical composition, so it’s easy enough to read in

algebraic notation: if A = B, then A−1AB−1 = A−1BB−1 and so B−1 = A−1. In other

words, inverses are unique.

Lemma (RxRy). A cusp-flip relation implies its RxRy reflection cusp-flip.

implies

Proof. We showed in a previous lemma that the relation on the left is equivalent to
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Further, an RxRy reflection of that same lemma shows that the relation on the right is also

logically equivalent to this saddle relation.

Lemma (Ry). A cusp-flip relation implies its Ry reflection cusp-flip.

implies

Proof. We’ll prove the result using the alternative relations obtained by solving each for a

cusp. Then

gives the result.

11.5 Coherification

Definition. A fully coherent equivalence in a Gray-category is a semi-coherent equivalence

that further satisfies Morse-cancellations, swallowtails, and cusp-flips.
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Theorem (coherification). Any incoherent equivalence can be fully coherified.

Proof. First, semi-coherify so that we have data:

Rechoose saddle Λ−1 as Λ−1′ in terms of ∆, Ω−1, and Φ−1 as follows:

Similarly, rechoose Λ as Λ′ in terms of ∆−1, Ω, and Φ. These choices have ensured that at

least one of the eight cusp-flip relations are satisfied. Next, rechoose the Γ and Γ−1 as ∆∼

and ∆−∼:

and

Similarly, rechoose Θ, and Θ−1 as Λ′∼ and Λ−1′∼. Rechoose Ψ and Ψ−1 as Φ⋉ and Φ−⋉:
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and

Also, rechoose Υ and Υ−1 as Ω⋉ and Ω−⋉. We summarize our choices of data as follows.

At the top, is the semi-coherified data. If we were feeling more adventurous, we could extend

this tree back to the incoherent equivalence data. If we rechoose a piece of data, we place

that directly below and note which other data went into that choice. We claim that the

following data forms a fully coherent equivalence:

∆∼, ∆−∼, ∆, ∆−1, Λ′∼, Λ−1′∼, Λ′,Λ−1′, Φ, Φ−1, Φ⋉, Φ−⋉, Ω⋉, Ω−⋉, Ω, Ω−1

We’ve ensured that all Morse-cancellations and swallowtails hold and one of the eight

cusp-flip holds. By the lemmas of the cusp-flip section, all eight cusp-flip relations now hold,

automatically. Indeed, Rz, RxRy, and Ry generate all cusp-flips given the RxRzRc symmetry

of the cusp-flip relation.



Chapter 12

Future Work

There are a number of things that I’d like to explore that didn’t make it into the

main part of the dissertation. Here is a list of a few of them.

• I’d like to prove that the Sd / forget adjunctions are monadic.

• We should be able to describe relations for a free n-category of diagrams as a quotient

of a (n+1)-category of diagrams, where the (n+1)-morphisms are used to encode the

relations.

• There is a free bicategory of string diagrams equipped with histories. In fact, most

of this has already been written, but a few technical points remain to be settled

concerning evaluation.

• The free bicategory of string diagrams with histories is biequivalent to the free 2-

category of string diagrams. This would carefully encode the idea that decorations for

a string diagram are not interesting.

• Suppose C and D are 2-categories and suppose we have a string diagram δ labeled

in C. We would like to describe how to overlay δ with string diagrams in order to

describe functors C → D, pseudonatural transformations, and modifications acting on

δ.

I also have a few questions that I’m still working on for the coherence of equivalence

part of the dissertation.

How unique is coherification in a Gray-category?
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The coherification result for equivalences in Gray-categories may be regarded as a statement

of existence. That is, given any incoherent equivalence, we have give a procedure to build

a coherent equivalence. I’m working on a uniqueness result: a coherent equivalence in a

Gray-category should be determined by a small subset of its defining data.

What can we say about Tang12?

The calculations in this paper should be regarded as taking place in a free Gray-category on

the given generators, quotiented by the given invertibility and topological relations. There’s

another Gray-category that I’m interested in, Tang12, which has all the same generating

morphisms as a coherent equivalence, but is only subject to the topological relations. I’ve

been looking at understanding maps between representations of Tang12.

To what degree can we extend “mates” to surfaces?

Suppose a and b are parallel 1-morphisms in a 2-category with right adjoints. Then any map

τ : a → b has a corresponding mate τ∗ : b∗ → a∗. If τ happens to be an isomorphism, then

a quick diagrammatic check shows the inverse of the mate is the mate of the inverse. The

situation is more complicated with surfaces. Indeed, the existence of saddles requires us to

be working with the ambidextrous adjunction. But then any τ induces Z-many maps, half

a → b and half b∗ → a∗. I’m thinking about a calculus of surfaces with embedded curves to

sort this all out.



Appendix A

Smooth Functions

In this Appendix, we review from Calculus our definition of a smooth function be-

tween arbitrary subsets of Euclidean spaces.

Definition. A function f : R → R is of class Ck if it has continuous derivatives up to order

k:

f ′, f ′′, . . . f (k).

We say f is of class C∞ or smooth if it has derivatives of all orders.

“Being smooth” is a local property of a function. We only need our function to be

defined on some neighborhood of a point in order to decide if the function is smooth. So we

say that a function is smooth at a point p if there is some neighborhood U of p on which

it is smooth. The function is smooth, then, if and only if it is smooth at every point in

its domain. We may similarly define smoothness locally for a function whose domain is a

higher dimensional Euclidean space.

A function f : Rm → R is smooth at a point p ∈ Rm if there exist partial deriva-
tives of all orders on some neighborhood U of p.

It is straightforward to define smoothness for functions whose codomains are higher dimen-

sional Euclidean spaces.

A map g : U → Rn is smooth if and only if each of the component functions

U
g
−→ R

n proji−−−→ R, 1 ≤ i ≤ n,

is smooth.
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Our most general definition of smooth function works for functions defined on arbitrary (not

necessarily open) subsets of Euclidean spaces.

Suppose A ⊂ Rm and B ⊂ Rn are arbitrary subsets. A map f : A → B is smooth
at p ∈ A if there is an open neighborhood U ⊂ Rm of p on which f has a smooth
extension

f̃ : U → R
n.

Our last definition is perhaps a bit strange for the following reason: at each point

we demand the existence of an extension, f̃ , but we do not keep a record of f̃ for later use.

This is reasonable because the values of a smooth function f near the boundary determine

the function values at the boundary. Why then do we bother to ask for an extension? There

exist functions which are smooth on the interior of their domain A◦ ⊂ Rm but which admit

no smooth extension on a neighborhood of the boundary. Such functions do not deserve to

be called smooth at their boundary.

Example. The function y = x1/3 on R≥0 → R≥0 is smooth at all points in the interior

of R≥0. It is not smooth at 0, however, because it cannot be smoothly extended on any

neighborhood of 0 in R. Indeed, the one-sided derivative shows that dy/dx must be undefined

at x = 0.



Appendix B

Adjoint Functors

A pair of functors, r : C → D and l : D → C are an adjoint pair (l, r) if there is a

bijection,

HomD(X, r(Y )) ∼= HomC(l(X), Y ),

which is natural in X and Y . We’ll say that l is the left is adjoint of r or that r is the right

adjoint of l. The use of “left” and “right” refer to which slot, the domain or codomain, in

which we place l and r above.

Adjoint functors are good for describing “free” constructions. A free object is one

in which the maps out of it are determined by a choice of where to send the generators.

Moreover, the generators should be “indepedent” in the sense that we are free to send the

generators wherever we want. A free functor, then, is a left adjoint to a functor which

“forgets” structure.

Hom(X, forget(Y )) ∼= Hom(free(X), Y )

Every adjoint pair of functors automatically comes with unit and counit natural

transformations:

α : D ⇒ D
l
−→ C

r
−→ D

β : C
r
−→ D

l
−→ C ⇒ C

These will satisfy zig-zag relations :

D
l
−→ C ⇒ D

l
−→ C

r
−→ D

l
−→ C ⇒ D

l
−→ C = D

l
−→ C

C
r
−→ D ⇒ C

r
−→ D

l
−→ C

r
−→ D ⇒ C

r
−→ D = C

r
−→ D

In fact, the converse is also true.
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Theorem. Functors r : C → D and l : D → C form an adjoint pair (l, r) if and only if there

are natural transformations

α : D ⇒ D
l
−→ C

r
−→ D

β : C
r
−→ D

l
−→ C ⇒ C

satisfying the zig-zag relations.

Proof. We have two directions to show.

adjoints have units and counits Let’s give the natural bijection of Hom sets a name:

ϕX,Y : HomD(X, r(Y )) ∼= HomC(l(X), Y ).

We define α and β as follows. Suppose c is an object of C and d is an object of D.

Then we define:

α(d) = ϕ−1
d,l(d)(1l(d)) : d → r(l(d))

β(c) = ϕr(c),c(1r(c)) : l(r(c)) → c

These assignments are natural. For example, given f : d → d′ in D, we get the

naturality square

d
α(d)
−−→ r(l(d))

r(l(f))
−−−−→ r(l(d′)) = d

f
−→ d′

α(d′)
−−−→ r(l(d′))

because both composites are the image of l(f) under

HomC(l(d), l(d
′))

ϕ−1
d,l(d′)

−−−−→ HomD(d, r(l(d
′)))

according to the naturality squares for ϕ−1
d,l(f) and ϕ−1

f,l(d′). The naturality for β is very

similar.

It remains to show that the zig-zag relations hold. We’ll show

r(c)
α(r(c))
−−−−→ r(l(r(c)))

r(β(c))
−−−−→ r(c)

is the identity on r(c). The naturality square for ϕr(c),β(c) tell us

HomD(r(c), r(l(r(c))))
β(c)∗
−−−→ HomD(r(c), r(c))

ϕr(c),c
−−−−→ HomC(l(r(c)), c) =

HomD(r(c), r(l(r(c)))
ϕr(c),l(r(c))
−−−−−−−→ HomC(l(r(c)), l(r(c)))

β(c)∗
−−−→ HomC(l(r(c)), c)

Pushing α(r(c)) around this diagram gives the desired result. The other zig-zag rela-

tion holds due to naturality of ϕ with respect to α(l(d)).
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zig-zags imply adjunction We’ll define

ϕX,Y : HomD(X, r(Y )) −→ HomC(l(X), Y )

and its proposed inverse as follows:

X
a
−→ r(Y ) 7→ l(X)

l(a)
−−→ l(r(Y ))

β(Y )
−−−→ Y

l(X)
b
−→ Y 7→ X

α(X)
−−−→ r(l(X))

r(b)
−−→ r(X)

We’ll first check that these are, in fact, inverse:

X
a
−→ r(Y ) 7→ X

α(X)
−−−→ r(l(X))

r(l(a))
−−−−→ r(l(r(Y )))

r(β(Y ))
−−−−−→ r(Y )

= X
a
−→ r(Y )

α(r(Y ))
−−−−−→ r(l(r(Y )))

r(β(Y ))
−−−−−→ r(Y )

= X
a
−→ r(Y )

1
−→ r(Y )

Here we used naturality of α with respect to a and one of the zig-zag relations. We

may use naturality of β with respect to b and the other zig-zag relation to show that

the following composite is equal to the identity.

l(X)
b
−→ Y 7→ l(X)

l(α(X))
−−−−−→ l(r(l(X)))

l(r(b))
−−−−→ l(r(Y ))

β(Y )
−−−→ Y

We must also check naturality for ϕ. That is, we’ll show that the ϕX,Y are the

components of a natural transformation. Suppose f : Y → Y ′ is a morphism in C.

Naturality of ϕ with respect to f requires that for any a : X → r(Y ),

l(X)
l(a)
−−→ l(r(Y ))

β(Y )
−−−→ Y

f
−→ Y ′ = l(X)

l(a)
−−→ l(r(Y ))

l(r(f))
−−−−→ l(r(Y ′))

β(Y ′)
−−−→ Y ′

This follows by naturality of β with respect to f . Naturality of ϕ with respect to a

morphism g : X ′ → X in D is even easier: in this case g acts on the left and β on

the right, so naturality follows from the associativity of composition alone. Since ϕ

is a natural transformation, it follows automatically that by inverting its components,

ϕ−1, we get a natural transformation.

This theorem gives us a characterization of adjunctions that works in any bicategory.

In particular, we may apply it to monoidal categories, in which case we recover the usual

notion of dual objects. We’ll introduce “mates” in order to prove uniqueness of adjoints.
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Definition. Suppose σ : f → g and suppose that f and g both have right adjoints, f∗ and

g∗. Then σ induces a morphism σ∗ : g∗ → f∗ which we call the σ’s (right) mate. We define

σ∗ as follows:

g∗ −→ g∗ ◦ f ◦ f∗ g∗◦σ◦f∗

−−−−−→ g∗ ◦ g ◦ f∗ −→ f∗

We may make a similar definition for left adjoints.

Proposition. If a right adjoint exists, then it is essentially unique.

Proof. Suppose σ : f → g is an isomorphism and suppose that f and g have right adjoints.

Then σ induces an isomorphism g∗ → f∗ which respects the adjunction. This is best seen

by as a proof-by-diagrams which we leave as an exercise to the reader.



Appendix C

Sesquicategories and Gray-Categories

Roughly speaking, a sesquicategory is a 2-category which lacks horizontal composi-

tion of 2-morphisms. This lack of composition means that we cannot state, and therefore

don’t demand, an interchange rule. We retain, however, a horizontal composition of 2-

morphisms with 1-morphisms.

Definition. A sesquicategory, or 11
2 -category, C has data as follows.

• a collection ObjC of objects ;

• a collection HomC(X,Y ) of 1-morphisms for each pair of objects X,Y ∈ ObjC ;

• a collection 2-HomC(a, b) of 2-morphisms for each pair of 1-morphisms

a, b ∈ HomC(X,Y ).

We also have structure as follows.

• a binary operation

HomC(X,Y )×HomC(Y, Z)
◦x−−−−−→ HomC(X,Z)

called horizontal composition,

• a binary operation

2-HomC(a, b)× 2-HomC(b, c)
◦y

−−−−−→ 2-HomC(a, c)

called vertical composition,
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• a nullary operation

∗
1X−−−−−→ HomC(X,X)

called the identity for objects.

• a nullary operation

∗
1a−−−−−→ 2-HomC(a, a)

called the identity for 1-morphisms.

• we have a 2-morphism a ◦x α ∈ 2-HomC(a ◦x b, a ◦x c) called the whiskering of α by a

on the left for any

– objects W,X, Y ∈ ObjC ,

– 1-morphism a ∈ HomC(W,X),

– 1-morphisms b, c ∈ HomC(X,Y ), and

– 2-morphism α ∈ 2-HomC(b, c),

• we have a 2-morphism α ◦x d ∈ 2-HomC(b ◦x d, c ◦x d) called the whiskering of α by d

on the right for any

– objects X,Y, Z ∈ ObjC ,

– 1-morphism d ∈ HomC(Y, Z),

– 1-morphisms b, c ∈ HomC(X,Y ), and

– 2-morphism α ∈ 2-HomC(b, c).

We require the following rules.

• Horizontal composition is associative and unital.

(a ◦x b) ◦x c = a ◦x (b ◦x c),

1X ◦x a = a,

a ◦x 1Y = a.

• Vertical composition is associative and unital.

(α ◦y β) ◦y γ = α ◦y (β ◦y γ),

1a ◦y α = α,

α ◦y 1b = α.
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• Whiskering distributes over vertical composition.

a ◦x (α ◦y β) = (a ◦x α) ◦y (a ◦x β),

(α ◦y β) ◦x d = (α ◦x d) ◦y (β ◦x d).

• Whiskering is unital.

1X ◦x α = α,

α ◦x 1Y = α.

• Whiskering satisfies bimodule relations.

(a ◦x b) ◦x α = a ◦x (b ◦x α),

α ◦x (c ◦x d) = (α ◦x c) ◦x d,

(b ◦x α) ◦x c = b ◦x (α ◦x c).

Functors of sesquicategories are straightforward to define. Notice, also, that pseudo-

natural transformations do not use horizontal composites. Indeed, they only use vertical

composites of whiskered 2-morphisms and so their definition goes through for sesquicate-

gories.

Definition. A Gray-category C is a sesquicategory with extra data, structure, and rules.

In addition to having objects, 1-morphisms, and 2-morphisms, we have

• a collection 3-HomC(α, β) of 3-morphisms for each pair of 2-morphisms

α, β ∈ 2-HomC(a, b).

We have structure as follows.

• a binary operation

3-HomC(α, β)× 3-HomC(γ, δ)
◦y

−−−−−→ 3-HomC(α ◦y γ, β ◦y δ).

• a binary operation

3-HomC(α, β)× 3-HomC(β, γ)
◦z−−−−−→ 3-HomC(α, γ).

• a nullary operation

∗
1α−−−−−→ 3-HomC(α, α).
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• We have a 3-morphism a ◦x Γ ∈ 3-HomC(a ◦x α, a ◦x β) for any

– objects W,X, Y ∈ ObjC ,

– 1-morphism a ∈ HomC(W,X),

– 1-morphisms b, c ∈ HomC(X,Y ),

– 2-morphisms α, β ∈ 2-HomC(b, c), and

– 3-morphism Γ ∈ 3-HomC(α, β).

• We have a 3-morphism Γ ◦x d ∈ 3-HomC(α ◦x d, β ◦x d) for any

– objects X,Y, Z ∈ ObjC ,

– 1-morphism d ∈ HomC(Y, Z),

– 1-morphisms b, c ∈ HomC(X,Y ),

– 2-morphisms α, β ∈ 2-HomC(b, c), and

– 3-morphism Γ ∈ 3-HomC(α, β).

• We have an invertible 3-morphism

Θα,c,β ∈ 3-HomC((α ◦x c ◦x d) ◦y (b ◦x c ◦x β), (a ◦x c ◦x β) ◦y (α ◦x c ◦x e))

called the Gray-interchanger for any

– objects W,X, Y, Z ∈ ObjC ,

– 1-morphisms a, b ∈ HomC(W,X), c ∈ HomC(X,Y ), d, e ∈ HomC(Y, Z), and

– 2-morphisms α ∈ 2-HomC(a, b), β ∈ 2-HomC(d, e).

These satisfy the following rules. Note that each of the Gray-interchanger rules has a similar

rule for Θ−1 that we will also impose.

• The compositions are associative and unital.

(Γ ◦y ∆) ◦y Λ = Γ ◦y (∆ ◦y Λ),

11a ◦y Γ = Γ and Γ ◦y 11b = Γ,

(Γ ◦z ∆) ◦z Λ = Γ ◦z (∆ ◦z Λ),

1α ◦z Γ = Γ and Γ ◦z 1β = Γ.
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• We have an interchange rule for the y and z-compositions.

(Γ ◦y ∆) ◦z (Λ ◦y Ω) = (Γ ◦z Λ) ◦y (∆ ◦z Ω).

• Whiskering distributes over the compositions.

a ◦x (Γ ◦y ∆) = (a ◦x Γ) ◦y (a ◦x ∆),

(Γ ◦y ∆) ◦x d = (Γ ◦x d) ◦y (∆ ◦x d),

a ◦x (Γ ◦z ∆) = (a ◦x Γ) ◦z (a ◦x ∆),

(Γ ◦z ∆) ◦x d = (Γ ◦x d) ◦z (∆ ◦x d).

• Whiskering is unital.

1X ◦x Γ = Γ,

Γ ◦x 1Y = Γ.

• Whiskering satisfies bimodule relations.

(a ◦x b) ◦x Γ = a ◦x (b ◦x Γ),

Γ ◦x (c ◦x d) = (Γ ◦x c) ◦x d,

(b ◦x Γ) ◦x c = b ◦x (Γ ◦x c).

• The Gray-interchanger is natural.

((Γ ◦x c ◦x d) ◦y (b ◦x c ◦x γ)) ◦z Θβ,c,γ = Θα,c,γ ◦z ((a ◦x c ◦x γ) ◦y (Γ ◦x c ◦x e))

((β ◦x c ◦x d) ◦y (b ◦x c ◦x ∆)) ◦z Θβ,c,δ = Θβ,c,γ ◦z ((a ◦x c ◦x ∆) ◦y (β ◦x c ◦x e))

for any

– objects W,X, Y, Z,

– 1-morphisms a, b ∈ HomC(W,X), c ∈ HomC(X,Y ), d, e ∈ HomC(Y, Z),

– 2-morphisms α, β ∈ 2-HomC(a, b), γ, δ ∈ 2-HomC(d, e), and

– 3-morphisms Γ ∈ 3-HomC(α, β), ∆ ∈ 3-HomC(γ, δ).
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• The Gray-interchanger satisfies braid relations.

((Θα,X,β ◦x e) ◦y (b ◦x d ◦x γ))

◦z ((a ◦x β ◦x e) ◦y Θα,d,γ)

◦z ((a ◦x Θβ,Y,γ) ◦y (α ◦x d ◦x f))

=

((α ◦x c ◦x e) ◦y (b ◦x Θβ,Y,γ))

◦z (Θα,c,γ ◦y (b ◦x β ◦x f))

◦z ((a ◦x c ◦x γ) ◦y (Θα,X,β ◦x f))

for any

– objects W,X, Y, Z ∈ ObjC ,

– 1-morphisms a, b ∈ HomC(W,X), c, d ∈ HomC(X,Y ), e, f ∈ HomC(Y, Z), and

– 2-morphisms α ∈ 2-HomC(a, b), β ∈ 2-HomC(c, d), γ ∈ 2-HomC(e, f).

• The Gray-interchanger satisfies rope relations.

Θ(α◦yβ),d,γ = ((α ◦x d ◦x e) ◦y Θβ,d,γ) ◦z (Θα,d,γ ◦y (β ◦x d ◦x f))

Θβ,d,(γ◦yδ) = (Θβ,d,γ ◦y (c ◦x d ◦x δ)) ◦z ((b ◦x d ◦x γ) ◦y Θβ,d,δ)

for any

– objects W,X, Y, Z ∈ ObjC

– 1-morphisms a, b, c ∈ HomC(W,X), d ∈ HomC(X,Y ), e, f, g ∈ HomC(Y, Z), and

– 2-morphisms α ∈ 2-HomC(a, b), β ∈ 2-HomC(b, c), γ ∈ 2-HomC(e, f),

δ ∈ 2-HomC(f, g).

Our definition of a Gray-category is rather verbose. We may package this up neatly

using the theory of categories enriched in a monoidal category. While we won’t review

enriched categories, we will give a brief introduction to the monoidal category Gray of 2-

categories and 2-functors. We do not equip Gray with the standard Cartesian product of

categories. Instead, we give Gray a tensor product which is best understood in terms of

cubical functors.

Definition. Suppose C1, C2, . . . , Cn, and D are 2-categories. A cubical functor

C1 × · · · × Cn
f

−−−−→ D
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is a weak 2-functor which satisfies the following. For any pair of 1-morphisms of the following

form (1 ≤ i ≤ n)

a =
(

X1
a1−→ Y1, . . . , Xi−1

ai−1
−−−→ Yi−1, Xi

ai−→ Yi, Yi+1
1

−−→ Yi+1, . . . , Yn
1
−→ Yn

)

b =

(

Y1
1
−→ Y1, . . . , Yi−1

1
−−→ Yi−1, Yi

bi−→ Zi, Yi+1
bi+1
−−→ Zi+1, . . . , Yn

bn−→ Zn

)

we have f(ab) = f(a)f(b) and the structural morphism f(ab) ∼= f(a)f(b) is the identity.

Consider a cubical functor of two variables, C1 × C2
⊗
−−→ D. For any 1-morphism

(a1, a2), we may write both

a1 ⊗ a2 = (a1 ⊗ 1) ◦ (1⊗ a2), and

a1 ⊗ a2 ∼= (1⊗ a2) ◦ (a1 ⊗ 1).

Notice that the first line is an equality, but the second line uses a structural 2-morphism for

⊗. Putting these lines together, the structural 2-morphism may be thought of as a square,

(a1 ⊗ 1) ◦ (1⊗ a2) ∼= (1⊗ a2) ◦ (a1 ⊗ 1).

So while we prefer to think of a1 ⊗ a2 as “doing a1 before doing a2” (LHS), we also have a

chosen isomorphism to the other order (RHS).

Now let’s consider a cubical functor of three variables, C1 × C2 × C3
⊗
−−→ D. We

note that for fixed objects X1, X2, and X3,

⊗(X1,−,−), ⊗(−, X2,−), and ⊗ (−,−, X3)

are cubical functors of 2-variables. Our cubical condition allows us to write an equality for

any 1-morphism (a1, a2, a3),

⊗(a1, a2, a3) = ⊗(a1, 1, 1) ◦ ⊗(1, a2, 1) ◦ ⊗(1, 1, a3).

We may paste together the structural 2-morphisms to build composite 2-morphisms,

⊗ (a1, 1, 1) ◦ ⊗(1, a2, 1) ◦ ⊗(1, 1, a3)

⇒⊗ (1, a2, 1) ◦ ⊗(a1, 1, 1) ◦ ⊗(1, 1, a3)

⇒⊗ (1, a2, 1) ◦ ⊗(1, 1, a3) ◦ ⊗(a1, 1, 1)

⇒⊗ (1, 1, a3) ◦ ⊗(1, a2, 1) ◦ ⊗(a1, 1, 1)
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and

⊗ (a1, 1, 1) ◦ ⊗(1, a2, 1) ◦ ⊗(1, 1, a3)

⇒⊗ (a1, 1, 1) ◦ ⊗(1, 1, a3) ◦ ⊗(1, a2, 1)

⇒⊗ (1, 1, a3) ◦ ⊗(a1, 1, 1) ◦ ⊗(1, a2, 1)

⇒⊗ (1, 1, a3) ◦ ⊗(1, a2, 1) ◦ ⊗(a1, 1, 1).

The coherence relations for ⊗, thought of as a weak 2-functor, ensure that these composite

2-morphisms agree. If we like pasting diagrams, we can think of these compositions taking

place on the boundary of a cube. We might also recognize this as a braid relation.

Definition. Suppose A and B are 2-categories. We’ll let Ps(A,B) denote the 2-category of

(strict) 2-functors A → B, pseudonatural transformations, and modifications.

There is a tensor product � that makes Ps(B,C) the “internal hom” for the 2-

category 2-Cat of small 2-categories. We won’t define �, but just note that it is characterized

by the following proposition.

Proposition. Suppose A, B, and C are 2-categories. The following are equivalent.

• a cubical functor A×B −→ C, and

• a 2-functor A −→ Ps(B,C),

• a 2-functor A�B −→ C.

Proof. See Gordon-Power-Street [GPS95].

Definition. We’ll let Gray denote the monoidal category of 2-categories and (strict) 2-

functors. The monoidal product is given by �.

A Gray-category C, then, is a category with Hom sets enriched in Gray. So for

any two objects X and Y , we have that HomC(X,Y ) is a 2-category. By the previous

proposition, we may think of composition as a cubical functor,

HomC(X,Y )×HomC(Y, Z)
◦x−−−−−→ HomC(X,Z).

The structural 2-morphism squares record Gray-interchangers for seams separated by a

region. We get our Gray-interchanger “over a 1-morphism” as the structural morphism for

the cubical functor in two variables,

◦x(−, c,−) : HomC(W,X)×HomC(X,Y )×HomC(Y, Z) −→ HomC(W,Z),

for a fixed 1-morphism c ∈ HomC(X,Y ).
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