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OPEN-CLOSED TOPOLOGICAL QUANTUM FIELD THEORY

AND TANGLE HOMOLOGY

Thesis Summary for Aaron Lauda

In this thesis we examine the relationship between 2-dimensional topological field theories

and homological link invariants, or what are sometimes referred to as ‘categorified’ link invari-

ants. To this end, we provide a detailed description of a special sort of 2-dimensional extended

Topological Quantum Field Theories (TQFTs) which are called open-closed TQFTs. A state

sum, or ‘local’, construction of such TQFTs is then defined and used to define an algebraic

tangle homology theory based on Khovanov’s link homology.

Open-closed TQFTs are defined in Chapter 2 to algebraically represent open-closed cobor-

disms by which we mean smooth compact oriented 2-manifolds with corners that have a

particular global structure in order to model the smooth topology of open and closed string

worldsheets. We show that the category of open-closed TQFTs is equivalent to the category

of knowledgeable Frobenius algebras. A knowledgeable Frobenius algebra (A,C, ı, ı∗) consists

of a symmetric Frobenius algebra A, a commutative Frobenius algebra C, and an algebra

homomorphism ı : C → A with dual ı∗ : A → C, subject to some conditions. This result is

achieved by providing a generators and relations description of the category of open-closed

cobordisms. In order to prove the sufficiency of our relations, we provide a normal form for

such cobordisms which is characterized by topological invariants. Starting from an arbitrary

such cobordism, we construct a sequence of moves (generalized handle slides and handle can-

cellations) which transforms the given cobordism into the normal form. Using the generators

and relations description of the category of open-closed cobordisms, we show that it is equiv-

alent to the symmetric monoidal category freely generated by a knowledgeable Frobenius

algebra. Our formalism is then generalized to the context of open-closed cobordisms with

labeled free boundary components, i.e. to open-closed string worldsheets with D-brane labels

at their free boundaries.

In Chapter 3 we present a state sum construction of two-dimensional open-closed Topolog-



ical Quantum Field Theories (TQFTs) which generalizes the state sum of Fukuma–Hosono–

Kawai from conventional two-dimensional cobordisms to open-closed cobordisms. This con-

struction reveals the topological interpretation of the associative algebra that enters the state

sum construction as the vector space that the TQFT assigns to the unit interval. Extending

the notion of a two-dimensional TQFT from cobordisms to suitable manifolds with corners

therefore makes the relationship between the global description of the TQFT in terms of a

functor into the category of vector spaces and the local description in terms of a state sum

fully transparent. We also illustrate the state sum construction of an open-closed TQFT with

a finite set of D-branes using the example of the groupoid algebra of a finite groupoid.

Finally, in Chapter 4 we use open-closed TQFTs in order to extend Khovanov homol-

ogy from links to tangles. For every plane diagram of an oriented tangle, we construct a

chain complex whose homology is invariant under Reidemeister moves. We give examples of

knowledgeable Frobenius algebras for which our tangle homology theory reduces to the link

homology theories of Khovanov, Lee, and Bar-Natan if it is evaluated for links.



Acknowledgements

I owe a great debt of gratitude to my supervisor Martin Hyland for his guidance, patience, and

the many declarations of “remain calm” uttered over my three year stay in Cambridge. I am

also grateful to John Baez who introduced me to category theory, taught me a great deal, and

gave me valuable advice over the years. Much of this thesis consists of work done in the course

of a collaborative project in the area of TQFT conducted with my friend Hendryk Pfeiffer

with whom I have shared many productive hours. The output of the project is currently

represented by the papers [1–3].

I should also like to thank Eugenia Cheng for teaching me about n-categories and David

Kagan for ‘string-y’ conversations over the countless lunches in the department and dinners

at Maharaja’s. I am grateful to Peter May, Nick Gursky, Michael Shulman, and others at the

University of Chicago. For introducing me to the subjects upon which this thesis is based, I

would like to thank Nils Baas and Dror Bar-Natan. I would also like to thank Dror Bar-Natan

for use of his diagrams and symbol package dbnsymb. For their various contributions to the

papers upon which this thesis is based, I would like to thank Mikhail Khovanov, Gerd Laures,

Marco Mackaay, Ingo Runkel, Alex Shannon, Ivan Smith, Simon Willerton, Jonathan Woolf,

and the European Union Superstring Theory Network.

Most of all I would like to thank my wife Alison, for the years of understanding, love, and

support. I am grateful to my parents for their continued love and support and the sacrifices

they have made for my education. I am also grateful to Alison’s parents for all that they

have done, both accepting me into their families, and supporting me and Alison during our

University studies.

Aaron Lauda

Cambridge

February 23, 2006



Because something is happening here

But you don’t know what it is

Do you, Mister Jones?

—Bob Dylan



Contents

Acknowledgements i

1 Introduction 1

1.0.1 Two-dimensional Topological Field Theories . . . . . . . . . . . . . . . . 2

1.0.2 Link homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.0.3 Open-closed TQFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.0.4 Tangle homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.0.5 Open-closed TQFTs from state sum constructions . . . . . . . . . . . . 11

1.0.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Open-Closed Topological Field Theories 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Symmetric monoidal categories and string diagrams . . . . . . . . . . . . . . . 18

2.3 Frobenius algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 String diagrams for Frobenius algebras . . . . . . . . . . . . . . . . . . . 24

2.4 Knowledgeable Frobenius algebras . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 The category K-Frob(C) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 The category Th(K-Frob) . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 The category of open-closed cobordisms . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 〈2〉-manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Open-closed cobordisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 Invariants for open-closed cobordisms . . . . . . . . . . . . . . . . . . . 39

2.5.4 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.5 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS vii

2.5.6 Consequences of relations . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 The normal form of an open-closed cobordism . . . . . . . . . . . . . . . . . . . 53

2.6.1 The case of open source and closed target . . . . . . . . . . . . . . . . . 53

2.6.2 The case of generic source and target . . . . . . . . . . . . . . . . . . . . 57

2.6.3 Proof of sufficiency of relations . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Open-closed TQFTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.8 Boundary labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.9 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 State sum construction of open-closed TQFT 78

3.1 The Fukuma, Hosono, and Kawai state sum . . . . . . . . . . . . . . . . . . . . 78

3.2 Strong Separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.1 Symmetric Frobenius algebras . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.2 Strongly separable algebras . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.3 Strongly separable symmetric Frobenius algebras . . . . . . . . . . . . . 87

3.2.4 Idempotents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Combinatorial open-closed cobordisms . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.1 Smoothing theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 State Sum Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4.1 Defining the state sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4.2 Invariance under Pachner moves . . . . . . . . . . . . . . . . . . . . . . 102

3.4.3 Independence of the triangulation of black boundaries . . . . . . . . . . 103

3.4.4 Open-closed Topological Quantum Field Theories . . . . . . . . . . . . . 106

3.4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5 State sums with D-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Khovanov homology for tangles 116

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1.1 The Jones Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1.2 Khovanov homology for links . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1.3 Bar-Natan’s ‘picture world’ . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Tangle homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2.1 Commutative and skew-commutative cubes . . . . . . . . . . . . . . . . 123

4.2.2 Constructing the complex [[T ]] . . . . . . . . . . . . . . . . . . . . . . . . 124



CONTENTS viii

4.3 State sum tangle homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4 Invariance under Reidemeister moves . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.1 Invariance under Reidemeister move one . . . . . . . . . . . . . . . . . . 139

4.4.2 Invariance under Reidemeister move two . . . . . . . . . . . . . . . . . . 141

4.4.3 Invariance under Reidemeister move three . . . . . . . . . . . . . . . . . 143

4.5 Applying an open-closed TQFT and obtaining a homology theory . . . . . . . . 148

4.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A Symmetric monoidal categories 154

B Abelian categories 158

References 160

Index 166



Chapter 1

Introduction

In this thesis we examine the relationship between 2-dimensional topological field theories and

homological link invariants, or what are sometimes referred to as ‘categorified’ link invariants.

Loosely speaking, categorification is the process of turning numbers into vector spaces and

vector spaces into categories. More generally, Louis Crane coined the term categorification to

refer to the idea of finding categorical notions which generalize set theoretic concepts [4]. There

are many examples of categorification in the literature ( for example [5–11]), but Khovanov’s

categorification of the Jones polynomial serves as the motivation for much of the work done

in this thesis.

The Jones polynomial is a polynomial link invariant in Z[q, q−1]. Khovanov’s novel idea

was to generalize the Jones polynomial to a chain complex of graded vector spaces. For

every plane diagram of an oriented link L, Khovanov’s link homology theory [12] yields a

chain complex [[L]] of graded vector spaces whose graded Euler characteristic agrees with the

Jones polynomial of the link. This construction can be seen as a categorification of the

suitably normalized Jones polynomial, replacing a polynomial in one indeterminate q by a

chain complex of graded vector spaces where the degree corresponds to the exponent of q.

The coefficients of the polynomial arise as the dimensions of the homogeneous components of

the graded homology groups of the chain complex in such a way that the degree corresponds

to the power of q.

If two link diagrams are related by a Reidemeister move, the corresponding chain com-

plexes of graded vector spaces are homotopy equivalent, and so their homology groups are

isomorphic as graded vector spaces. This of course implies that their graded Euler character-

istics and thereby their Jones polynomials agree, but in general the homology groups contain
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more information about the link than just the Jones polynomial. Indeed, Bar-Natan [13, 14]

has shown that there are knots and links that have the same Jones polynomial, but which

can be distinguished by their Khovanov homology.

1.0.1 Two-dimensional Topological Field Theories

The construction of Khovanov’s chain complex heavily relies on a 2-dimensional Topologi-

cal Quantum Field Theory (TQFT). An n-dimensional Topological Quantum Field Theory

(TQFT) [15] is a symmetric monoidal functor from the category nCob of n-dimensional cobor-

disms to the category Vectk of vector spaces over a given field k. The objects of the category

nCob are smooth compact oriented (n− 1)-manifolds without boundary, and the morphisms

are equivalence classes of smooth compact oriented cobordisms between these, modulo diffeo-

morphisms that restrict to the identity on the boundary. An n-dimensional TQFT therefore

associates vector spaces with (n − 1)-manifolds and linear maps with n-dimensional cobor-

disms. Disjoint unions of manifolds correspond to tensor products of vector spaces and linear

maps, and gluing cobordisms along their boundaries corresponds to the composition of linear

maps. Note that the empty (n − 1)-manifold plays the role of the unit object for the tensor

product and corresponds to the field k.

For n = 2, the category nCob is well understood, and so there are strong results about

2-dimensional TQFTs. For these classic results, we refer to [16–18] and to the book [19]. It is

known, for example, that 2-dimensional TQFTs are characterized by commutative Frobenius

algebras. The objects of 2Cob are compact 1-manifolds without boundary, i.e. disjoint unions

of circles S1. For the morphisms of 2Cob, one has a description in terms of generators and

relations. The generators are these cobordisms:

µ ∆ η ε

. (1.0.1)

We have drawn them in such a way that their source is at the top and their target at the bottom

of the diagram. The TQFT is a functor Z : 2Cob → Vectk. If we denote by C := Z(S1)

the vector space associated with the circle, the TQFT assigns linear maps µ : C ⊗ C → C,

∆: C → C ⊗ C, η : k → C and ε : C → k to the morphisms depicted in (1.0.1). The

relations among the morphisms of 2Cob then imply that (C,µ, η,∆, ε) forms a commutative

Frobenius algebra. Conversely, given any commutative Frobenius algebra C, there is a functor

Z : 2Cob→ Vectk such that Z(S1) = C.
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The generators and relations description of the category 2Cob greatly simplifies the study

of 2-dimensional TQFTs. In fact, there is a categorical equivalence between the category of

2-dimensional topological field theories and the category of commutative Frobenius algebras.

This makes the translation between algebra and topology a very simple matter.

1.0.2 Link homology

0 ??��

1
��?

?

0 44jjjjj

1
**TTTT

T

0 44jjjjj

1
**TTTT

T

Given a link diagram L, both the Jones polynomial and Kho-

vanov’s categorification of it can be computed from the resolutions of

the link diagram. To resolve a link diagram one locally replaces each

of the crossings (0) by the 0-smoothing (1) and the 1-smoothing (H).

This produces two link diagrams built from the original by these local

replacements. It is easy to see that if one resolves all of the n crossings

of a given link diagram then there will be 2n resolutions each of which consists of the disjoint

union of link diagrams diffeomorphic to circles. The Khovanov complex [[L]] is computed from

these resolutions by regarding each resolution as an object of the category 2Cob. The differ-

ential is then computed using the morphisms of 2Cob, that is using 2-dimensional cobordisms.

Hence, applying a 2-dimensional topological quantum field theory to this complex produces

an algebraic realization of the complex and provides a computable link invariant. But from

the discussion above, specifying a 2-dimensional TQFT amounts to specifying a commutative

Frobenius algebra.

Khovanov’s original choice of Frobenius algebra A[c] over the commutative ring R = Z[c]

is such that one gets a chain complex of graded modules and a categorification of the Jones

polynomial. His TQFT is actually a functor 2Cob → ModR. We restrict ourselves to the

case c ≡ 0 (c.f. [20, 21]) and to algebras over a field k.

Definition 1.0.1. Let k be a field. Khovanov’s [12] commutative Frobenius algebra (CKh, µ, η,∆, ε)

is the algebra CKh = k[x]/(x2) with the Frobenius algebra structure given in the k-basis {1, x}

by µ(1 ⊗ 1) = 1, µ(1 ⊗ x) = x, µ(x ⊗ 1) = x, µ(x⊗ x) = 0, η(1) = 1, ∆(1) = 1 ⊗ x+ x ⊗ 1,

∆(x) = x⊗ x, ε(1) = 0 and ε(x) = 1.

There are other choices of commutative Frobenius algebras which do not give a grading, or

which give a filtration rather than a grading, and some of which are not known to categorify

any interesting link invariant. The most common choices are those of Lee and Bar-Natan.
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Definition 1.0.2. Let k be a field. Lee’s [22] commutative Frobenius algebra (CLee, µ, η,∆, ε)

is the algebra CLee = k[x]/(x2−1) with the Frobenius algebra structure given by µ(1⊗1) = 1,

µ(1⊗x) = x, µ(x⊗1) = x, µ(x⊗x) = 1, η(1) = 1, ∆(1) = 1⊗x+x⊗1, ∆(x) = x⊗x+1⊗1,

ε(1) = 0 and ε(x) = 1.

Definition 1.0.3. Let k be a field. Bar-Natan’s [23] commutative Frobenius algebra (CBN, µ, η,∆, ε)

is the algebra CBN = k[x]/(x2−x) with the Frobenius algebra structure given by µ(1⊗1) = 1,

µ(1⊗x) = x, µ(x⊗1) = x, µ(x⊗x) = x, η(1) = 1, ∆(1) = 1⊗x+x⊗1−1⊗1, ∆(x) = x⊗x,

ε(1) = 0 and ε(x) = 1.

The link homology theory associated with Khovanov’s Frobenius algebra is known to

categorify the Jones polynomial, a quantum invariant of links. In some cases, the other two

link homology theories are related to classical invariants of links: Lee’s theory is related to

the number of components of the link [22] whereas Bar-Natan’s theory in characteristic 2

categorifies a combinatorial expression involving linking numbers [24].

Bar-Natan [23] has presented sufficient conditions for Frobenius algebras to yield link

homology theories. Topologically, these conditions can be visualized as follows:

= 0, (1.0.2)

= 2, (1.0.3)

+ − − = 0. (1.0.4)

The Frobenius algebras of Definition 1.0.1, 1.0.2 and 1.0.3 satisfy these three conditions.

Khovanov [25] has classified the Frobenius algebras that give rise to link homology theories.

This classification includes examples, for instance his A[c] without evaluation at c = 0, that

do not satisfy Bar-Natan’s conditions.

Over a field k, the most general commutative Frobenius algebra (up to base change)

satisfying Bar-Natan’s conditions is given by:

Definition 1.0.4 (see [25]). Let k be a field and h, t ∈ k. Ch,t denotes the algebra Ch,t =

k[x]/(x2−hx−t) equipped with the structure of a commutative Frobenius algebra (Ch,t, µ, η,∆, ε)

which is given in the basis {1, x} by µ(1⊗1) = 1, µ(1⊗x) = x, µ(x⊗1) = x, µ(x⊗x) = hx+t,

η(1) = 1, ∆(1) = 1⊗ x+ x⊗ 1− h · 1⊗ 1, ∆(x) = x⊗ x+ t · 1⊗ 1, ε(1) = 0, and ε(x) = 1.



5

While Khovanov originally studied the case h = 0, t = 0, Lee [22] considered h = 0, t = 1,

and Bar-Natan [23] studied h = 1, t = 0. Below, we refer to C0,0 = CKh as Khovanov’s, to

C0,1 = CLee as Lee’s, and to C1,0 = CBN as Bar-Natan’s Frobenius algebra.

0 ??��

1
��?

?

0 44jjjjj

1
**TTTT

T

0 44jjjjj

1
**TTTT

T

It is natural to ask whether one can extend Khovanov’s link homol-

ogy from links to tangles. For tangles, the smoothings would consist

not only of circles, but rather of circles and arcs. Khovanov has al-

ready remarked in [26] that one would need an extended 2-dimensional

TQFT in which the cobordisms are generalized to suitable manifolds

with corners.

Even without such an extended TQFT, there are two workarounds. Khovanov [26] con-

siders tangles with an even number of points both for the source and the target of the tangle,

and presents a definition in which the tangle homology is reduced to his link homology. He

therefore closes the open ends of the tangles in all possible ways and takes a formal sum over

the resulting expressions for the links. He thus obtains a tangle homology theory only for

even tangles, i.e. those with an even number of points both for the source and the target, but

he is still able to say which expression this construction categorifies.

Bar-Natan [23] works with formal linear combinations of manifolds with corners and with

chain complexes of these surfaces

.

As long as one stays in this geometric ‘picture world’, one has good composition laws for

tangles, but still one can translate the picture world into algebra only for links, i.e. after all

open ends have been closed.

The following questions remain to be answered and form the subject of this thesis:

1. What kind of 2-dimensional topological quantum field theories naturally extend 2-

dimensional topological quantum field theories to manifolds with corners and what

algebraic structures characterize such extended TQFTs?

2. How does one define an algebraic homology theory for arbitrary oriented tangles?

3. Which algebraic operation corresponds to the composition of tangles and do these al-

gebraic operations correspond naturally to operations in some version of extended 2-

dimensional TQFT?
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One answer to the first question is given by the notion of an open-closed 2-dimensional

topological quantum field theory.

1.0.3 Open-closed TQFT

Open-closed topological field theories were originally studied in the context of open string

theory and boundary conformal field theory [27,28]. By open-closed cobordisms we mean the

morphisms of a category 2Cobext whose objects are compact oriented smooth 1-manifolds,

i.e. free unions of circles S1 and unit intervals I = [0, 1]. The morphisms are certain compact

oriented smooth 2-manifolds with corners. The corners of such a manifold f are required

to coincide with the boundary points ∂I of the intervals. The boundary of f viewed as a

topological manifold, minus the corners, consists of components that are either ‘black’ or

’coloured’. Each corner is required to separate a black component from a coloured one. The

black part of the boundary coincides with the union of the source and the target objects. Two

such manifolds with corners are considered equivalent if they are related by an orientation

preserving diffeomorphism which restricts to the identity on the black part of the boundary.

An example of such an open-closed cobordism is depicted here1,

(1.0.5)

where the boundaries at the top and at the bottom of the diagram are the black ones. In

Section 2.5, we present a formal definition which includes some additional technical properties.

Gluing such cobordisms along their black boundaries, i.e. putting the building blocks of (1.0.5)

on top of each other, is the composition of morphisms. The free union of manifolds, i.e. putting

the building blocks of (1.0.5) next to each other, provides 2Cobext with the structure of a

symmetric monoidal category.

Open-closed cobordisms can be seen as a generalization of the conventional 2-dimensional

cobordism category 2Cob. The category 2Cob is a subcategory of 2Cobext whose objects

of are compact oriented smooth 1-manifolds without boundary ; the morphisms are compact

1In order to get a feeling for these diagrams, the reader might wish to verify that this cobordism is diffeo-

morphic to the one depicted in Figure 1 of [29].
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oriented smooth cobordisms between them, modulo orientation-preserving diffeomorphisms

that restrict to the identity on the boundary.

The study of open-closed cobordisms plays an important role in conformal field theory if

one is interested in boundary conditions, and open-closed cobordisms have a natural string

theoretic interpretation. The intervals in the black boundaries are interpreted as open strings,

the circles as closed strings, and the open-closed cobordisms as string worldsheets. Here we

consider only the underlying smooth manifolds, but not any additional conformal or com-

plex structure. Additional labels at the coloured boundaries are interpreted as D-branes or

boundary conditions on the open strings.

An open-closed Topological Quantum Field Theory (TQFT), which we formally define in

Section 2.7 below, is a symmetric monoidal functor 2Cobext → C into a symmetric monoidal

category C. If C is the category of vector spaces over a fixed field k, then the open-closed

TQFT assigns vector spaces to the 1-manifolds I and S1, it assigns tensor products to free

unions of these manifolds, and k-linear maps to open-closed cobordisms.

Such an open-closed TQFT can be seen as an extension of the notion of a 2-dimensional

TQFT [15] which is a symmetric monoidal functor 2Cob→ C. We refer to this conventional

notion of 2-dimensional TQFT as a closed TQFT and to the morphisms of 2Cob as closed

cobordisms.

In order to describe open-closed cobordisms using generators and relations, one would

need a generalization of Morse theory for manifolds with corners. Such a generalization of

Morse theory can be used in order to find the generators of 2Cobext,

µA ∆A ηA εA µC ∆C ηC εC ı ı∗

(1.0.6)

and brute force can be used to establish the necessity of certain relations. However, we are

not aware of any abstract theorem that would guarantee the sufficiency of these relations.

The main result of Chapter 2 is a normal form for open-closed cobordisms with an inductive

proof that a specified set of relations suffice in order to transform any handle decomposition

into the normal form. As a consequence, for any two diffeomorphic open-closed cobordisms

whose handle decompositions are given, we explicitly construct a diffeomorphism relating the

two by constructing the corresponding sequence of moves.

The description of 2Cobext in terms of generators and relations has emerged over the last

couple of years from consistency conditions in boundary conformal field theory, going back

to the work of Cardy and Lewellen [27,28], Lazaroiu [30], Alexeevski and Natanzon [31], and
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Moore and Segal, see, for example [32,33], and these results have been known to the experts

for some time. One aspect of our approach that is different from the above is the normal form

and our inductive proof that the relations are sufficient.

This, in turn, implies the following result in Morse theory for our sort of compact 2-

manifolds with corners which has so far not been available by other means: The handle

decompositions associated with any two Morse functions on the same manifold are related by

a finite sequence of handle slides and handle cancellations.

Once a description of 2Cobext in terms of generators and relations is available, it is

possible to find an algebraic characterization for the symmetric monoidal category of open-

closed TQFTs. Whereas the category of closed TQFTs is equivalent as a symmetric monoidal

category to the category of commutative Frobenius algebras [17], we prove that the cate-

gory of open-closed TQFTs is equivalent as a symmetric monoidal category to the category

of knowledgeable Frobenius algebras. We define knowledgeable Frobenius algebras in Sec-

tion 2.4 precisely for this purpose. A knowledgeable Frobenius algebra (A,C, ı, ı∗) consists

of a symmetric Frobenius algebra A, a commutative Frobenius algebra C, and an algebra

homomorphism ı : C → A with dual ı∗ : A → C, subject to some conditions. The structure

that emerges is consistent with the algebraic characterization supplied by the work of Moore

and Segal [32]. The name knowledgeable Frobenius algebra was not used by Moore and Segal

and our reason for this terminology will be explained in the next chapter.

The algebraic structures relevant to boundary conformal field theory have been studied

by Fuchs and Schweigert [34]. In a series of papers, for example [35], Fuchs, Runkel, and

Schweigert study Frobenius algebra objects in ribbon categories. Topologically, this corre-

sponds to a situation in which the surfaces are embedded in some 3-manifold and studied

up to ambient isotopy. In contrast, we consider Frobenius algebra objects in a symmetric

monoidal category, and our 2-manifolds are considered equivalent as soon as they are diffeo-

morphic (as abstract manifolds) relative to the boundary.

Various extensions of open-closed topological field theories have also been studied. Baas,

Cohen, and Ramı́rez have extended the symmetric monoidal category of open-closed cobor-

disms to a symmetric monoidal 2-category whose 2-morphisms are certain diffeomorphisms

of the open-closed cobordisms [29]. This work extends the work of Tillmann who defined a

symmetric monoidal 2-category extending the closed cobordism category [36]. She used this

2-category to introduce an infinite loop space structure on the plus construction of the stable

mapping class group of closed cobordisms [37]. Using a similar construction to Tillmann’s,
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Baas, Cohen, and Ramı́rez have defined an infinite loop space structure on the plus construc-

tion of the stable mapping class group of open-closed cobordisms, showing that infinite loop

space structures are a valuable tool in studying the mapping class group.

Another extension of open-closed TQFT comes from open-closed Topological Conformal

Field Theory (TCFT). It was shown by Costello [38] that the category of open Topological

Conformal Field Theories is homotopy equivalent to the category of certain A∞ categories

with extra structure. Ignoring the conformal structure, or equivalently taking H0 of the

Hom spaces in the corresponding category, reduces this to the case of Topological Quantum

Field Theory. Costello associates to a given open TCFT an open-closed TCFT where the

homology of the closed states is the Hochschild homology of the A∞ category describing the

open states. This work is also useful for providing generators and relations for the category of

open Riemann surfaces and, when truncated, this result also agrees with the characterization

of open cobordisms and their diffeomorphisms up to isotopy given in [39] where a smaller list

of generators and relations is given. In this thesis, we aim directly for an explicit description

of the category of open-closed cobordisms.

1.0.4 Tangle homology

As we have already mentioned, rather than boundary conformal field theory or topological

conformal field theory, our interest in open-closed TQFTs stems from their relevance to con-

structing tangle homology theories. In Chapter 4, we show that open-closed TQFTs play a

role in tangle homology theories analogous to the role played by closed TQFTs in Khovanov’s

link homology theory.

Using the detailed description and properties of the category 2Cobext developed in Chap-

ter 2, we can apply essentially Morse theoretic techniques to the ‘picture world’ used by

Bar-Natan to construct tangle homology theories. The only impedance to naively applying

an open-closed TQFT to Bar-Natan’s picture world is that additional data (orientations and

labeling) must be assigned to the picture world so that the geometric objects can be regarded

as objects and morphisms of the category 2Cobext. This will be explained in greater detail

in Chapter 4.

From Bar-Natan’s work [23] and from his topological way of proving the invariance of

his tangle homology under Reidemeister moves, it will become obvious that an open-closed

TQFT is just the right tool for turning Bar-Natan’s picture world into an algebraic tangle

homology theory. What remains to be done is to find knowledgeable Frobenius algebras and
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thereby open-closed TQFTs that satisfy the conditions (1.0.2) to (1.0.4). In Chapter 4, we

present examples of such knowledgeable Frobenius algebras for which the resulting tangle

homology theories reduce to the link homology theories of Khovanov, Lee, and Bar-Natan

(Definitions 1.0.1 to 1.0.3) when they are evaluated for links. This resolves the second question

posed at the end of Section 1.0.2, namely to find algebraic homology theories for arbitrary

oriented tangles.

In this thesis we will only provide examples that extend the traditional link homologies

(those of Khovanov, Lee and Bar-Natan) for fields of finite characteristic. Hence, we do not

strictly extend these traditional link homologies. In [3] it is shown that in the symmetric

monoidal category of vector spaces Vectk (with the usual tensor product) the only possible

knowledgeable Frobenius algebras (A,C, ı, ı∗) whose centre C satisfies Bar-Natan’s conditions

(1.0.2)-(1.0.4) (or equivalently having C given by Definition (1.0.4)) and which possess a

grading or filtration compatible with a traditional link homology exist in finite characteristic2.

This is due to the Cardy condition, an axiom in the definition of a knowledgeable Frobenius

algebra which is a consequence of the following diffeomorphism,

∼= . (1.0.7)

Here we will present a simplified form of tangle homology in which gradings and filtrations

are ignored. The gradings and filtrations can easily be accounted for, providing a much richer

theory, see [3], but we neglect them here to simplify our discussion and highlight the new

features of our theory. For example, although we present a simplified theory, the tangle

homology described in this thesis possesses the desirable property of being monoidal. This

2The Cardy condition together with the grading requirements of Khovanov’s theory lead to the requirement

that the algebra A have quantum trace equal to zero [3]. In the category Vectk this implies that the dimension

of A is zero in the ground field k, hence in order to have a nontrivial theory one must restrict to finite

characteristic. The question as to whether or not the requirement of finite characteristic can be relaxed using

a different category, such as the category of super vector spaces SVectk with its graded tensor product, is

still open at this time. However, one should note that any naive attempt at utilizing the category SVectk

will surely fail, since a symmetric monoidal structure only exists on the category of super vector spaces with

morphisms the even maps and Khovanov’s graded theory requires the counit to be of odd degree. There does

not exists a symmetric monoidal category whose objects are super vector spaces over k and whose morphisms

all linear maps between them. Hence, a knowledgeable Frobenius algebra with the appropriate gradings can

not even be defined in the symmetric monoidal category of super vector spaces.
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means that monoidal structure of the category of tangles, given by the disjoint union of tangles,

is mapped to the monoidal structure in the category of complexes given by the tensor product.

Hence, the complex associated to the disjoint union of two tangles is the tensor product of

their associated complexes. This is a new feature of the tangle homology presented here that

is not present in other algebraic approaches to tangle homology.

1.0.5 Open-closed TQFTs from state sum constructions

In light of the discussion above, the final question posed at the end of Section 1.0.2 can be

reformulated as the problem of finding which open-closed TQFTs carry the relevant additional

structure to facilitate a natural notion of gluing tangles. In Chapter 3, we define such TQFTs

using a state sum construction. This construction generalizes the state sum construction of

2-dimensional (closed) TQFTs introduced by Fukuma–Hosono–Kawai [40].

The state sum of Fukuma–Hosono–Kawai forms a different and a priori independent way of

defining a 2-dimensional TQFT. This construction starts with a finite-dimensional semisimple

algebra A over a field k of characteristic zero. For every 2-dimensional cobordism M : Σ1 →

Σ2, one considers a triangulation of M , and from the data A, µ, η, and from the triangulation,

one computes the linear map Z(M) : Z(Σ1)→ Z(Σ2) as a so-called state sum. In a state sum,

roughly speaking, one colours the simplices of the triangulated manifoldM with algebraic data

such as the vector space underlying A or the linear maps µ, η, and then one ‘sums over all

colourings’ following certain rules. We present this construction in detail in Section 3.4 . In

particular, one can compute the vector space associated with the circle, and it turns out that

this is the centre

Z(S1) = Z(A) (1.0.8)

of the algebra one has started with. The first ‘Z’ in (1.0.8) refers to the functor Z : 2Cob→

Vectk whereas the second ‘Z’ means centre. The structure of Z(S1) as a commutative Frobe-

nius algebra can be computed from the algebra A, too.

In the functorial definition of 2-dimensional TQFTs we say that the commutative Frobe-

nius algebra provides a global description of the 2-dimensional TQFT. The relevant algebraic

structure, namely the commutative Frobenius algebra (C,µ, η,∆, ε), has an immediate topo-

logical interpretation in terms of the vector space C associated with the circle, the linear maps

µ, η, ∆, and ε associated with the generators (1.0.1), and in terms of the relations among the

morphisms of 2Cob.
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Hence, the centre Z(A) of the semisimple algebra A has a clear topological interpretation,

whilst the algebra A is so far just part of a ‘recipe’ (the state sum construction), but it is far

from obvious whether A itself plays any role in the topology of 2-manifolds.

Given a 2-dimensional TQFT Z : 2Cob→ Vectk where k is a field of characteristic zero,

one can ask the converse question, namely, whether there is a finite-dimensional semisimple

algebra A over k such that one can obtain the given TQFT from the state sum of Fukuma–

Hosono–Kawai. Of course, the algebra structure of A needs to be such that Z(A) = Z(S1),

but one also has to understand which Frobenius algebra structure to choose for A in order

to recover the appropriate one for Z(A). In order to answer this question, a topological

interpretation of the algebra A is clearly desirable.

In Chapter 3, we show (see Theorem 3.4.8) that for every strongly separable3 algebra

A over any field k and for every choice of a symmetric Frobenius algebra structure for A,

there is a knowledgeable Frobenius algebra (A,Z(A), ı, ı∗) and a generalization to 2Cobext

of the state sum of Fukuma–Hosono–Kawai that yields the open-closed TQFT characterized

by (A,Z(A), ı, ı∗). Extending the notion of a 2-dimensional TQFT to suitable manifolds with

corners therefore reveals which topological role is played by the algebra A that enters the

state sum construction.

Why is it important to better understand the role of the algebra A? After all, 2-

dimensional TQFTs are well understood, and the state sum of Fukuma–Hosono–Kawai is

just one of several ways of finding examples. The primary reason for understanding the role

of the algebra A will be established in Chapter 4, where we associate A to a trivial tangle on a

single strand and interpret the composition of tangles as triangulated 1-manifolds. However,

this question has various other answers depending on the view point taken.

Going back to the string theoretic interpretation of open-closed cobordisms, state sum

constructions of topological field theory tend to be the most relevant to path integral con-

structions and hence to the standard approach to modern physics. In the state sum, the

algebra A turns out to be the algebra associated to the open string and the state sum itself

is interpreted as a discrete path integral. This suggests that the state sum construction may

be useful for studying topological string theory. The state sum of Fukuma–Hosono–Kawai

is also relevant to recent work on boundary conformal field theory, see, for example [35, 41]

3It turns out that for a field of arbitrary characteristic, the appropriate class of algebras is that of the

strongly separable ones. Strongly separable algebras are defined in Section 3.2. They are characterized by the

nondegeneracy of a certain canonically associated bilinear form.
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where the algebra A already appears in connection with the boundary conditions, and so this

thesis is immediately relevant in this context.

Another reason for better understanding the topological significance of the algebra A is

given by attempts to generalize the framework to higher dimensions. For n ≥ 3, the cobordism

category nCob is not fully understood, i.e. n-dimensional cobordisms have not been (or even

cannot be) classified, and in particular one does not have any description of nCob in terms

of generators and relations. This makes a full understanding of n-dimensional TQFTs much

harder if not impossible.

On the other hand, there are some generalizations of the state sum construction of

Fukuma–Hosono–Kawai to higher dimensions, notably the 3-dimensional TQFT of Turaev

and Viro [42], extended by Barrett and Westbury [43], which produces a 3-dimensional TQFT

for any given modular category or, more generally, for suitable spherical categories [44]. The

step from dimension 2 to 3, i.e. from the state sum of Fukuma–Hosono–Kawai to that of

Turaev–Viro, can be understood as an example of categorification, see for example [45]. The

dimensional ladder of Crane and Frenkel [46] sketches which sort of algebraic structures one

would need in order to construct n-dimensional TQFTs from state sums:

n = 4 trialgebras

AA
AA

AA
AA

A
Hopf categories

}}
}}

}}
}}

}

AA
AA

AA
AA

A
monoidal 2-categories

}}
}}

}}
}}

}

n = 3 Hopf algebras

AA
AA

AA
AA

A
monoidal categories

}}
}}

}}
}}

}

n = 2 associative algebras

(1.0.9)

In this diagram, the entry ‘associative algebras’ refers to the state sum of Fukuma–Hosono–

Kawai whereas ‘monoidal categories’ refers to the Turaev–Viro state sum. For n = 2, it should

actually read ‘strongly separable associative algebras’. The appropriate choice of adjectives

for the other cases is in fact not systematically understood. In order to settle this question

and in order to extend the diagram upwards to higher dimensions, one can ask whether it is

possible to classify the algebraic structures from which one can construct n-dimensional state

sum TQFTs for generic n.

Whereas the algebraic structures of (1.0.9) that are relevant to the state sum construction

are closely related to Pachner moves [47] and to the coherence conditions in higher cate-

gories, they have no obvious relationship to the global description of the TQFT as a functor

Z : nCob→ Vectk.
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By showing that the associative algebra A of the Fukuma–Hosono–Kawai state sum is

precisely the vector space A = Z(I) associated with the unit interval in an appropriately

extended notion of 2-dimensional TQFT, we have revealed such a relationship for the simplest

case n = 2 of the dimensional ladder (1.0.9). This raises the question of whether one can find

topological interpretations for the other algebraic structures featured in (1.0.9), presumably

by extending the notion of TQFT from conventional cobordisms to manifolds with corners of

higher and higher codimension. Further evidence for such a relationship is provided by the

Hopf algebra object in 3-dimensional extended TQFTs [48–50] in connection with Kuperberg’s

3-manifold invariant which is based on certain Hopf algebras [51].

Putting these other interests aside, the state sum construction allows one to compute

an open-closed TQFT from the input data of a strongly separable algebra. The result of

composing the resolutions of two tangles along their boundaries can then be interpreted as a

triangulated 1-manifold where the boundaries that we glued along appear as vertices in the

triangulation. For example,

b b

b

b

◦
b b

b b

b

b

= b b

b b

b

b

b b

b

b . (1.0.10)

Evaluating the result with a state sum TQFT then translates this composite into algebra. We

will see in Chapter 4 that this idea extends to define the algebraic operations needed in order

to algebraically compose the complexes constructed from the composite of two tangles.

1.0.6 Summary

The essential goal of this thesis can be seen as developing the theory of open-closed topological

field theories to a level comparable with the theory of closed 2-dimensional TQFTs. In

this vein, we prove an equivalence of categories between open-closed topological quantum

field theories and the algebraic category of knowledgeable Frobenius algebras. This result

generalizes Abrams work [17] providing an equivalence of categories between closed TQFTs

and commutative Frobenius algebras, a result which is the foundation of many applications

of closed TQFTs.

The state sum construction of Fukuma, Hosono, and Kawai provides another way to view

closed 2-dimensional TQFTs. This constructions relates axiomatic TQFTs to physics in a

natural way. By defining a state sum construction for open-closed TQFTs we also extend this
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important construction from the context of closed 2-dimensional cobordisms.

Finally, we extend one of the most important applications of closed TQFTs, namely Kho-

vanov link homology. This extension provides an important example of the relevance of

open-closed cobordisms to solving concrete mathematical problems. Using both the state

sum construction, as well as the basic machinery developed for open-closed TQFTs, we define

algebraic tangle homology theories.



Chapter 2

Open-Closed Topological Field

Theories

2.1 Introduction

The most powerful results on closed TQFTs crucially depend on results from Morse theory.

Morse theory provides a generators and relations description of the category 2Cob. First, any

compact cobordism Σ can be obtained by gluing a finite number of elementary cobordisms

along their boundaries. In order to see this, one chooses a Morse function f : Σ→ R such that

all critical points have distinct critical values and considers the pre-images f−1([x0 − ε, x0 +

ε]) ⊆ Σ of intervals that contain precisely one critical value x0 ∈ R. Each such pre-image is

the free union of one of the elementary cobordisms,

(2.1.1)

with zero or more cylinders over S1. The different elementary cobordisms (2.1.1) are precisely

the Morse data that characterize the critical points, and the way they are glued corresponds to

the handle decomposition associated with f . The Morse data of (2.1.1) provide the generators

for the morphisms of 2Cob. Our diagrams of open-closed cobordisms, for example (1.0.5), are

organized in such a way that the vertical axis of the drawing plane serves as a Morse function,

and the cobordisms are composed of building blocks that contain at most one critical point.

Second, given two Morse functions f1, f2 : Σ → R, the handle decompositions associated

with f1 and f2 are related by a finite sequence of moves, i.e. handle slides and handle cancel-
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lations. This means that there are diffeomorphisms such as,

∼= (2.1.2)

which provide us with the relations of 2Cob. When we explicitly construct the diffeomorphism

that relates two handle decompositions of some manifold, we call these diffeomorphisms moves.

The example (2.1.2) corresponds to a cancelation of a 1-handle and a 2-handle. Below is an

example of sliding a 1-handle past another 1-handle.

∼= (2.1.3)

Whereas it is not too difficult to construct by brute-force a set of diffeomorphisms

between manifolds such as those in (2.1.2) and (2.1.3), i.e. to show that a set of

relations is necessary, it is much harder to show that they are also sufficient, i.e.

that any two handle decompositions are related by a finite sequence of moves such

as (2.1.2) and (2.1.3). In order to establish this result, one strategy is to prove that

there exists a normal form for the morphisms of 2Cob which is characterized by

topological invariants, and then to show that the relations suffice in order to transform an

arbitrary handle decomposition into this normal form. The normal form for closed cobordisms

is determined by the number of incoming and outgoing boundary components together with

the genus. The example to the right shows the normal form of a closed cobordism with three

incoming boundary components, four outgoing boundary components, and genus three. For

closed cobordisms, the normal form and proof of the sufficiency of the relations is done in

detail in [17,19,52].

As was mentioned in the introduction, the purpose of this chapter is to develop a similar

story for open-closed cobordisms. We will define the relevant Morse theory that decomposes

an open-closed cobordism into the elementary generators

µA ∆A ηA εA µC ∆C ηC εC ı ı∗

. (2.1.4)

The relevant topological invariants are also defined. We then go on to define the normal

form of an open-closed cobordism and provide a combinatorial proof that a well known set of
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relations is sufficient. As a result, we can provide a complete algebraic description of open-

closed TQFTs in terms of knowledgeable Frobenius algebras (in fact a categorical equivalence).

We should comment here that since the appearance of [1] alternative non Morse-theoretic

proofs of the generators and relations description of 2Cobext have appeared in [53].

This chapter is structured as follows: in Section 2.2 we introduce some convenient diagrams

and use them in Section 2.3 to express the definition of a Frobenius algebra. In Section 2.4,

we define the notion of a knowledgeable Frobenius algebra and introduce the symmetric

monoidal category K-Frob(C) of knowledgeable Frobenius algebras in a symmetric monoidal

category C. We provide an abstract description in terms of generators and relations of this

category by defining a category Th(K-Frob), called the theory of knowledgeable Frobenius

algebras, and by showing that the category of symmetric monoidal functors and monoidal

natural transformations Th(K-Frob)→ C is equivalent as a symmetric monoidal category to

K-Frob(C). In Section 2.5, we introduce the category 2Cobext of open-closed cobordisms. We

present a normal form for such cobordisms and characterize the category in terms of generators

and relations. In Section 2.7, we define open-closed TQFTs as symmetric monoidal functors

2Cobext → C into some symmetric monoidal category C. We show that the category 2Cobext

is equivalent as a symmetric monoidal category to Th(K-Frob) which in turn implies that

the category of open-closed TQFTs in C is equivalent as a symmetric monoidal category to

the category of knowledgeable Frobenius algebras K-Frob(C). In Section 2.8, we generalize

our results to the case of labeled free boundaries. Section 2.9 contains a summary and an

outlook on open problems related to open-closed TQFTs.

2.2 Symmetric monoidal categories and string diagrams

In this section, we review the basics of string diagrams in a symmetric monoidal category.

The definitions and required facts about symmetric monoidal categories are collected for

convenience in Appendix A. We denote the class of objects of a category C by |C| and for each

object X ∈ |C|, the identity morphism by idX : X → X.

Definition 2.2.1. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category with tensor prod-

uct ⊗ : C × C → C, unit object 1 ∈ |C|, associativity constraint αX,Y,Z : (X ⊗ Y ) ⊗ Z →

X ⊗ (Y ⊗ Z), left- and right-unit constraints λX : 1⊗X → X and ρX : X ⊗ 1→ X, and the

symmetric braiding τX,Y : X⊗Y → Y ⊗X, for objects X,Y,Z of C (in symbols X,Y,Z ∈ |C|).

1. An object X of C is called rigid if it has a left-dual (X∗, evX , coevX). This is an object
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X∗ of C with morphisms evX : X∗ ⊗ X → 1 (evaluation) and coevX : 1 → X ⊗ X∗

(coevaluation) which satisfy the zig-zag identities,

ρX ◦ (idX ⊗ evX) ◦ αX,X∗,X ◦ (coevX ⊗ idX) ◦ λ−1
X = idX , and (2.2.1)

λX∗ ◦ (evX ⊗ idX∗) ◦ α−1
X∗,X,X∗ ◦ (idX∗ ⊗ coevX) ◦ ρ−1

X∗ = idX∗ . (2.2.2)

2. Let X be a rigid object of C and f ∈ Hom(X,X). The categorical trace trX(f) is

defined by,

trX(f) := evX ◦ τX,X∗ ◦ (f ⊗ idX∗) ◦ coevX ∈ Hom(1,1). (2.2.3)

3. The categorical dimension dimX of a rigid object X of C is defined by,

dimX := trX(idX) ∈ Hom(1,1). (2.2.4)

4. For rigid objects X and Y of C and f ∈ Hom(X,Y ), the morphism,

f∗ := λX∗ ◦(evY ⊗ idX∗)◦((idY ∗⊗f)⊗ idX∗)◦α−1
Y ∗,X,X∗ ◦(idY ∗⊗coevX)◦ρ−1

Y ∗ : Y ∗ → X∗,

(2.2.5)

is called the dual of f .

In the following, we use string diagrams [54,55] to visualize morphisms of a given symmetric

monoidal category C and the identities between them. The diagrams are read from top to

bottom. For each object X ∈ |C|, the identity morphism idX is denoted by a line labeled ‘X’

with an arrow pointing down. The identity morphism idX∗ of the dual object has the arrow

pointing up. For a morphism f : X → Y , we write a disc labeled ‘f ’, called a coupon. This

disc has a white side which always faces the reader and a black side which never does so,

idX = ��

X

, idX∗ = OO

X

, f =

X

Y

f

��

��

. (2.2.6)

Composition of morphisms is depicted by vertically concatenating the corresponding diagrams;

for example, for morphisms f : X → Y and g : Y → Z,

g ◦ f =

X
f

��

��
Y

Z

g

��

��

=

X

Z

g ◦ f

��

��

. (2.2.7)
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The tensor product of morphisms is visualized by putting diagrams next to each other; for

example, for f : X1 → Y1 and g : X2 → Y2,

idX1⊗X2 = ��

X1 ⊗X2

= ��

X1

��

X2

, f ⊗ g =

X1 ⊗X2

Y1 ⊗ Y2

f ⊗ g

��

��

=

X1

Y1

f

��

��

X2

Y2

g

��

��

. (2.2.8)

The symmetric braiding is denoted by,

τX,Y =
"" ||X Y

. (2.2.9)

Mac Lane’s coherence theorem for monoidal categories [56] then ensures that once a choice

of parenthesis for the source and target of the string diagram has been chosen, one can

unambiguously translate any such string diagram into a morphism of C. One therefore chooses

parentheses for all tensor products that occur in the source and target objects of the morphism

and inserts the structure isomorphisms α, λ, ρ appropriately. The coherence theorem implies

that all possible ways of inserting the structure isomorphisms yield equal morphisms, i.e. that

there is a well-defined morphism of C specified by the diagram. In addition, the coherence

theorem allows us to suppress the lines associated with the unit object 1.

For a rigid object X ∈ C, evaluation and coevaluation are represented by these diagrams:

evX = ��WW
X
, coevX = WW��

X
. (2.2.10)

The zig-zag identities of (2.2.1) are represented in string diagrams as:

WW��

��WW��

��
X

=

��
X

��

,
��WW

WW��OO
X

OO

=

OO
X

OO

, (2.2.11)

and the definitions of trace (2.2.3), dimension (2.2.4) and dual morphism (2.2.5) are:

trX(f) :=

WW��

X

f
��

��

OO

"" <<

��WW

, dimX :=

WW��

X
"" <<

��WW

,

Y ∗

X∗

f∗

��

��

:=

OO

Y
WW��

f
��

��

��WW

OO

X

. (2.2.12)

If C is locally small (meaning that the morphisms Hom(X,Y ) between every pair of objects

X and Y form a set), the set Hom(1,1) forms a commutative monoid with multiplication
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ξ1 · ξ2 := λ
1

◦ (ξ1 ⊗ ξ2) ◦ λ
−1
1

for ξ1, ξ2 ∈ Hom(1,1) and unit id
1

. The monoid Hom(1,1) acts

on Hom(X,Y ) for all X,Y ∈ |C| by ξ · f := λY ◦ (ξ ⊗ f) ◦ λ−1
X where f ∈ Hom(X,Y ) and

ξ ∈ Hom(1,1).

The coherence theorem now allows us to view the elements of Hom(1,1) as scalars by

which the entire diagram is multiplied.

2.3 Frobenius algebras

In this section, we define the notion of a Frobenius algebra. We consider these Frobenius

algebras not only in the symmetric monoidal category Vectk of vector spaces over some

fixed field k, but in an arbitrary symmetric monoidal category. Other examples include the

symmetric monoidal categories of Abelian groups, graded-vector spaces, and chain complexes.

2.3.1 Definitions

Definition 2.3.1. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category.

1. An algebra object (A,µ, η) in C consists of an object A and morphisms µ : A⊗A→ A

and η : 1→ A of C such that:

(A⊗A)⊗A
αA,A,A

//

µ⊗idA
��

A⊗ (A⊗A)

idA⊗µ
��

A⊗A

µ
&&L

LLLLLLLLLL A⊗A

µ
xxrrrrrrrrrrr

A

(2.3.1)

and

1⊗A
η⊗idA //

λA

##G
GGGG

GG
GG

GGG
GG

GGG
GG

A⊗A

µ

��

A⊗ 1
idA⊗ηoo

ρA

{{wwww
ww

ww
www

ww
www

ww
w

A

(2.3.2)

commute.

2. A coalgebra object (A,∆, ε) in C consists of an object A and morphisms ∆: A→ A⊗A
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and ε : A→ 1 of C such that:

A
∆

xxrrrrrrrrrrr
∆

&&L
LLLLLLLLLL

A⊗A

∆⊗idA
��

A⊗A

idA⊗∆
��

(A⊗A)⊗A αA,A,A
// A⊗ (A⊗A)

(2.3.3)

and

A

λ−1
A

{{wwww
ww

www
ww

ww
www

ww
w

ρ−1
A

##F
FFF

FF
FFF

FFF
FF

FFF
FF

∆

��

1⊗A A⊗A
ε⊗idA

oo
idA⊗ε

// A⊗ 1

(2.3.4)

commute.

3. A homomorphism of algebras f : A → A′ between two algebra objects (A,µ, η) and

(A′, µ′, η′) in C is a morphism f of C such that:

A⊗A
µ

//

f⊗f

��

A

f

��

A′ ⊗A′
µ′

// A′

and

1

η
//

η′

��?
??

??
??

??
??

??
??

? A

f

��

A′

(2.3.5)

commute.

4. A homomorphism of coalgebras f : A→ A′ between two coalgebra objects (A,∆, ε) and

(A′,∆′, ε′) in C is a morphism f of C such that:

A
∆ //

f

��

A⊗A

f⊗f

��

A′
∆′

// A′ ⊗A′

and

A

ε

��?
??

??
??

??
??

??
??

?

f

��

A′
ε′

//
1

(2.3.6)

commute.

Definition 2.3.2. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category.

1. A Frobenius algebra object (A,µ, η,∆, ε) in C consists of an object A and of morphisms

µ, η, ∆, ε of C such that:
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(a) (A,µ, η) is an algebra object in C,

(b) (A,∆, ε) is a coalgebra object in C, and

(c) the following compatibility condition, called the Frobenius relation, holds,

A⊗A

µ

��

∆⊗idA

uukkkkkkkkkkkkkk
idA⊗∆

))SSSSSSSSSSSSSS

(A⊗A)⊗A

αA,A,A

��

A⊗ (A⊗A)

α−1
A,A,A

��

A

∆

��

A⊗ (A⊗A)

idA⊗µ ))SSSSSSSSSSSSSS
(A⊗A)⊗A

µ⊗idAuukkkkkkkkkkkkkk

A⊗A

(2.3.7)

2. A Frobenius algebra object (A,µ, η,∆, ε) in C is called symmetric if:

ε ◦ µ = ε ◦ µ ◦ τ. (2.3.8)

It is called commutative if:

µ = µ ◦ τ. (2.3.9)

3. Let C be locally small. A Frobenius algebra object (A,µ, η,∆, ε) in C is called special

(as defined in [34]) if

ε ◦ η = ξ
1

· id
1

and µ ◦∆ = ξA · idA (2.3.10)

for some ξ
1

, ξA ∈ Hom(1,1) that are invertible in the monoid Hom(1,1).

4. Let (A,µ, η,∆, ε) and (A′, µ′, η′,∆′, ε′) be Frobenius algebra objects in C. A homo-

morphism of Frobenius algebras f : A → A′ is a morphism f of C which is both a

homomorphism of algebra objects and a homomorphism of coalgebra objects.

Notice that for any Frobenius algebra object (A,µ, η,∆, ε) in C, the object A is always a

rigid object of C. In Vectk the rigid objects are the finite-dimensional vector spaces; hence

every Frobenius algebra object in Vectk is finite-dimensional.

The unit object 1 ∈ |C| forms an algebra object (1, λ
1

, id
1

) in C with multiplication

λ
1

: 1 ⊗ 1 → 1 and unit id
1

: 1 → 1 as well as a coalgebra object (1, λ−1
1

, id
1

) defining
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a commutative Frobenius algebra object in C. Given two algebra objects (A,µA, ηA) and

(B,µB , ηB) in C, the tensor product (A⊗B,µA⊗B, ηA⊗B) forms an algebra object in C with,

µA⊗B = (µA ⊗ µB) ◦ α−1
A,A,B⊗B ◦ (idA ⊗ αA,B,B) ◦ (idA ⊗ (τB,A ⊗ idB))

◦(idA ⊗ α
−1
B,A,B) ◦ αA,B,A⊗B, (2.3.11)

ηA⊗B = (ηA ⊗ ηB) ◦ λ−1
1

. (2.3.12)

A similar result holds for coalgebra objects and for Frobenius algebra objects in C. Given

two homomorphisms of algebra objects f : (A,µA, ηA) → (A′, µA′ , ηA′) and g : (B,µB , ηB) →

(B′, µB′ , ηB′), their tensor product f ⊗ g : (A ⊗ B,µA⊗B, ηA⊗B) → (A′ ⊗ B′, µA′⊗B′ , ηA′⊗B′)

forms a homomorphism of algebra objects. A similar result holds for homomorphisms of

coalgebra and for homomorphisms of Frobenius algebra objects.

Definitions (1.0.1)–(1.0.3) provide examples of commutative Frobenius algebra objects in

the symmetric monoidal category Vectk of vector spaces over the field k. We will sometimes

omit the ‘object’ in ‘Frobenius algebra object’ for simplicity.

2.3.2 String diagrams for Frobenius algebras

Using the string diagram notation from Section 2.2, the string diagrams for the operations of

a Frobenius algebra (A,µ, η,∆, ε) are as follows:

�� ��

��

A A

A

µ ,

��
A

η ,

�� ��

��

A A

A

∆ ,

�� A

ε . (2.3.13)

In order to keep the diagrams small, from now on we replace the coupons by vertices and also

drop the label ‘A’ wherever it is clear from the context:

µ = •
�� 		

��
, η = •

��
, ∆ = •

�� ��

��

, ε = •
��

. (2.3.14)

It is understood that the vertices have to be replaced by discs in the paper plane with their

white side facing the reader. Furthermore, we drop all labels µ, η, ∆ and ε where these are

evident from the context. For example, we distinguish the operation ∆ from µ by the number

of incoming and outgoing lines.

The axioms of an algebra and those of a coalgebra then read:

•
�� 		

��




•
�� 		

��

=

�� •
�� 		

��

•
�� 		

��

,
•
��
��

•
�� 		

��

=
��

��

=
�� •
��

•
�� 		

��

,
•
�� ��

��

•
�� ��

��
��
=
•
�� ��

��



 •
�� ��

�� ,
•
�� ��

��

•
��
��

=
��

��

=
•
�� ��

��

�� •
�� , (2.3.15)
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and the Frobenius relation, commutativity and symmetry are depicted as follows:

•
�� ��

��
��

�� •
�� 		

��

=
•
�� 		

��

•
�� ��

�� =
�� •
�� ��

��

•
�� 		

��
��

,

�� ��

•
�� 		

��

=
�� ��

•
�� 		

��

,

�� ��

•
�� 		

��

•
��

=

�� ��

•
�� 		

��

•
��

, (2.3.16)

The conditions for a the Frobenius algebra to be special are these:

•
��

•
�� = ξ

1

and
•
�� ��

��

•
�� 		

��

= ξA

��

��

. (2.3.17)

The string diagram presentation of the Frobenius structure will be important for the state

sum construction in Chapter 3.

2.4 Knowledgeable Frobenius algebras

The following definition plays a central role in the structure of open-closed TQFTs.

Definition 2.4.1. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category. A knowledgeable

Frobenius algebra A = (A,C, ı, ı∗) in C consists of,

• a symmetric Frobenius algebra A = (A,µA, ηA,∆A, εA),

• a commutative Frobenius algebra C = (C,µC , ηC ,∆C , εC),

• morphisms ı : C → A and ı∗ : A→ C of C,

such that ı : C → A is a homomorphism of algebra objects in C and,

µA ◦ (ı⊗ idA) = µA ◦ τA,A ◦ (ı⊗ idA) (knowledge), (2.4.1)

εC ◦ µC ◦ (idC ⊗ ı
∗) = εA ◦ µA ◦ (ı⊗ idA) (duality), (2.4.2)

µA ◦ τA,A ◦∆A = ı ◦ ı∗ (Cardy condition). (2.4.3)

Condition (2.4.2) says that ı∗ is the morphism dual to ı. Together with the fact that ı is

an algebra homomorphism, this implies that ı∗ : A→ C is a homomorphism of coalgebras in

C. In the category of (super) vector spaces the structure of a knowledgeable Frobenius algebra

first appeared in the work of Moore and Segal [32], and later in the work of Lazaroiu [30].

If C = Vectk, the condition (2.4.1) states that the image of C under ı is contained in the

centre of A, ı(C) ⊆ Z(A). The name knowledgeable Frobenius algebra is meant to indicate

that the symmetric Frobenius algebra A is equipped with knowledge about its centre. This is

specified precisely by C, ı and ı∗. Notice that the centre Z(A) itself cannot be characterized1

1We thank James Dolan and John Baez for pointing this out.
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by requiring the commutativity of diagrams labeled by objects and morphisms of C. Within

the language of category theory one can not express using diagrams the assertion that a

given object is the centre of another object. While the notion of subobject makes sense,

and diagrams can be used to assert that a subobject commutes with a given object, no

string diagram, or equivalently commutative diagram, can be drawn that asserts that a given

subobject is all of the centre, even when the notion of centre makes sense within the category

C.

In Chapter 3 we will show that every strongly separable algebra A can be equipped with

the structure of a Frobenius algebra such that (A,Z(A), ı, ı∗) forms a knowledgeable Frobe-

nius algebra with the inclusion ı : Z(A) → A and an appropriately chosen Frobenius algebra

structure on Z(A).

Sometimes the folk theorem on the characterization of open-closed TQFTs is stated in such

a way that it includes the condition C = Z(A). In Example 3.2.15 we provide an example of

a knowledgeable Frobenius algebra, and thereby open-closed TQFT, in which this condition

does not hold. While it is obvious that the this condition need not hold — one can modify

the centre in some trivial way — in Examples (4.5.6) and (4.5.7) nontrivial examples with

this property are also supplied. Several other examples of knowledgeable Frobenius algebras

are presented in Section 4.5.1.

2.4.1 The category K-Frob(C)

Definition 2.4.2. A homomorphism of knowledgeable Frobenius algebras

ϕ : (A,C, ı, ı∗)→ (A′, C ′, ı′, ı′∗) (2.4.4)

in the symmetric monoidal category C is a pair ϕ = (ϕ1, ϕ2) of Frobenius algebra homomor-

phisms ϕ1 : A→ A′ and ϕ2 : C → C ′ such that

C
ϕ2 //

ı

��

C ′

ı′

��

A ϕ1
// A′

and

A
ϕ1 //

ı∗

��

A′

ı′∗

��

C ϕ2
// C ′

(2.4.5)

commute.

Definition 2.4.3. Let C be a symmetric monoidal category. By K-Frob(C) we denote the

category of knowledgeable Frobenius algebras in C and their homomorphisms.



2.4. KNOWLEDGEABLE FROBENIUS ALGEBRAS 27

Proposition 2.4.4. Let C be a symmetric monoidal category. The category K-Frob(C)

forms a symmetric monoidal category as follows. The tensor product of two knowledgeable

Frobenius algebra objects A = (A,C, ı, ı∗) and A
′ = (A′, C ′, ı′, ı′∗) is defined as A ⊗ A

′ :=

(A ⊗ A′, C ⊗ C ′, ı ⊗ ı′, ı∗ ⊗ ı′∗). The unit object is given by 1 := (1,1, id
1

, id
1

), and the

associativity and unit constraints and the symmetric braiding are induced by those of C. Given

two homomorphisms ϕ = (ϕ1, ϕ2) and ψ = (ψ1, ψ2) of knowledgeable Frobenius algebras, their

tensor product is defined as ϕ⊗ ψ := (ϕ1 ⊗ ψ1, ϕ2 ⊗ ψ2).

2.4.2 The category Th(K-Frob)

In this section, we define the category Th(K-Frob), called the theory of knowledgeable

Frobenius algebras. The description that follows is designed to make Th(K-Frob) the sym-

metric monoidal category freely generated by a knowledgeable Frobenius algebra, and the

terminology ‘theory of . . .’ indicates that knowledgeable Frobenius algebras in any symmetric

monoidal category C arise precisely as the symmetric monoidal functors Th(K-Frob) → C.

This is in analogy to the theory of algebraic theories in which one uses ‘with finite products’

rather than ’symmetric monoidal’. The category Th(K-Frob) can also be described as the

‘walking knowledgeable Frobenius algebra’ in the terminology of [39, 57]. Readers who are

interested in the topology of open-closed cobordisms rather than in the abstract description

of knowledgeable Frobenius algebras may wish to look briefly at Proposition 2.4.6 and then

directly proceed to Section 2.5.

The subsequent definition follows the construction of the ‘free category with group struc-

ture’ given by Laplaza [58]. It forms an example of a symmetric monoidal sketch, a structure

slightly more general than an operad or a PROP, see for example [59] for the definition of

symmetric monoidal sketches and a discussion of their freeness properties.

Definition 2.4.5. The category Th(K-Frob) is defined as follows: its objects are the ele-

ments of the free {1,⊗}-algebra over the two element set {A,C}. These are words of a formal

language that are defined by the following requirements,

• The symbols 1, A and C are objects of Th(K-Frob).

• If X and Y are objects of Th(K-Frob), then (X ⊗ Y ) is an object of Th(K-Frob).

We now describe the edges of a graph G whose vertices are the objects of Th(K-Frob). There
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are edges,

µA : A⊗A→ A, ηA : 1→ A, ∆A : A→ A⊗A, εA : 1→ A,

µC : C ⊗ C → C, ηC : 1→ C, ∆C : C → C ⊗ C, εC : 1→ C, (2.4.6)

ı : C → A, ı∗ : A→ C,

and for all objects X,Y ,Z there are to be edges

αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z), τX,Y : X ⊗ Y → Y ⊗X,

λX : 1⊗X → X, ρX : X ⊗ 1→ X, (2.4.7)

ᾱX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z, τ̄X,Y : Y ⊗X → X ⊗ Y,

λ̄X : X → 1⊗X, ρ̄X : X → X ⊗ 1. (2.4.8)

For every edge f : X → Y and for every object Z, there are to be edges Z⊗f : Z⊗X → Z⊗Y ,

f ⊗Z : X ⊗Z → Y ⊗Z. These edges are to be interpreted as words in a formal language and

are considered distinct if they have distinct names.

Let H be the category freely generated by the graph G. We now describe a congruence

on the category H. We define a relation ∼ as follows. We require the relations making

(A,µA, ηA,∆A, εA) a symmetric Frobenius algebra object, those making (C,µC , ηC ,∆C , εC)

a commutative Frobenius algebra object, those making ı : C → A an algebra homomorphism

as well as (2.4.1), (2.4.2), and (2.4.3). The relations making αX,Y,Z , λX , and ρX satisfy the

pentagon and triangle axioms of a monoidal category as well as those making τX,Y a symmetric

braiding, are required for all objects X,Y ,Z. We also require the following relations for all

objects X,Y and morphisms p, q, t, s of H,

(X ⊗ p)(X ⊗ q) ∼ X ⊗ (pq), (p ⊗X)(q ⊗X) ∼ (pq)⊗X,

(t⊗ Y )(X ⊗ s) ∼ (X ⊗ s)(t⊗ Y ), idX⊗Y ∼ X ⊗ idY ∼ idX ⊗ Y,
(2.4.9)

that make⊗ a functor. Then we require the relations that assert the naturality of α, λ, ρ, τ, ᾱ, λ̄, ρ̄, τ̄

and that each pair e and ē of edges of the graph form the inverses of each other. Finally, we

have all expansions by ⊗, i.e. for each relation a ∼ b, we include the relations a⊗X ∼ b⊗X

and X ⊗ a ∼ X ⊗ b for all objects X, and all those relations obtained from these by a finite

number of applications of this process. The category Th(K-Frob) is the category H modulo

the category congruence generated by ∼.

It is clear from the description above that Th(K-Frob) contains a knowledgeable Frobe-

nius algebra object (A,C, ı, ı∗) which we call the knowledgeable Frobenius algebra object
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generating Th(K-Frob). Indeed, Th(K-Frob) is the symmetric monoidal category freely

generated by a knowledgeable Frobenius algebra. Its basic property is that for any knowledge-

able Frobenius algebra A
′ = (A′, C ′, ı′, ı′∗) in C, there is exactly one strict symmetric monoidal

functor FA′ : Th(K-Frob)→ C which maps (A,C, ı, ı∗) to (A′, C ′, ı′, ı′∗) and 1 ∈ Th(K-Frob)

to 1 ∈ C.

An interesting question to ask is whether or not homomorphisms of knowledgeable Frobe-

nius algebras are induced in some way by Th(K-Frob). This question is answered by the

following proposition.

Proposition 2.4.6. Let C be a symmetric monoidal category. The category

Symm-Mon(Th(K-Frob), C) (2.4.10)

of symmetric monoidal functors Th(K-Frob) → C and their monoidal natural transforma-

tions is equivalent as a symmetric monoidal category to the category K-Frob(C).

This proposition is the reason for calling Th(K-Frob) the theory of knowledgeable Frobe-

nius algebras. For easier reference, we collect the definitions of symmetric monoidal functors,

monoidal natural transformations and of Symm-Mon in Appendix A.

Proof. Let (A,C, ı, ı∗) be the knowledgeable Frobenius algebra generating Th(K-Frob), and

let

ψ : Th(K-Frob) → C be a symmetric monoidal functor. It is clear that the image of

(A,C, ı, ı∗) under ψ, together with the coherence isomorphisms ψ0 and ψ2 of ψ = (ψ,ψ2, ψ0),

defines a knowledgeable Frobenius algebra (ψ(A), ψ(C), ψ(ı), ψ(ı∗ )) in C. The symmetric

Frobenius algebra structure on ψ(A) is given by

ψ(A) =
(
ψ(A), ψ(µA) ◦ ψ2, ψ(ηA) ◦ ψ0, ψ

−1
2 ◦ ψ(∆A), ψ−1

0 ◦ ψ(εA)
)
. (2.4.11)

The commutative Frobenius algebra structure on ψ(C) is given by

ψ(C) =
(
ψ(C), ψ(µC ) ◦ ψ2, ψ(ηC) ◦ ψ0, ψ

−1
2 ◦ ψ(∆C), ψ−1

0 ◦ ψ(εC )
)
. (2.4.12)

This defines a mapping on objects

Γ: Symm-Mon(Th(K-Frob), C) → K-Frob(C) (2.4.13)

ψ 7→ (ψ(A), ψ(C), ψ(ı), ψ(ı∗)).

We now extend Γ to a functor by defining it on morphisms.
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If ϕ : ψ ⇒ ψ′ is a monoidal natural transformation, then ϕ assigns to each object X in

Th(K-Frob) a map ϕX : ψ(X) → ψ′(X) in C. However, since every object in Th(K-Frob)

is the tensor product of A’s and C’s and 1’s, the fact that ϕ is a monoidal natural transfor-

mation means that the ϕX are completely determined by two maps ϕ1 : ψ(A) → ψ′(A) and

ϕ2 : ψ(C) → ψ′(C). The naturality of ϕ means that the ϕi are compatible with the images

of all the morphisms in Th(K-Frob). Since all of the morphisms in Th(K-Frob) are built

up from the generators:

µA : A⊗A→ A, ηA : 1→ A, ∆A : A→ A⊗A, εA : 1→ A,

µC : C ⊗ C → C, ηC : 1→ C, ∆C : C → C ⊗ C, εC : 1→ C, (2.4.14)

ı : C → A, ı∗ : A→ C,

(and the structure maps α, ρ, λ, τ), naturality can be expressed by the commutativity of 10

diagrams involving the 10 generating morphisms of Th(K-Frob). For example, corresponding

to µA : A⊗A→ A and ηA : 1→ A, we have the two diagrams:

ψ(A ⊗A) ψ(A)⊗ ψ(A) ψ′(A) ⊗ ψ′(A) ψ′(A⊗A)

ψ(A) ψ′(A)

ψ−1
2 //

ϕ1⊗ϕ1 //
ψ′−1

2 //

ψ(µA)

��

ϕ1
//

ψ′(µA)

��

(2.4.15)

ψ(1)
1

ψ′(1)

ψ(A) ψ′(A)

ψ(ηA)

��

ψ−1
0 //

ψ′
0 //

ϕ1
//

ψ′(ηA)

��

(2.4.16)

which amount to saying that ϕ1 is an algebra homomorphism ψ(A) → ψ′(A). Together

with the conditions for the generators ∆A : A→ A⊗A and εA : A→ 1, we have that ϕ1 is a

Frobenius algebra homomorphism from ψ(A) to ψ′(A). Similarly, the diagrams corresponding

to the generators with a C subscript imply that ϕ2 is a Frobenius algebra homomorphism

ψ(C) → ψ′(C). The conditions on the images of the generators ı : C → A and ı∗ : A → C

produce the requirement that the two diagrams:

ψ(C)
ϕ2 //

ψ(ı)

��

ψ′(C)

ψ′(ı)
��

ψ(A) ϕ1

// ψ′(A)

and

ψ(A)
ϕ1 //

ψ(ı∗)

��

ψ′(A)

ψ′(ı∗)
��

ψ(C) ϕ2

// ψ′(C)

(2.4.17)

commute. Hence, the monoidal natural transformation ϕ defines a morphism of knowledge-

able Frobenius algebras in C. This assignment clearly preserves the monoidal structure and
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symmetry up to isomorphism. Thus, it is clear that one can define a symmetric monoidal

functor

Γ = (Γ,Γ2,Γ0) : Symm-Mon(Th(K-Frob))→ K-Frob(C).

Conversely, given any knowledgeable Frobenius algebra A
′ = (A′, C ′, ı′, ı′∗) in C, then by

the remarks preceding this proposition, there is an assignment

Γ: K-Frob(C) → Symm-Mon(Th(K-Frob), C) (2.4.18)

(A′, C ′, ı′, ı′∗) 7→ FA′ , (2.4.19)

where FA′ is the strict symmetric monoidal functor sending the knowledgeable Frobenius alge-

bra (A,C, ı, ı∗) generating Th(K-Frob) to the knowledgeable Frobenius algebra (A′, C ′, ı′, ı′∗)

in C. Furthermore, it is clear from the discussion above that a homomorphism of knowledge-

able Frobenius algebras ϕ : A1 → A2 defines a monoidal natural transformation ϕ : FA1 → FA2 .

Thus, it is clear that Γ extends to a symmetric monoidal functor Γ = (Γ,Γ2,Γ0) : K-Frob(C)→

Symm-Mon(Th(K-Frob), C).

To see that Γ and Γ define an equivalence of categories, let A
′ = (A′, C ′, ı′, ı′∗) be a

knowledgeable Frobenius algebra in C. The composite ΓΓ(A′) = Γ(FA′) = A
′ since FA′ is a

strict symmetric monoidal functor. Hence, ΓΓ = idK-Frob(C). Now let ψ : Th(K-Frob)→ C

be a symmetric monoidal functor and consider the composite ΓΓ(ψ). Let Ã =
(
ψ(A), ψ(µA) ◦

ψ2, ψ(ηA) ◦ψ0, ψ
−1
2 ◦ψ(∆A), ψ−1

0 ◦ψ(εA)
)

so that ΓΓ(ψ) = F
eA
. We define a monoidal natural

isomorphism ϑ : ψ ⇒ F
eA

on the generators as follows:

ϑ
1

: ψ(1)→ F
eA
(1) = 1 := ψ−1

0 ,

ϑA : ψ(A)→ F
eA
(A) = ψ(A) := 1A, (2.4.20)

ϑC : ψ(C)→ F
eA
(C) = ψ(C) := 1C .

The condition that ϑ be monoidal implies that ϑA⊗A = (ψ−1
2 )A⊗A, ϑA⊗C = (ψ−1

2 )A⊗C ,

ϑC⊗A = (ψ−1
2 )C⊗A, and ϑC⊗C = (ψ−1

2 )C⊗C . Since Th(K-Frob) is generated by 1 ,A, and C,

this assignment uniquely defines a monoidal natural isomorphism. Hence, ΓΓ(ψ) ∼= ψ so that

Γ and Γ define a monoidal equivalence of categories.

2.5 The category of open-closed cobordisms

In this section, we define and study the category 2Cobext of open-closed cobordisms. Open-

closed cobordisms form a special sort of compact smooth 2-manifolds with corners that have
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a particular global structure. If one decomposes their boundary minus the corners into con-

nected components, these components are either black or coloured with elements of some given

set S. Every corner is required to separate a black boundary component from a coloured one2.

These 2-manifolds with corners are viewed as cobordisms between their black boundaries,

and they can be composed by gluing them along their black boundaries subject to a matching

condition for the colours of the other boundary components. In the conformal field theory

literature, the coloured boundary components are referred to as free boundaries and the

colours as boundary conditions.

2-manifolds with corners with this sort of global structure form a special case of 〈2〉-

manifolds according to Jänich [60]. For an overview and a very convenient notation, we refer

to the introduction of the article [61] by Laures.

In the following two subsections, we present all definitions for a generic set of colours S.

Starting in Subsection 2.5.4, the generators and relations description of 2Cobext is developed

only for the case of a single colour, S = {∗}. We finally return to the case of a generic set of

colours S in Section 2.8.

2.5.1 〈2〉-manifolds

Manifolds with corners

A k-dimensional manifold with corners M is a topological manifold with boundary that is

equipped with a smooth structure with corners. A smooth structure with corners is defined

as follows. A smooth atlas with corners is a family {(Uα, ϕα)}α∈I of coordinate systems such

that the Uα ⊆M are open subsets which cover M , and the

ϕα : Uα → ϕα(Uα) ⊆ Rk
+ (2.5.1)

are homeomorphisms onto open subsets of Rk
+ := [0,∞)k. The transition functions

ϕβ ◦ ϕ
−1
α : ϕα(Uαβ)→ ϕβ(Uαβ) (2.5.2)

for Uαβ := Uα ∩Uβ 6= ∅ are required to be the restrictions to Rk
+ of diffeomorphisms between

open subsets of Rk. Two such atlases are considered equivalent if their union is a smooth

atlas with corners, and a smooth structure with corners is an equivalence class of such atlases.

A smooth map f : M → N between manifolds with corners M and N is a continuous map

for which the following condition holds. Let {(Uα, ϕα)}α∈I and {(Vβ , ψβ)}β∈J be atlases that

2In this terminology, black is not considered a colour.
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represent the smooth structures with corners of M and N , respectively. For every p ∈M and

for every α ∈ I, β ∈ J with p ∈ Uα and f(p) ∈ Vβ, we require that the map

ψβ ◦ f ◦ ϕ
−1
α |ϕα(Uα∩f−1(Vβ)) : ϕα(Uα ∩ f

−1(Vβ))→ ψβ(f(Uα) ∩ Vβ) (2.5.3)

is the restriction to Rm
+ of a smooth map between open subsets of Rm and Rp for m and p

the dimensions of M and N , respectively.

Manifolds with faces

For each p ∈ M , we define c(p) ∈ N0 to be the number of zero coefficients of ϕα(p) ∈ Rk

for some α ∈ I for which p ∈ Uα. A connected face of M is the closure of a component of

{ p ∈M : c(p) = 1 }. A face is a free union of pairwise disjoint connected faces. This includes

the possibility that a face can be empty.

A k-dimensional manifold with faces M is a k-dimensional manifold with corners such

that each p ∈M is contained in c(p) different connected faces. Notice that every face of M is

itself a manifold with faces.

〈n〉-manifolds

A k-dimensional 〈n〉-manifold M is a k-dimensional manifold with faces with a specified tuple

(∂0M, . . . , ∂n−1M) of faces of M such that the following two conditions hold.

1. ∂0M ∪ · · · ∪ ∂n−1M = ∂M . Here ∂M denotes the boundary of M as a topological

manifold.

2. ∂jM ∩ ∂ℓM is a face of both ∂jM and ∂ℓM for all j 6= ℓ.

Notice that a 〈0〉-manifold is just a manifold without boundary while a 〈1〉-manifold is a

manifold with boundary. A diffeomorphism f : M → N between two 〈n〉-manifolds is a

diffeomorphism of the underlying manifolds with corners such that f(∂jM) = ∂jN for all j.

The following notation is taken from Laures [61]. Let 2 denote the category associated

with the partially ordered set {0, 1}, 0 ≤ 1, i.e. the category freely generated by the graph

0
∗
−→ 1. Denote by 2n the n-fold Cartesian product of 2 and equip its set of objects {0, 1}n

with the corresponding partial order. An 〈n〉-diagram is a functor 2n → Top. We use the

term 〈n〉-diagram of inclusions for an 〈n〉-diagram which sends each morphism of 2n to an

inclusion, and so on.
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Every 〈n〉-manifold M gives rise to an 〈n〉-diagram M : 2n → Top of inclusions as follows.

For the objects a = (a0, . . . , an−1) ∈ |2
n|, write a′ := (1 − a0, . . . , 1 − an−1), and denote the

standard basis of Rn by (e0, . . . , en−1). The functor M : 2n → Top is defined on the objects

by,

M(a) :=
⋂

i∈{ i : a≤e′i }
∂iM, (2.5.4)

if a 6= (1, . . . , 1), and by M((1, . . . , 1)) := M . The functor sends the morphisms of 2n to the

obvious inclusions.

For all a ∈ |2n|, the face M(a) of M forms a 〈ℓ〉-manifold itself for which ℓ =
∑n−1

i=1 ai. An

orientation of M induces orientations on the M(a) as usual. The product of an 〈n〉-manifold

M with a 〈p〉-manifold N forms an 〈n+ p〉-manifold, denoted by M × N . The structure of

its faces can be read off from the functor

M ×N : 2n+p ≃ 2n × 2p
M×N
−→ Top×Top

×
−→ Top. (2.5.5)

The half-line R+ := [0,∞) is a 1-dimensional manifold with boundary, i.e. a 1-dimensional

〈1〉-manifold. The product of (2.5.5) then equips Rn
+ with the structure of an n-dimensional

〈n〉-manifold.

The case that is relevant in the following is that of 2-dimensional 〈2〉-manifolds. These

are 2-dimensional manifolds with faces with a pair of specified faces (∂0M,∂1M) such that

∂0M ∪ ∂1M = ∂M and ∂0M ∩ ∂1M is a face of both ∂0M and ∂1M . The following diagram

shows the faces of one of the typical 2-dimensional 〈2〉-manifolds M that are used below.

M ∂0M ∂1M ∂0M ∪ ∂1M ∂0M ∩ ∂1M
b b

b b

(2.5.6)

The 〈2〉-diagram M : 22 → Top of inclusions is the following commutative square:

∂0M ∩ ∂1M
M(id0×∗)

//

M(∗×id0)

��

∂0M

M(∗×id1)

��

∂1M
M(id1×∗)

//M

(2.5.7)

Another example of a manifold with corners M which is embedded in R3 is depicted in (1.0.5).

It has the structure of a 2-dimensional 〈2〉-manifold when one chooses ∂0M to be the union

of the top and bottom boundaries of the picture, similarly to (2.5.6).
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Collars

In order to glue 〈2〉-manifolds along specified faces, we need the following technical results.

Lemma 2.5.1 (Lemma 2.1.6 of [61]). Each 〈n〉-manifold M admits an 〈n〉-diagram C of

embeddings

C(a→ b) : Rn
+(a′)×M(a) →֒ R

n
+(b′)×M(b) (2.5.8)

such that the restriction C(a→ b)|
R

n
+(b′)×M(a) = id

R

n
+(b′) ×M(a→ b) is the inclusion map.

In particular, for every 〈2〉-manifold M , there is a commutative square C : 22 → Top of

embeddings,

R

2
+ × (∂0M ∩ ∂1M)

C(id0×∗)
//

C(∗×id0)

��

∂0R
2
+ × ∂1M

C(∗×id1)

��

∂1R
2
+ × ∂0M

C(id1×∗)
// {(0, 0)} ×M

(2.5.9)

such that the following restrictions are inclusions,

C(id0 × ∗)|∂0R2
+×(∂0M∩∂1M) = id∂0R2

+
×M(id0 × ∗), (2.5.10)

C(∗ × id0)|∂1R2
+×(∂0M∩∂1M) = id∂1R2

+
×M(∗ × id0), (2.5.11)

C(∗ × id1)|{(0,0)}×∂1M = id{(0,0)} ×M(∗ × id1), (2.5.12)

C(id1 × ∗)|{(0,0)}×∂0M = id{(0,0)} ×M(id1 × ∗). (2.5.13)

The embedding C(id1 × ∗) : ∂1R
2
+ × ∂0M → {(0, 0)} ×M provides us with a diffeomorphism

from ([0, ε] × {0}) × ∂0M ⊆ ([0,∞) × {0}) × ∂0M = ∂1R
2
+ × ∂0M onto a submanifold of

{(0, 0)} ×M for some ε > 0. It restricts to an inclusion on {(0, 0)} × ∂0M and thereby yields

a (smooth) collar neighbourhood for ∂0M .

2.5.2 Open-closed cobordisms

For a topological space M , we denote by Π0(M) the set of its connected components, and for

p ∈M , we denote by [p] ∈ Π0(M) its component.

Cobordisms

Definition 2.5.2. Let S be some set. An S-coloured open-closed cobordism (M,γ) is a

compact oriented 2-dimensional 〈2〉-manifold M whose distinguished faces we denote by
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(∂0M,∂1M), together with a map γ : Π0(∂1M) → S. The face ∂0M is called the black

boundary , ∂1M the coloured boundary , and γ the colouring. An open-closed cobordism is

an S-coloured open-closed cobordism for which S is a one-element set.

Two S-coloured open-closed cobordisms (M,γM ) and (N, γN ) are considered equivalent if

there is an orientation preserving diffeomorphism of 2-dimensional 〈2〉-manifolds f : M → N

that restricts to the identity on ∂0M and that preserves the colouring, i.e. γN ◦ f = γM .

The face ∂0M is a compact 1-manifold with boundary and therefore diffeomorphic to a

free union of circles S1 and unit intervals [0, 1]. For each of the unit intervals, there is thus an

orientation preserving diffeomorphism ϕ : [0, 1] → ϕ([0, 1]) ⊆ ∂0M onto a component of ∂0M

such that the boundary points are mapped to the corners, i.e. ϕ({0, 1}) ⊆ ∂0M ∩ ∂1M . We

say that the cobordism (M,γ) equips the unit interval [0, 1] with the colours (γ+, γ−) ∈ S×S

if γ+ := γ([ϕ(1)]) and γ− := γ([ϕ(0)]).

Gluing

Let (M,γM ) and (N, γN ) be S-coloured open-closed cobordisms and f : S1∗ → M and

g : S1 → N be orientation preserving diffeomorphisms onto components of ∂0M and ∂0N ,

respectively. Here we have equipped the circle S1 with a fixed orientation, and S1∗ denotes

the one with opposite orientation. Then we obtain an S-coloured open-closed cobordism

M f

∐
gN by gluing M and N along S1 as follows. As a topological manifold, it is the

pushout. As mentioned in Section 2.5.1, ∂0M and thereby all its components have smooth

collar neighbourhoods, and so the standard techniques are available to equip M f

∐
gN with

the structure of a manifold with corners whose smooth structure is unique up to a diffeomor-

phism that restricts to the identity on ∂0M ∪ ∂0N . It is obvious that M f

∐
gN also has the

structure of a 〈2〉-manifold with ∂1(M f

∐
gN) = ∂1M ∪ ∂1N and, furthermore, that of an

S-coloured open-closed cobordism.

Similarly, let f : [0, 1]∗ → M and g : [0, 1] → N be orientation preserving diffeomor-

phisms onto components of ∂0M and ∂0N , respectively, such that (M,γM ) equips the interval

f([0, 1]∗) with the colours (γ+, γ−) ∈ S and (N, γN ) equips the interval g([0, 1]) precisely with

the colours (γ−, γ+). Then we obtain the gluing of M and N along [0, 1] again as the pushout

M f

∐
gN equipped with the smooth structure that is unique up to a diffeomorphism which

restricts to the identity on ∂0M ∪ ∂0N . It is easy to see that M f

∐
gN also has the structure

of a 〈2〉-manifold with ∂1(M f

∐
gN) = ∂1M ∪ ∂1N and, moreover, due to the matching of

colours, that of an S-coloured open-closed cobordism.
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The category 2Cobext(S)

The following definition of the category of open-closed cobordisms is inspired by that of Baas,

Cohen and Ramı́rez [29]. What we call 2Cobext(S) in the following is in fact a skeleton

of the category of open-closed cobordisms. For this reason, we choose particular embedded

manifolds C~n as the objects of 2Cobext(S). Although these are embedded manifolds, our

cobordisms are not, and we consider two cobordisms equivalent once they are related by an

orientation preserving diffeomorphism that restricts to the identity on their black boundaries.

Definition 2.5.3. Let S be a set. The category 2Cobext(S) is defined as follows. Its objects

are triples (~n, γ+, γ−) consisting of a finite sequence ~n := (n1, . . . , nk), k ∈ N0, with nj ∈

{0, 1}, 1 ≤ j ≤ k, and maps γ± : {1, . . . , k} → S ∪ {∅} for which γ±(j) 6= ∅ if nj = 1 and

γ±(j) = ∅ if nj = 03. We denote the length of such a sequence by |~n| := k.

Each sequence ~n = (n1, . . . , nk) represents the diffeomorphism type of a compact oriented

1-dimensional submanifold of R2,

C~n :=

k⋃

j=1

I(j, nj), (2.5.14)

where I(j, 0) is the circle of radius 1/4 centred at (j, 0) ∈ R2 and I(j, 1) = [j − 1/4, j +

1/4]×{0}, both equipped with the induced orientation. Taking the disjoint union of two such

manifolds C~n and C~m is done as follows,

C~n
∐

C~m := C~n ∪ T(|~n|,0)(C~m), (2.5.15)

where T (x, y) : R2 → R

2 denotes the translation by (x, y) in R2.

A morphism f : (~n, γ+, γ−) → (~n′, γ′+, γ
′
−) is a pair f = ([f ],Φ) consisting of an equiv-

alence class [f ] of S-coloured open-closed cobordisms and a specified orientation preserving

diffeomorphism

Φ: C∗
~n

∐
C~n′ → ∂0f, (2.5.16)

such that the following conditions hold:

1. For each j ∈ {1, . . . , |~n|} for which nj = 1, the S-coloured open-closed cobordism

(f, γ) representing [f ] equips the corresponding unit interval Φ(I(j, nj)) with the colours

(γ+(j), γ−(j)).

3This is done simply because the values γ±(j) are never used if nj = 0, but we nevertheless want to keep

the indices j in line with those of the sequence ~n.
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2. For each j ∈ {1, . . . , |~n′|} for which n′j = 1, (f, γ) equips the corresponding unit interval

Φ(I(j, n′j)) with the colours (γ′+(j), γ′−(j)).

The composition g ◦ f of two morphisms f = ([f ],Φf ) : (~n, γ+, γ−) → (~n′, γ′+, γ
′
−) and

g = ([g],Φg) : (~n′, γ′+, γ
′
−) → (~n′′, γ′′+, γ

′′
−) is defined as g ◦ f := ([g

∐
C~n′

f ],Φg◦f ). Here

[g
∐
C~n′

f ] is the equivalence class of the S-coloured open-closed cobordism g
∐
C~n′

f which is

obtained by successively gluing f and g along all the components of C~n′ . Φg◦f : C∗
~n

∐
C~n′′ →

∂0(g
∐
C~n′

f) is the obvious orientation preserving diffeomorphism obtained from restricting

Φf : C∗
~n

∐
C~n′ → ∂0f and Φg : C∗

~n′

∐
C~n′′ → ∂0g.

For any object (~n, γ+, γ−), the cylinder id(~n,γ+,γ−) := [0, 1] × C~n forms an S-coloured

open-closed cobordism such that ∂0id(~n,γ+,γ−) = C∗
~n

∐
C~n. It plays the role of the identity

morphism.

The category 2Cobext is defined as the category 2Cobext(S) for the singleton set S = {∗}.

When we describe the objects of 2Cobext, we can suppress the γ+ and γ− and simply write

the sequences ~n = (n1, . . . , n|~n|).

Examples of morphisms of 2Cobext are depicted here,

: (1, 1) → (1) , : (0)→ (0, 0) , : (0)→ (1) . (2.5.17)

In these pictures, the source of the cobordism is drawn at the top and the target at the

bottom. The morphism depicted in (1.0.5) goes from (1, 0, 1, 1, 1) to (0, 1, 1, 0, 0).

The concatenation ~n
∐
~m := (n1, . . . , n|~n|,m1, . . . ,m|~m|) of sequences together with the

free union of S-coloured open-closed cobordisms, also denoted by
∐

, provides the category

2Cobext(S) with the structure of a strict symmetric monoidal category.

Let k ∈ N. The symmetric group Sk acts on the subset of objects (~n, γ+, γ−) ∈ |2Cobext(S)|

for which |~n| = k. This action is defined by,

σ ✄ (~n, γ+, γ−) := ((nσ−1(1), . . . , nσ−1(|~n|)), γ+ ◦ σ
−1, γ− ◦ σ

−1) . (2.5.18)

For each object (~n, γ+, γ−) ∈ |2Cobext(S)| and any permutation σ ∈ S|~n|, we define a mor-

phism,

σ(~n,γ+,γ−) : (~n, γ+, γ−)→ σ ✄ (~n, γ+, γ−) , (2.5.19)

by taking the underlying S-coloured open-closed cobordism of the cylinder id(~n,γ+,γ−), and

replacing the orientation preserving diffeomorphism

Φ: C∗
~n

∐
C~n → ∂0id(~n,γ+,γ−) (2.5.20)
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by one that has the components of the C~n for the target permuted accordingly. For example,

for S = {∗}, ~n = (1, 0, 0, 1) and σ = (234) ∈ S4 in cycle notation, we obtain the morphism σ(~n)

that is depicted in (2.6.13) below. As morphisms of 2Cobext(S), i.e. up to the appropriate

diffeomorphism, these cobordisms satisfy,

τσ✄(~n,γ+,γ−) ◦ σ(~n,γ+,γ−) = (τ ◦ σ)(~n,γ+,γ−) . (2.5.21)

If the source of σ(~n,γ+,γ−) is obvious from the context, we just write σ.

2.5.3 Invariants for open-closed cobordisms

In order to characterize the S-coloured open-closed cobordisms of 2Cobext(S) topologi-

cally, we need the following invariants. The terminology is taken from Baas, Cohen, and

Ramı́rez [29].

Definition 2.5.4. Let S be a set and f = ([f ],Φ) ∈ 2Cobext(S)[(~n, γ+, γ−), (~n′, γ′+, γ
′
−)] be

a morphism of 2Cobext(S) from (~n, γ+, γ−) to (~n′, γ′+, γ
′
−).

1. The genus g(f) is defined to be the genus of the topological 2-manifold underlying f .

2. The window number of f is a map ω(f) : S → N0 such that ω(f)(s) is the number

of components of the face ∂1f that are diffeomorphic to S1 and that are equipped by

γ : Π0(∂1f)→ S with the colour s ∈ S. In the case S = {∗}, we write ω(f) ∈ N0 instead

of ω(f)(∗).

3. Let k be the number of coefficients of ~n
∐
~n′ that are 1, i.e. the number of components

of the face ∂0f that are diffeomorphic to the unit interval. Number these components by

1, . . . , k. The open boundary permutation (σ(f), γ∂(f)) of f consists of a permutation

σ(f) ∈ Sk and a map γ∂(f) : {1, . . . , k} → S. We define σ(f) as a product of disjoint

cycles as follows. Consider every component X of the boundary ∂f of f viewed as a

topological manifold, for which X ∩ ∂0f ∩ ∂1f 6= ∅. These are precisely the components

that contain a corner of f . The orientation of f induces an orientation of X and thereby

defines a cycle (i1, . . . , iℓ) where the ij ∈ {1, . . . , k} are the numbers of the intervals of

∂0f that are contained in X. The permutation σ(f) is the product of these cycles

for all such components X. The map γ∂(f) : {1, . . . , k} → S is defined such that the

S-coloured open-closed cobordism (f, γ) representing [f ] equips the interval with the

number j ∈ {1, . . . , k} with the colours (γ∂(j), γ∂(σ
−1(j))).
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For example, the morphism depicted in (1.0.5) has 6 components of its black boundary

diffeomorphic to the unit interval. Its open boundary permutation is σ(f) = (256)(34) ∈ S6

if one numbers the intervals in the source (top of the diagram) from left to right by 1, 2, 3, 4

and those in the target (bottom of the diagram) from left to right by 5, 6.

2.5.4 Generators

Beginning with this subsection, we restrict ourselves to the case of 2Cobext in which there is

only one boundary colour, i.e. S = {∗}. We use a generalization of Morse theory to manifolds

with corners in order to decompose each open-closed cobordism into a composition of open-

closed cobordisms each of which contains precisely one critical point. The components of

these form the generators for the morphisms of the category 2Cobext.

For the generalization of Morse theory to manifolds with corners, we follow Braess [62].

We first summarize the key definitions and results.

We need a notion of tangent space for a point p ∈ ∂M if M is a manifold with corners.

Every p ∈ M has a neighbourhood U ⊆ M which forms a submanifold of M and for which

there is a diffeomorphism ϕ : U → ϕ(U) onto an open subset ϕ(U) ⊆ Rn
+. Using the fact that

ϕ(p) ∈ Rn
+ ⊆ R

n, we define the tangent space of p in M as TpM := dϕ−1
p (Tϕ(p)R

n), i.e. just

identifying it with that of ϕ(p) in Rn via the isomorphism dϕ−1
p .

Definition 2.5.5. Let M be a manifold with corners.

1. For each p ∈M , we define the inwards pointing tangential cone CpM ⊆ TpM as the set

of all tangent vectors v ∈ TpM for which there exists a smooth path γ : [0, ε] → M for

some ε > 0 such that γ(0) = p and the one-sided derivative is:

lim
t→0+

(γ(t)− γ(0))/t = v. (2.5.22)

2. Let f : M → R be smooth. A point p ∈ M is called a critical point and f(p) ∈ R its

critical value if the restriction of the derivative dfp : TpM → R to the inwards pointing

tangential cone is not surjective, i.e. if

dfp(CpM) 6= R. (2.5.23)

The point p ∈M is called (+)-critical if dfp(CpM) ⊆ R+ and it is called (−)-critical if

dfp(CpM) ⊆ R− := −R+.
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Note that dfp : TpM → R is linear and therefore maps cones to cones, and so dfp(CpM)

is either {0}, R+, R−, or R. If p ∈ M is a critical point, then dfp(CpM) is either {0}, R+,

or R−. If p ∈ M\∂M , then CpM = TpM , and so p is critical if and only if dfp = 0. If

p ∈ ∂M , c(p) = 1, and p is critical, then the restriction of f to ∂M has vanishing derivative,

i.e. d(f |∂M )p = 0.

Definition 2.5.6. Let M be a manifold with corners and f : M → R be a smooth function.

1. A critical point p ∈M of f is called non-degenerate if the Hessian of f at p, restricted

to the kernel of dfp, has full rank, i.e. if

detHessp(f)|ker dfp⊗ker dfp 6= 0. (2.5.24)

2. The function f is called a Morse function if all its critical point are non-degenerate.

Note that if p ∈ M\∂M , then the notion of non-degeneracy is as usual. If p ∈ ∂M ,

c(p) = 1, and p is a non-degenerate critical point, then p is a non-degenerate critical point

of the restriction f |∂M : ∂M → R in the usual sense. All non-degenerate critical points are

isolated [62].

For our open-closed cobordisms, we need a special sort of Morse functions that are com-

patible with the global structure of the cobordisms.

Definition 2.5.7. Let M ∈ 2Cobext[~n, ~m] be an open-closed cobordism with source C~n and

target C~m. Here we have suppressed the diffeomorphisms from C~n onto a component of ∂0M ,

etc., and we write M for any representative of its equivalence class. A special Morse function

for M is a Morse function f : M → R such that the following conditions hold:

1. f(M) ⊆ [0, 1].

2. f(p) = 0 if and only if p ∈ C~n, and f(p) = 1 if and only if p ∈ C~m.

3. Neither C~n nor C~m contain any critical points.

4. The critical points of f have pairwise distinct critical values.

Using the standard techniques (see for example [19]), one shows that every open-closed

cobordism M ∈ 2Cobext[~n, ~m] admits a special Morse function f : M → R. Since M is

compact and since all non-degenerate critical points are isolated, the set of critical points of f

is a finite set. If neither a ∈ R nor b ∈ R are critical values of f , the pre-image N := f−1([a, b])
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forms an open-closed cobordism with ∂0N = f−1({a, b}) and ∂1N = ∂1M∩N . If [a, b] does not

contain any critical value of f , then f−1([a, b]) is diffeomorphic to the cylinder f−1({a})×[0, 1].

The following proposition classifies in terms of Morse data the non-degenerate critical

points that can occur on open-closed cobordisms.

Proposition 2.5.8. Let M ∈ 2Cobext[~n, ~m] be a connected open-closed cobordism and

f : M → R a special Morse function such that f has precisely one critical point. Then M is

equivalent to one of the following open-closed cobordisms:

µA ∆A ηA εA µC ∆C ηC εC ı ı∗

(2.5.25)

or to one of the compositions

. (2.5.26)

All these diagrams show open-closed cobordisms embedded in R3 and are drawn in such a

way that the vertical axis of the drawing plane is −f . The source is at the top, and the target

at the bottom of the diagram.

Proof. We analyze the properties of the non-degenerate critical point p ∈M case by case.

1. If p ∈ M\∂M , then the critical point is characterized by its index i(p) (the number

of negative eigenvalues of Hessp(f)) as usual; see, for example [63]. There exists a

neighbourhood U ⊆ M of p and a coordinate system x : U → R

2 in which the Morse

function has the normal form,

f(p) = −

i(p)∑

j=1

x2
j(p) +

2∑

j=i(p)+1

x2
j(p) (2.5.27)

for all p ∈ U .

(a) If the index is i(p) = 2, then the Morse function has a maximum at p, and so the

neighbourhood (and thereby the entire open-closed cobordism) is diffeomorphic to

εC of (2.5.25). Recall that the vertical coordinate of our diagrams is −f rather

than +f .

(b) If the index is i(p) = 1, then f has a saddle point, and the usual argument shows

that the possible cases are either µC or ∆C of (2.5.25).
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(c) If the index is i(p) = 1, then f has a saddle point. If M were a closed cobordism,

i.e. ∂0M = ∂M , the usual argument would show that M is either of the form µC

or ∆C of (2.5.25). In the open-closed case, however, the saddle can occur in other

cases, too, depending on how the boundary ∂M is decomposed into ∂0M and ∂1M .

We proceed with a case by case analysis and show that in each case, this saddle is

equivalent to one of the compositions displayed in (2.5.26):

∼= , (2.5.28)

∼= . (2.5.29)

Here we show the saddle at the left and the equivalent decomposition as a compo-

sition and tensor product of the cobordisms of (2.5.25) with identities on the right.

The saddle of (2.5.28) can appear in two orientations and with the intervals in its

source and target in any ordering. In any of these cases, it is equivalent to one of

the first two compositions displayed in (2.5.26). The saddle of (2.5.29) can appear

flipped upside-down or left-right or both, giving rise to the last four compositions

displayed in (2.5.26).

Note that the equivalences of (2.5.28) and (2.5.29) relate cobordisms whose number

of critical points differs by an odd number. This is a new feature that dos not occur

in the case of closed cobordisms.

2. Otherwise, p ∈ ∂1M\∂0M , i.e. the critical point is on the coloured boundary, but does

not coincide with a corner of M . Consider the restriction f |∂1M : ∂1M → R which then

has a non-degenerate critical point at p with index i′(p) ∈ {0, 1}.

(a) If i′(p) = 1, then f |∂M has a maximum at p.

i. If p is a (−)-critical point of f , the cobordism is diffeomorphic to εA of (2.5.25).

ii. If p is a (+)-critical point of f , the neighbourhood of p looks as follows,

p
M

(2.5.30)

Consider the component of the boundary ∂M of M as a topological manifold.

The set of corners ∂0M ∩ ∂1M contains at least two elements. If it contains
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precisely two elements, then the cobordism is diffeomorphic to ı∗ of (2.5.25).

Otherwise, it contains six elements, and the cobordism is diffeomorphic to µA

of (2.5.25).

iii. Otherwise p is neither (+)-critical nor (−)-critical, and so dfp = 0. Non-

degeneracy now means that Hessp(f) is non-degenerate. Let i′′(p) ∈ {0, 1, 2}

be the number of negative eigenvalues of Hessp(f). The case i′′(p) = 0 is ruled

out by the assumption that i′(p) = 1.

A. If i′′(p) = 2, then we are in the same situation as in case 2(a)i.

B. Otherwise i′′(p) = 1, and we are in the same situation as in case 2(a)ii.

(b) If i′(p) = 0, then f |∂M has a minimum at p.

i. If p is a (+)-critical point of f , the cobordism is diffeomorphic to ηA of (2.5.25).

ii. If p is a (−)-critical point of f , the neighbourhood of p looks as follows,

pM (2.5.31)

Similarly to case 2(a)ii above, the cobordism is either diffeomorphic to ∆A or

to ı of (2.5.25).

iii. Otherwise dfp = 0, and by considering Hessp(f) similarly to case 2(a)iii above,

we find that we are either in case 2(b)i or 2(b)ii.

The structure of arbitrary open-closed cobordisms can then be established by using a

special Morse function and decomposing the cobordism into a composition of pieces that have

precisely one critical point each. This result generalizes the conventional handle decomposition

to the case of our sort of 2-manifolds with corners.

Proposition 2.5.9. Let f ∈ 2Cobext[~n, ~n′] be any morphism. Then [f ] = [fℓ ◦ · · · ◦ f1], i.e.

f is equivalent to the composition of a finite number of morphisms fj each of which is of the

form fj = id ~mj

∐
gj

∐
id ~pj where gj is one of the morphisms depicted in (2.5.25) and id ~mj

and id ~pj are identities, i.e. cylinders over their source.

Our pictures, for example (1.0.5), indicate how the morphisms are composed from the

generators. In order to keep the height of the diagram small, we have already used relations

such as (g
∐

id~n′) ◦ (id~m
∐
f) = g

∐
f for f : ~n→ ~n′ and g : ~m→ ~m′ which obviously hold in

2Cobext.
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Notice that the flat strip, twisted by 2π when we draw it as embedded inR3, is nevertheless

equivalent to the flat strip:

∼= . (2.5.32)

2.5.5 Relations

Below we provide a list of relations that the generators of 2Cobext satisfy. In Section 2.5.6,

we summarize some consequences of these relations. As already mentioned in the introduc-

tion, these relations have emerged from work on boundary conformal field theory. See, for

example [27,28,30,32,33]. In Section 2.6, we define a normal form for open-closed cobordisms

with a specified genus, window number and open boundary permutation. In Section 2.6.3, we

then provide an inductive proof which constructs a finite sequence of diffeomorphisms that

puts an arbitrary open-closed cobordism into the normal form using only the relations given

below. Hence, we provide a constructive proof that the relations are sufficient to completely

describe the category 2Cobext.

When we use the sign ‘∼=’ in our diagrams below, we mean equivalence in the category

2Cobext.

Proposition 2.5.10. The following relations hold in the symmetric monoidal category 2Cobext:

1. The object ~n = (0), i.e. the circle C~n ∼= S1, forms a commutative Frobenius algebra

object:

∼= ∼= ∼= (2.5.33)

∼= ∼= ∼= (2.5.34)

∼= ∼= (2.5.35)

∼= . (2.5.36)

2. The object ~n = (1), i.e. the interval C~n ∼= I, forms a symmetric Frobenius algebra
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object:

∼= ∼= ∼= (2.5.37)

∼= ∼= ∼= (2.5.38)

∼= ∼= (2.5.39)

∼= . (2.5.40)

3. The ‘zipper’ forms an algebra homomorphism:

∼= ∼= . (2.5.41)

4. This relation describes the ‘knowledge’ about the centre, c.f. (2.4.1):

∼= . (2.5.42)

5. The ‘cozipper’ is dual to the zipper:

∼= . (2.5.43)

6. The Cardy condition:

∼= . (2.5.44)

Proof. It can be show in a direct computation that the depicted open-closed cobordisms

are equivalent. Writing out this proof would be tremendously laborious, but of rather little
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insight. For the Cardy condition (2.5.44), the right hand side is most naturally depicted as:

. (2.5.45)

2.5.6 Consequences of relations

In this section, we collect some additional diffeomorphisms that can be constructed from the

diffeomorphisms in Proposition 2.5.10. To simplify the diagrams, we define:

:∼= :∼= . (2.5.46)

These open-closed cobordisms which we sometimes call the open pairing and open copairing,

respectively, satisfy the zig-zag identities:

∼= ∼= . (2.5.47)

This follows directly from the Frobenius relations, the left and right unit laws, and the left

and right counit laws. From Equations (2.5.40) and (2.5.37), the pairing can be shown to be

symmetric and invariant,

∼= ∼= (2.5.48)

and the same holds for the copairing. Similarly, we define the closed pairing and the closed

copairing:

:∼= :∼= . (2.5.49)

These also satisfy the zig-zag identities,

∼= ∼= (2.5.50)

and the closed pairing is symmetric and invariant,

∼= ∼= . (2.5.51)

A similar result holds for the closed copairing.
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Proposition 2.5.11. The following open-closed cobordisms are diffeomorphic by composi-

tions of the diffeomorphisms of Proposition 2.5.10:

∼= , (2.5.52)

∼= , (2.5.53)

∼= , (2.5.54)

∼= . (2.5.55)

Proof. Equation (2.5.52) is just a restatement of the second axiom in Equation (2.5.43). The

proof of Equation (2.5.53) is as follows:

∼=
(2.5.36)

∼=
Nat

∼=
(2.5.43)

∼=
Nat

∼=
(2.5.40) .

(2.5.56)

By ‘Nat’ we have denoted the obvious diffeomorphisms which, algebraically speaking, express

the naturality of the symmetric braiding. The proof of Equation (2.5.54) is as follows:

∼=
(2.5.50)

∼=
(2.5.53)

∼=
(2.5.47) . (2.5.57)

We leave the proof of Equation (2.5.55) as an exercise for the reader.

Proposition 2.5.12. The following open-closed cobordisms are diffeomorphic:

∼= ∼= , (2.5.58)

∼= , (2.5.59)

∼= ∼= , (2.5.60)
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∼= . (2.5.61)

Proof. The first diffeomorphism in Equation (2.5.58) is constructed from the following se-

quence of diffeomorphisms:

∼=
(2.5.33)

∼=
(2.5.35)

∼=
(2.5.49) . (2.5.62)

The second diffeomorphism in Equation (2.5.58) is constructed similarly. The diffeomorphism

in Equation (2.5.59) is constructed as follows:

∼=
(2.5.58)

∼=
(2.5.50)

∼=
(2.5.51) .

(2.5.63)

The proofs of Equations (2.5.60) and (2.5.61) are identical to those above with the closed

cobordisms replaced by their open counterparts.

Proposition 2.5.13. The cozipper is a homomorphism of coalgebras.

Proof. The proof follows from the following sequence of diffeomorphisms:

∼=
(2.5.50)

∼=
(2.5.53)

∼=
(2.5.49)

(2.5.64)

∼=
(2.5.34)

∼=
(2.5.53)

∼=
(2.5.46)

∼=
(2.5.37)

∼=
(2.5.59)

∼=
(2.5.42) (2.5.65)
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∼=
(2.5.41)

∼=
(2.5.54)

∼=
(2.5.61) .

Proposition 2.5.14. Open-closed cobordisms of the form which we sometimes call closed

windows, can be moved around freely in any closed diagram. By this we mean that the

following open-closed cobordisms are diffeomorphic,

∼= ∼= , (2.5.66)

∼= ∼= , (2.5.67)

∼= . (2.5.68)

Proof. Equation (2.5.66) holds because,

∼=
(2.5.65)

∼=
(2.5.60)

∼=
(2.5.54)

∼=
(2.5.41)

∼=
(2.5.58)

.

Equation (2.5.67) can be proven similarly. Equation (2.5.68) follows readily from the prior
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two:

∼=
(2.5.66)

∼=
(2.5.67)

. (2.5.69)

Proposition 2.5.15. Open-closed cobordisms of the form which we sometimes call open

windows, can be moved around freely in any open diagram. More precisely, the following

open-closed cobordisms are diffeomorphic,

∼= ∼= , (2.5.70)

∼= ∼= . (2.5.71)

Proof. We show only the proof of one of these relations,

∼=
(2.5.39)

∼=
(2.5.38) . (2.5.72)

Proposition 2.5.16. Open-closed cobordisms of the form , also called genus-one operators,

can be moved around freely in any closed diagram. More precisely,

∼= ∼= . (2.5.73)

∼= ∼= . (2.5.74)

Proof. The proof is similar to that of Proposition 2.5.15.
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Proposition 2.5.17. The following open-closed cobordisms are diffeomorphic by composi-

tions of the diffeomorphisms of Proposition 2.5.10:

∼= , (2.5.75)

∼= , ∼= , (2.5.76)

∼= , ∼= . (2.5.77)

Proof. The proof of Equation (2.5.75) is as follows:

∼=
(2.5.47)

∼=
(2.5.40)

∼=
Nat

∼=
(2.5.47)

.

(2.5.78)

The proof of Equation (2.5.76) is as follows:

∼=
(2.5.60)

∼=
(2.5.42)

∼=
Nat (2.5.79)

∼=
(2.5.75)

∼=
Nat

∼=
(2.5.60)

. (2.5.80)

The second part of Equation (2.5.76) is proven similarly. Finally, Equation (2.5.77) follows

from the Cardy condition as shown below:

∼=
(2.5.44)

∼=
(2.5.76)

. (2.5.81)
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2.6 The normal form of an open-closed cobordism

In this section, we describe the normal form of an arbitrary connected open-closed cobordism.

This normal form is characterized by its genus, window number, and open boundary permu-

tation (c.f. Definition 2.5.4). For non-connected open-closed cobordisms, the normal form has

to be taken for each component independently.

2.6.1 The case of open source and closed target

We begin by describing the normal form of a connected open-closed cobordism whose source

consists only of intervals and whose target consists only of circles. More precisely, we con-

sider those open-closed cobordisms f ∈ 2Cobext[~n, ~m] for which ~n = (1, 1, . . . , 1) and ~m =

(0, 0, . . . , 0) and denote the set of all such cobordisms by 2Cobext
O→C[~n, ~m]. Some examples

are shown below:

. (2.6.1)

Once we have defined the normal form for this class of cobordisms, we describe in Section 2.6.2

the normal form of an arbitrary connected open-closed cobordism by exploiting the duality

on the interval and circle, c.f. (2.5.47) and (2.5.50). To provide the reader with some intuition

about the normal form, the cobordisms of (2.6.1) are shown in normal form below:

. (2.6.2)

Definition 2.6.1. Let f ∈ 2Cobext
O→C[~n, ~m] be connected with open boundary permutation

σ(f), window number ω(f), and genus g(f). Write the open boundary permutation as a

product σ(f) = σ1 · · · σr, r ∈ N0, of disjoint cycles σj = (i
(j)
1 , . . . , i

(j)
qj ) of length qj ∈ N,
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1 ≤ j ≤ r. The normal form is the composite,

NFO→C(f) := E|~m| ◦Dg(f) ◦ Cω(f) ◦Br ◦
( r∐

j=1

A(qj)
)
◦ σ(f), (2.6.3)

of the following open-closed cobordisms.

• For each cycle σj, the open-closed cobordism A(qj) consists of qj−1 flat multiplications

and then a cozipper,

A(qj) :=
. . .

. (2.6.4)

The normal form (2.6.3) contains the free union of such a cobordism for each cycle σj,

1 ≤ j ≤ r. Cycles of length one are represented by a single cozipper. If |~n| = 0, then

we have r = 0, and the free union is to be replaced by the empty set.

• If r ≥ 1, then the open-closed cobordism Br consists of r − 1 closed multiplications,

Br :=
. . . (2.6.5)

and otherwise B0 := .

• The open-closed cobordism Cω(f) is defined as,

Cω(f) := C ′ ◦ C ′ ◦ · · · ◦ C ′
︸ ︷︷ ︸

ω(f)

, C ′ := (2.6.6)

if ω(f) ≥ 1 and empty otherwise.

• Similarly,

Dg(f) := D′ ◦D′ ◦ · · · ◦D′
︸ ︷︷ ︸

g(f)

, D′ := (2.6.7)

if g(f) ≥ 1 and empty otherwise.



2.6. THE NORMAL FORM OF AN OPEN-CLOSED COBORDISM 55

• E|~m| consists of |~m| − 1 closed comultiplications,

E|~m| :=
... (2.6.8)

if |~m| ≥ 1 and a closed cup E0 := otherwise.

• Finally, σ(f) denotes the open-closed cobordism that represents the permutation σ(f)

(as defined in (2.5.19)) given in the following. Let τ(f) be the open boundary permu-

tation of the open-closed cobordism

E|~m| ◦Dg(f) ◦ Cω(f) ◦Br ◦
( r∐

j=1

A(qj)
)
. (2.6.9)

Since by construction both τ(f) and σ(f) have the same cycle structure, characterized

by the partition |~n| =
∑r

j=1 qj, there exists a permutation σ(f) such that,

σ(f) = (σ(f))
−1
· τ(f) · σ(f). (2.6.10)

Note that multiplying σ(f) by an element in the centralizer of σ(f) yields the same

open-closed cobordism NFO→C(f) up to equivalence because of the relations (2.5.37)

and (2.5.76), and so NFO→C(f) is well defined.

When we prove the sufficiency of the relations in Section 2.6.3 below, we provide an

algorithm which automatically produces the required σ(f). Figure 2.1 depicts the structure

of the normal form up to the σ(f), i.e. it shows a cobordism of the form (2.6.9).
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...

...

...

. . .

. . .

. . .
. . .

Figure 2.1: This figure depicts the normal form of an open-closed cobordism in

2Cobext
O→C[~n, ~m] without precomposition with a permutation, i.e. it shows the open-closed

cobordism (2.6.9).

Any cobordism in normal form is invariant (up to equivalence) under composition with

certain permutation morphisms as follows.

Proposition 2.6.2. Let [f ] ∈ 2Cobext
O→C[~n, ~m]. Then

[σ(~m) ◦ NFO→C(f)] = [NFO→C(f)] (2.6.11)

for any σ ∈ S|~m|, and

[NFO→C(f) ◦ σ
(~n)
j ] = [NFO→C(f)] (2.6.12)

for all cycles σj ∈ S|~n| from the decomposition of the open boundary permutation σ(f) =

σ1 · · · σr into disjoint cycles.
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Proof. Equation (2.6.11) follows from (2.5.36), (2.5.50), and (2.5.51) while (2.6.12) follows

from (2.5.37) and (2.5.48).

2.6.2 The case of generic source and target

We now extend the definition of the normal form of connected cobordisms from 2Cobext
O→C[~n, ~m]

to 2Cobext[~n, ~m]. Let f be a representative of the diffeomorphism class of an open closed

cobordism [f ] in 2Cobext[~n, ~m]. Let ~n0 = (0, 0, . . . , 0) and ~n1 = (1, 1, . . . , 1) such that ~n0
∐
~n1

is a permutation of ~n, and similarly for ~m.

We define a map Λ: 2Cobext[~n, ~m] → 2Cobext
O→C[~m1

∐
~n1, ~m0

∐
~n0] as follows: Let σ1 ∈

S|~n| denote the permutation that sends ~n to ~n1
∐
~n0. Let σ2 ∈ S|~m| denote the permutation

that sends ~m to ~m1
∐
~m0. For example, if ~n = (1, 0, 0, 1), then σ1 is represented as an

open-closed cobordism by:

σ1 = . (2.6.13)

For [f ] ∈ 2Cobext[~n, ~m] we define Λ([f ]) to be the open closed cobordism obtained from [f ]

by precomposing with σ−1
1 , postcomposing with σ2, gluing closed copairings on each circle in

~n0, and gluing open pairings on each interval in ~m1. For example, let [f ] be an arbitrary open

closed cobordism from (1, 0, 0, 1) to (0, 1, 1, 0), then Λ([f ]) is illustrated below:

Λ: [f ] 7→

σ2

[f ]

σ−1
1

. (2.6.14)

Up to equivalence, this assignment does not depend on the choice of representative in the

class [f ]; if f ′ is a different representative then there exists a black boundary preserving

diffeomorphism from f to f ′. Applying this diffeomorphism in the interior of Λ([f ]) shows

that Λ([f ′]) is equivalent to Λ([f ]),

[Λ([f ])] = [Λ([f ′])]. (2.6.15)

Λ([f ]) is connected if and only if f is.

Given some extra structure, an inverse mapping can be defined. Let g be a representative

of a diffeomorphism class [g] ∈ 2Cobext
O→C[~n′, ~m′] equipped with:
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• a decomposition of its source into a free union ~n′ = ~n′t
∐
~n′s,

• a decomposition of its target into a free union ~m′ = ~m′
t

∐
~m′
s,

• an element of the symmetric group σ′1 ∈ S|~n′
s|+|~m′

s|, and

• an element of the symmetric group σ′2 ∈ S|~n′
t|+|~m′

t|.

Note that the image of an [f ] ∈ 2Cobext[~n, ~m] under the mapping Λ is equipped with such

structure. The decompositions are given by distinguishing which intervals and circles came

from the source and the target. The permutations can be taken to be σ′1 = σ1 and σ′2 = σ−1
2 .

We define Λ−1([g]) to be the open-closed cobordism in 2Cobext[σ′2(~n
′
t

∐
~m′
t), σ

′
1(~n

′
s

∐
~m′
s)]

given by gluing open copairings to the intervals in ~n′t and closed pairings to the circles in

~m′
s. The result of this gluing is then precomposed with a cobordism representing σ′1 and

postcomposed with a cobordism representing σ′2.

Λ−1 : [g]
;

;
7→

σ′2

[g]
;

;

σ′1

. (2.6.16)

Again, this assignment does not depend on the choice of representative of the class [g]. One can

readily verify that this defines a bijection between the equivalence classes of open-closed cobor-

disms in 2Cobext[~n, ~m] and those of open-closed cobordisms in 2Cobext
O→C[~m1

∐
~n1, ~m0

∐
~n0]

equipped with the extra structure described above. One direction of this verification,

[Λ−1([Λ([f ])])] = [f ], (2.6.17)
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is depicted schematically below:

[f ] ∼=

σ−1
2

σ2

[f ]

σ−1
1

σ1

. (2.6.18)

In Theorem 2.6.5 below, we show that for any connected [g] ∈ 2Cobext
O→C[~n, ~m], g is equivalent

to its normal form, i.e.

[g] = [NFO→C(g)]. (2.6.19)

Applying this result to [g] := Λ([f ]) is the motivation for the definition of the normal form

for generic connected [f ] ∈ 2Cobext[~n, ~m].

Definition 2.6.3. Let [f ] ∈ 2Cobext[~n, ~m] be connected. Then we define its normal form by,

[NF(f)] := Λ−1([NFO→C

(
Λ([f ])

)
]), (2.6.20)

which can be depicted as follows:

[NF (f)] ∼=

σ−1
2

NFO→C(Λ([f ]))

σ1

. (2.6.21)

2.6.3 Proof of sufficiency of relations

In this section, we show that any connected open-closed cobordism [f ] ∈ 2Cobext
O→C[~n, ~m] can

be related to its normal form NFO→C(f) by applying the relations of Proposition 2.5.10 a
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finite number of times. We know that f is equivalent to an open-closed cobordism of the form

stated in Proposition 2.5.9.

For convenience, we designate the following composites,

:∼= :∼= :∼= (2.6.22)

as being distinct generators. This simplifies the proof of the normal form below. We continue

to use the shorthand (2.5.46) and (2.5.49). However, we do not consider these as distinct

generators.

In our diagrams, we denote an arbitrary open-closed cobordism X, whose source is a

general object ~nX that contains at least one 1, as follows:

X
. (2.6.23)

Similarly, to denote an arbitrary open-closed cobordism Y , whose source is a general object

~nY containing at least one 0, we use the notation:

Y
. (2.6.24)

Finally, for an arbitrary open-closed cobordism Z, whose target ~m is not glued to any other

cobordism in the decomposition of Σ, we use the following notation:

Z
(2.6.25)

and similarly if the source is not glued to anything.

Definition 2.6.4. Let [f ] ∈ 2Cobext[~n, ~m] be written in the form of Proposition 2.5.9. The

height of a generator in the decomposition of f is the following number defined inductively,

ignoring all identity morphisms in the decomposition:

• h( X ) := 0

• h( ) = h( ) := 0

• h(

Y

) = h(
Y

) = h(
Y

) = h(

Y

) := 1 + h(Y )

• h(

Y

) = h(
Y

) = h(
Y

) = h(

Y

) = h(

Y

) := 1 + h(Y )

• h(
Y Z

) = h(
Y Z

) := h(Y ) + h(Z) + 1.
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Theorem 2.6.5. Let [f ] ∈ 2Cobext
O→C[~n, ~m] be a connected open-closed cobordism. Then f

is equivalent to its normal form, i.e.

[f ] = [NFO→C(f)]. (2.6.26)

Proof. We say decomposition for a presentation of f as a composition of the generators as

in Proposition 2.5.9, i.e. for a generalized handle decomposition. We use the term move for

the application of a diffeomorphism from Proposition 2.5.10, we just say diffeomorphism here

meaning diffeomorphism relative to the black boundary, and we use the term configuration of

a generator in a decomposition to refer to the generators immediately pre- and postcomposed

to it.

Employing Proposition 2.5.9, let f be given by any arbitrary decomposition. We construct

a diffeomorphism from this decomposition to NFO→C(f) by applying a finite sequence of the

moves from Proposition 2.5.10. This proceeds step by step as follows.

I) The decomposition of f is equivalent to one without any open cups or open caps

. This is achieved by applying the following moves:

a) � //

(2.5.65)

b) � //

(2.5.41)

to every instance of the open cup and cap.

II) The resulting decomposition of f is equivalent to one in which every open comultiplica-

tion appears in one of the following three configurations:

? ?
(2.6.27)

where the ‘?’ may be any open-closed cobordism which may or may not be attached

to the multiplication at the bottom. We prove this step-by-step by considering every

possible configuration and providing the moves to reduce the decomposition into one of

the above mentioned configurations.

a) The cases and are excluded by step (Ia).

b) Wherever possible apply the move:
� //

(2.5.38)
.
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c) We consider all of the remaining possible configurations and provide a list of moves

which either remove the open comultiplication or reduce its height. Since there

are no longer any open cups after (Ia) and since the target of f is of the form

~m = (0, . . . , 0), i.e. a free union of circles, the open comultiplication is either removed

from the diagram or takes the form claimed in (II) before its height is reduced to

zero.

Apply the following moves wherever possible:

1) � //

Def

2) � //

(2.5.44)

3) � //

(2.5.60)

� //

(2.5.55)
and � //

(2.5.60)

� //

(2.5.54)

4) � //

(2.5.39)

�oo

(2.5.39)

5) � //

(2.5.70)

�oo

(2.5.70)

d) Iterate steps (IIb) and (IIc). Since each iteration either removes the open comul-

tiplication or reduces its height, this process is guaranteed to terminate with every

comultiplication in one of the three configurations of (2.6.27).

III) Now we apply a sequence of moves to the decomposition of f which reduces the number

of possible configurations that need to be considered.

a) To begin, we provide a sequence of moves to put every open multiplication in

the decomposition of f into one of the following configurations:

? ?

(2.6.28)

Again, we prove this claim by considering all possible configurations of the open

multiplication.
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Apply the following moves which either removes the open multiplication or increases

its height or attains the desired configuration.

1) � //

(2.5.37)

2) � //

(2.5.71)

�oo

(2.5.71)

3) � //

(2.5.41)

4) The moves of steps II(c)1, II(c)2, II(c)4.

All other configurations are excluded by step I. Since none of these steps increases the

number of generators in the decomposition of f , iterating this process either removes

all open multiplications or puts them into the configurations in (2.6.28) as claimed

above.

b) Now we show that the source of every cozipper can be put into either of the

following configurations:

(2.6.29)

We establish the above claim by applying the following sequence of moves:

1) � //

(2.5.77)

2) � //

Def

3) The moves of step II(c)3.

wherever they are possible. All other configurations are excluded by step I.

c) In this step we show that every instance of the open window can be removed.

Iterate the following sequence of moves wherever possible.

1) � //

(2.5.70)

2) The moves of steps III(a)2 and III(b)1.

All other configurations are excluded by step I. Iterating these moves is guaranteed

to remove all instances of the open window since each iteration either removes the

window or reduces its height. The height of the open window cannot be zero.
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d) From the sequence of moves applied thus far, it follows that the target of every open

multiplication is in one of the following configurations:

(2.6.30)

All other possibilities are excluded by steps III(a)1, I and IIIc.

IV) In this step, we apply a sequence of moves that removes all open comultiplications. After

step II, we need to consider only three cases. Step III has not changed this situation.

From the set of open comultiplications in the decomposition of f , choose one of minimal

height.

a) The case has been excluded by the assumption that the open comultiplication

is of minimal height. Hence the only remaining configurations to consider are

? ?
(2.6.31)

where no other open comultiplication occurs in ‘?’ above.

b) By symmetry it suffices to consider one of the remaining configurations, say
?

.

We proceed by considering all possible configurations of ‘?’ above. The first generator

in the decomposition of ‘?’ is determined by step IIId and the assumption that the

open comultiplication under consideration is of minimal height. Hence, only two

situations are possible:

? ?

(2.6.32)

1) In the first case, iteratively apply the move � //

(2.5.37)
so that the
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only possible configurations are

?

(2.6.33)

In the following two steps we remove the open comultiplication from the above

two situations.

2) Consider the first case in (2.6.33) above. The comultiplication is removed by the

following sequence of moves:

� //

(2.5.60)

� //

(2.5.37)

� //

(2.5.60)

(2.6.34)

� //

Nat

� //

(2.5.75)

� //

(2.5.47)

� //

(2.5.44)

(2.6.35)

3) Consider now the second case in (2.6.33). In this case the comultiplication is

removed by the following sequence of moves:

?

?

� //

(2.5.76)

?

?

� //

Nat

?

?

� //

(2.5.39)

?

?

� //

II(c)3
?

?

c) Step IVb has changed the cobordism so much that the claims made in steps II and III

need not hold any longer. We therefore reapply the steps II and III.

d) Then we iterate the sequence of steps IVb and IVc until all open comultiplications

have disappeared. This iteration terminates because neither step II nor step III
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(which are invoked in IVc) increase the number of open comultiplications, but step IVb

always decreases this number by one.

e) When the last open comultiplication has disappeared in step IVd, step IVc ensures

that the claims made in steps II and III are satisfied again.

V) At this stage of the proof, all open caps, open cups and open comultiplications have

been removed from the decomposition of f . The decomposition has the following further

properties.

a) After the step IIIa, it is clear that any open multiplication has its source in one of

the following configurations:

(2.6.36)

b) Every instance of the cozipper is in the configuration claimed in step IIIb.

c) All instances of have been removed by step IIIc.

d) From step IIId and step IV, the only possible configurations for the target of an open

multiplication are

(2.6.37)

VI) Now we remove every instance of the zipper in the decomposition of f . We consider

all remaining possible configurations involving the zipper and provide the moves to get

rid of it.

a) The following configurations:

(2.6.38)

are excluded by steps I, IV, IIIb, and IIIc, respectively.

b) The remaining possibilities are

(2.6.39)

Using step Vd together with possibly repeated applications of the following moves:
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1)
� //

(2.5.42)

2)
� //

(2.5.37)

3)
� //

(2.5.60)

� //

(2.5.52)

� //

(2.5.65)

� //

(2.5.58)

we make sure that all instances of have disappeared.

VII) The resulting decomposition of f is equivalent to one in which each closed multiplication

has its source in one of these configurations:

(2.6.40)

a) The cases , and are excluded by the assumption that the source

of f is of the form ~n = (1, . . . , 1), i.e. is a free union of intervals I.

b) � //

(2.5.33)

� //

(2.5.33)

�oo

(2.5.33)

c) � //

Def

�oo

(2.5.36)

d) � //

(2.5.35)

�oo

(2.5.35)

e) � //

(2.5.67)

�oo

(2.5.67)

f) � //

(2.5.74)

�oo

(2.5.74)

Since each of the above moves either removes the closed multiplication or increases its

height while not increasing the number of generators, iterating the above moves is guar-

anteed to terminate with the closed multiplication in one of the specified configurations.
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VIII) The decomposition of f is equivalent to one in which each closed comultiplication is in

one of the following two configurations:

(2.6.41)

We consider all possible configurations of closed comultiplications.

a) The cases:

(2.6.42)

are excluded by step VII.

b) The cases:

(2.6.43)

are excluded by step VI.

c) To prove the claim, we iterate the following sequences of moves wherever possible:

1) � //

(2.5.34)

2) � //

(2.5.34)

�oo

(2.5.34)

3) � //

(2.5.66)

�oo

(2.5.66)

4) � //

(2.5.73)

�oo

(2.5.73)

This iteration is guaranteed to terminate since each move either decreases the height

of the closed comultiplication or removes it.

IX) In the resulting decomposition, each instance of the closed window has above it one

of the following: , , , or . There are only two remaining cases to consider.

a) The cases and are excluded by step VIII(c)3.
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b) The claim follows by iterating the moves � //

(2.5.68)
.

At this point, the decomposition of f is in the normal form desired. In order to see

this, we need the claims made in the steps VIII, Va, VI, Vd, VII and the following two

results.

X) If a closed cap occurs anywhere in the resulting decomposition of f , then the source

of f is the object ~n = ∅, and the has its target in one of the following configurations:

(2.6.44)

This follows since all other possible configurations are excluded by steps VIIb and VI.

XI) If a closed cup occurs anywhere in the resulting decomposition of f then the target of

f is the object ~m = ∅, and the source of the is in one of the following configurations:

(2.6.45)

The remaining cases are excluded by step VIIIc.

This concludes the proof.

The main result for arbitrary connected open-closed cobordisms then follows.

Corollary 2.6.6. Let [f ] ∈ 2Cobext[~n, ~m] be connected. Then [f ] = [NF(f)].

Proof. Using Definition 2.6.3, then applying Theorem 2.6.5 to Λ(f), and then applying (2.6.17),

we find,

[NF(f)] = [Λ−1([NFO→C(Λ([f ]))])] = [Λ−1([Λ([f ])])] = [f ]. (2.6.46)

Since the normal form is already characterized by the invariants of Definition 2.5.4, the

following corollary is an obvious consequence of the classification of surfaces.

Corollary 2.6.7. Let [f ], [f ′] ∈ 2Cobext[~n, ~m] be connected such that their genus, window

number, and open boundary permutation agree, then [f ] = [f ′].
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2.7 Open-closed TQFTs

In this section, we define the notion of open-closed TQFTs. We show that the categories

2Cobext and Th(K-Frob) are equivalent as symmetric monoidal categories which implies that

the category of open-closed TQFTs is equivalent to the category of knowledgeable Frobenius

algebras.

Definition 2.7.1. Let C be a symmetric monoidal category. An open-closed Topological

Quantum Field Theory (TQFT) in C is a symmetric monoidal functor 2Cobext → C. A ho-

momorphism of open-closed TQFTs is a monoidal natural transformation of such functors. By

OC-TQFT(C) := Symm-Mon(2Cobext, C), we denote the category of open-closed TQFTs.

Theorem 2.7.2. The category 2Cobext is equivalent as a symmetric monoidal category to

the category Th(K-Frob).

This theorem states the precise correspondence between topology (Section 2.5) and algebra

(Section 2.4). The second main result of this chapter follows from this theorem and from

Proposition 2.4.6.

Corollary 2.7.3. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category. The category

K-Frob(C) of knowledgeable Frobenius algebras in C is equivalent as a symmetric monoidal

category to the category OC-TQFT(C).

These results also guarantee that one can use the generators of Section 2.5.4 and the rela-

tions of Section 2.5.5 in order to perform computations in knowledgeable Frobenius algebras.

Recall that 2Cobext is a strict monoidal category whereas Th(K-Frob) is weak. When one

translates from diagrams to algebra, one chooses parentheses for all tensor products and then

inserts the structure isomorphisms α, λ, ρ as appropriate. The coherence theorem of Mac

Lane guarantees that all ways of inserting these isomorphisms yield the same morphisms, and

so the morphisms on the algebraic side are well defined by their diagrams.

In particular, we could have presented the second half of Section 2.5, starting with Sub-

section 2.5.6, entirely in the algebraic rather than in the topological language.

Proof of Theorem 2.7.2. Define a mapping Ξ from the objects of 2Cobext to the objects of
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the category Th(K-Frob) by mapping the generators as follows:

Ξ: ∅ 7→ 1 (2.7.1)

Ξ: 7→ C (2.7.2)

Ξ: 7→ A (2.7.3)

and extending to the general object ~n ∈ 2Cobext by mapping ~n to the tensor product in

Th(K-Frob) of copies of A and C with all parenthesis to the left. More precisely, if ~n =

(n1, n2, n3, · · · , nk) with each ni ∈ {0, 1}, then Ξ(~n) = (((Ξ(n1)⊗ Ξ(n2))⊗ Ξ(n3)) · · ·Ξ(nk))

with each Ξ(0) := C and Ξ(1) := A. On the generating morphisms in 2Cobext, Ξ is defined

as follows:

7→ 1C : C → C (2.7.4)

7→ 1A : A→ A (2.7.5)

7→ τC,C : C ⊗ C → C ⊗ C (2.7.6)

7→ τA,A : A⊗A→ A⊗A (2.7.7)

7→ τA,C : A⊗ C → C ⊗A (2.7.8)

7→ τC,A : C ⊗A→ A⊗ C (2.7.9)

7→ µA : A⊗A→ A (2.7.10)

7→ ηA : 1→ A (2.7.11)

7→ ∆A : A→ A⊗A (2.7.12)

7→ εA : A→ 1 (2.7.13)

7→ µC : C ⊗ C → C (2.7.14)

7→ ηC : 1→ C (2.7.15)

7→ ∆C : C → C ⊗ C (2.7.16)

7→ εC : C → 1 (2.7.17)

7→ ı : C → A (2.7.18)

7→ ı∗ : A→ C (2.7.19)

Without loss of generality we can assume that every general morphism f in 2Cobext is decom-

posed into elementary generators in such a way that each critical point in the decomposition

of f has a unique critical value. We can then extend Ξ to a map on all the morphisms of
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2Cobext inductively using the following assignments:

7→ µA ⊗ 1A : (A⊗A)⊗A→ A⊗A (2.7.20)

7→ 1A ⊗ µA ◦ αA,A,A : (A⊗A)⊗A→ A⊗A (2.7.21)

7→ ηA ⊗ 1A ◦ λ
−1
A : A→ A⊗A (2.7.22)

7→ 1A ⊗ ηA ◦ ρ
−1
A : A→ A⊗A (2.7.23)

7→ ∆A ⊗ 1A : A⊗A→ (A⊗A)⊗A (2.7.24)

7→ α−1
A,A,A ◦ 1A ⊗∆A : A⊗A→ (A⊗A)⊗A (2.7.25)

7→ λA ◦ εA ⊗ 1A : A⊗A→ A (2.7.26)

7→ ρA ◦ 1A ⊗ εA : A⊗A→ A (2.7.27)

7→ µC ⊗ 1C : (C ⊗ C)⊗ C → C ⊗ C (2.7.28)

7→ 1C ⊗ µC ◦ αC,C,C : (C ⊗ C)⊗ C → C ⊗ C (2.7.29)

7→ ηC ⊗ 1C ◦ λ
−1
C : C → C ⊗C (2.7.30)

7→ 1C ⊗ ηC ◦ ρ
−1
C : C → C ⊗C (2.7.31)

7→ ∆C ⊗ 1C : C ⊗ C → (C ⊗ C)⊗ C (2.7.32)

7→ α−1
C,C,C ◦ 1C ⊗∆C : C ⊗C → (C ⊗ C)⊗ C (2.7.33)

7→ λC ◦ εC ⊗ 1C : C ⊗ C → C (2.7.34)

7→ ρC ◦ 1C ⊗ εC : C ⊗ C → C (2.7.35)

This assignment is well defined and extends to all the general morphisms in 2Cobext by the

coherence theorem for symmetric monoidal categories, which ensures that there is a unique

morphism from one object to another composed of associativity constraints and unit con-

straints. The relations in Proposition 2.5.10 and the proof that these are all the required

relations in 2Cobext imply that the image of Ξ is in fact a knowledgeable Frobenius algebra

in Th(K-Frob). Hence, Ξ defines a functor 2Cobext → Th(K-Frob).

Define a natural isomorphism Ξ2 : Ξ(~n)⊗Ξ(~m)→ Ξ(~n
∐
~m) forX,Y ∈ 2Cobext as follows:

Let ~n = (n1, n2, n3, . . . , nk) and ~m = (m1,m2,m3, · · · ,mℓ) so that

Ξ(~n) = (((Ξ(n1)⊗ Ξ(n2))⊗ Ξ(n3)) · · ·Ξ(nk)) , (2.7.36)

Ξ(~m) = (((Ξ(m1)⊗ Ξ(m2))⊗ Ξ(m3)) · · ·Ξ(mℓ)) , (2.7.37)

Ξ(~n
∐

~m) = (((((Ξ(n1)⊗ Ξ(n2))⊗ Ξ(n3)) · · ·Ξ(nk))⊗ Ξ(m1)) · · · ⊗ Ξ(mℓ)) .(2.7.38)

Hence the map Ξ2 : Ξ(~n)⊗Ξ(~m)→ Ξ(~n
∐
~m) is composed entirely of composites of the natural
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isomorphism α. By the coherence theorem for monoidal categories, any choice of composites

from the source to the target is unique. One can easily verify that if Ξ0 := 1
1

, then collection

(Ξ,Ξ2,Ξ0) defines a monoidal natural transformation. Furthermore, the assignment by Ξ

of the open-closed cobordisms generating 2Cobext’s symmetry ensures that (Ξ,Ξ2,Ξ0) is a

symmetric monoidal functor.

Using the assignments from equations (2.7.1)-(2.7.19) we see that the generating open-

closed cobordisms in 2Cobext define a knowledgeable Frobenius algebra structure on the

interval and circle. Hence, by the remarks preceding Proposition 2.4.6 we get a strict sym-

metric monoidal functor Ξ̄ : Th(K-Frob) → 2Cobext. In this case, if X is related to Y in

Th(K-Frob) by a sequence of associators and unit constraints then X and Y are mapped to

the same object in 2Cobext. We now show that Ξ and Ξ̄ define an equivalence of categories.

Let ~n be a general object in 2Cobext. From the discussion above we have that Ξ̄Ξ(~n) = ~n,

so that Ξ̄Ξ(~n) = 12Cobext . If X is an object of Th(K-Frob) then X is a parenthesized word

consisting of the symbols 1, A,C,⊗. Let Ξ̄(X) = (n1, n2, · · · , nn) where the ordered sequence

(n1, n2, · · · , nn) corresponds to the ordered sequence of A’s and C’s in X. Hence, ΞΞ̄(X) is the

word obtained from X by removing all the symbols 1 and putting all parenthesis to the left.

Thus, ΞΞ̄(X) is isomorphic to X by a sequence of associators and unit constraints. We have

therefore established the desired monoidal equivalence of symmetric monoidal categories.

The following special cases are covered by Corollary 2.7.3.

Definition 2.7.4. Let 2Cobopen, 2Cobclosed = 2Cob, and 2Cobplanar denote the subcate-

gories of 2Cobext consisting only of purely open cobordisms, purely closed cobordisms, and

purely open cobordisms that can be embedded into the plane. An open (respectively closed,

planar open) TQFT is a functor from 2Cobopen (respectively 2Cobclosed, 2Cobplanar) into a

symmetric monoidal category C (C need not be symmetric in the planar open context).

Corollary 2.7.5. Let C be a symmetric monoidal category. The category of open TQFTs

in C is equivalent as a symmetric monoidal category to the category of symmetric Frobenius

algebras in C.

The following well-known result on 2-dimensional closed TQFTs [17,19] follows from Corol-

lary 2.7.3, as does the 2-dimensional case of [39].

Corollary 2.7.6. Let C be a symmetric monoidal category. The category of closed TQFTs in

C is equivalent as a symmetric monoidal category to the category of commutative Frobenius
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algebras in C.

Corollary 2.7.7. Let C be a monoidal category. The category of planar open topological

quantum field theories in C is equivalent to the category of Frobenius algebras in C.

2.8 Boundary labels

In this section, we generalize the results on knowledgeable Frobenius algebras and on open-

closed cobordisms to free boundaries labeled with elements of some set S. The proofs of these

results are very similar to the unlabeled case, and so we state only the results.

Definition 2.8.1. Let S be a set. An S-coloured knowledgeable Frobenius algebra

({Aab}a,b∈S , {µabc}a,b,c∈S, {ηa}a∈S , {∆abc}a,b,c∈S, {εa}a∈S , C, {ıa}a∈S , {ı
∗
a}a∈S) (2.8.1)

in some symmetric monoidal category (C,⊗,1, α, λ, ρ, τ) consists of,

• a commutative Frobenius algebra object (C,µ, η,∆, ε) in C,

• a family of objects Aab of C, a, b ∈ S,

• families of morphisms µabc : Aab ⊗ Abc → Aac, ηa : 1 → Aaa, ∆abc : Aac → Aab ⊗ Abc,

εa : Aaa → 1, ıa : C → Aaa and ı∗ : Aaa → C of C for all a, b, c ∈ S such that the
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following conditions are satisfied for all a, b, c, d ∈ S:

µabd ◦ (idAab ⊗ µbcd) ◦ αAab,Abc,Acd = µacd ◦ (µabc ⊗ idAcd), (2.8.2)

µaab ◦ (ηaa ⊗ idAab) = λAab , (2.8.3)

µabb ◦ (idAab ⊗ ηbb) = ρAab , (2.8.4)

αAab,Abc,Acd ◦ (∆abc ⊗ idAcd) ◦∆acd = (idAab ⊗∆bcd) ◦∆abd, (2.8.5)

(εaa ⊗ idAab) ◦∆aab = λ−1
Aab

, (2.8.6)

(idAab ⊗ εbb) ◦∆abb = ρ−1
Aab

, (2.8.7)

∆abd ◦ µacd = (idAab ⊗ µbcd) ◦ αAab,Abc,Acd ◦ (∆abc ⊗ idAcd)

= (µabc ⊗ idAcd) ◦ α
−1
Aab,Abc,Acd

◦(idAab ⊗∆bcd), (2.8.8)

εaa ◦ µaba = εbb ◦ µbab ◦ τAab,Aba, (2.8.9)

µaaa ◦ (ıa ⊗ ıa) = ıa ◦ µ, (2.8.10)

ηaa = ıa ◦ η, (2.8.11)

µaab ◦ (ıa ⊗ idAab) = µabb ◦ τAbb,Aab ◦ (ıb ⊗ idAab), (2.8.12)

ε ◦ µ ◦ (idC ⊗ ı
∗
a) = εaa ◦ µaaa ◦ (ıa ⊗ idAaa), (2.8.13)

ıa ◦ ı
∗
b = µaba ◦ τAba,Aab ◦∆bab. (2.8.14)

It is easy to see that the notion of an S-coloured knowledgeable Frobenius algebra precisely

models the topological relations of Proposition 2.5.10 for all possible ways of labeling the free

boundaries with elements of the set S. The following consequences of this definition are not

difficult to see from the diagrams of Proposition 2.5.10.

Corollary 2.8.2. Let ({Aab}, {µabc}, {ηa}, {∆abc}, {εa}, C, {ıa}, {ı
∗
a}) be an S-coloured knowl-

edgeable Frobenius algebra in some symmetric monoidal category C.

1. Each Aab, a, b ∈ S, is a rigid object of C whose left- and right-dual is given by Aba.

2. Each Aaa, a ∈ S, forms a symmetric Frobenius algebra object in C.

3. Each ıa : C → Aaa, a ∈ S, forms a homomorphism of algebras in C.

4. Each ı∗a : Aaa → C, a ∈ S, forms a homomorphism of coalgebras in C.

5. Each Aab forms an Aaa-left-Abb-right-bimodule in C.
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6. Each Aab forms an Aaa-left-Abb-right-bicomodule in C.

Definition 2.8.3. A homomorphism

f : ({Aab}, {µabc}, {ηa}, {∆abc}, {εa}, C, {ıa}, {ı
∗
a})

→ ({A′
ab}, {µ

′
abc}, {η

′
a}, {∆

′
abc}, {ε

′
a}, C

′, {ı′a}, {ı
′∗
a}) (2.8.15)

of S-coloured knowledgeable Frobenius algebras is a pair f = ({fab}a,b∈S , fC) consisting of a

homomorphism of Frobenius algebras fC : C → C ′ and a family of morphisms fab : Aab → A′
ab,

a, b ∈ S that satisfy the following conditions for all a, b, c ∈ S:

µ′abc ◦ (fab ⊗ fbc) = fac ◦ µabc, (2.8.16)

η′a = faa ◦ ηa, (2.8.17)

∆′
abc ◦ fac = (fab ⊗ fbc) ◦∆abc, (2.8.18)

ε′a ◦ faa = εa, (2.8.19)

ı′a ◦ fC = faa ◦ ıa, (2.8.20)

ı′a
∗
◦ faa = fC ◦ ı

∗
a. (2.8.21)

Definition 2.8.4. By K-Frob(S)(C) we denote the category of S-coloured knowledgeable

Frobenius algebras in some symmetric monoidal category C and their homomorphisms.

Definition 2.8.5. The category of open-closed TQFTs in some symmetric monoidal category

C with free boundary labels in some set S is the category

OC-TQFT(S)(C) := Symm-Mon(2Cobext(S), C). (2.8.22)

In the S-coloured case, the correspondence between the algebraic and the topological

category of Corollary 2.7.3 generalizes to the following result.

Theorem 2.8.6. Let S be some set and C be a symmetric monoidal category. The categories

K-Frob(S)(C) and OC-TQFT(S)(C) are equivalent as symmetric monoidal categories.

In section 3.5 we will see that the groupoid algebra of a finite groupoid gives rise to an

S-coloured knowledgeable Frobenius algebra for which S is the set of objects of the groupoid.

2.9 Remarks

In this chapter, we have extended the results of classical cobordism theory to the context of

2-dimensional open-closed cobordisms. Using manifolds with faces with a particular global
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structure, rather than the full generality of manifolds with corners, we have defined an ap-

propriate category of open-closed cobordisms. Using a generalization of Morse theory to

manifolds with corners, we have found a characterization of this category in terms of gen-

erators and relations. In order to prove the sufficiency of the relations, we have explicitly

constructed the diffeomorphism between an arbitrary cobordism and a normal form which is

characterized by topological invariants.

All of the technology outlined above is defined for manifolds with faces of arbitrary di-

mension. Thus, our work suggests a natural framework for studying extended topological

quantum field theories in dimensions three and four. Using 3-manifolds or 4-manifolds with

faces, one can imagine defining a category (most likely higher-category) of extended three

or four dimensional cobordisms. In both cases, gluing will produce well defined composition

operations using the existing technology for manifolds with faces. One could then extract a

list of generating cobordisms, again using a suitable generalization of Morse theory.

The main difficulty in obtaining a complete generators and relations description of these

higher-dimensional extended cobordism categories is the lack of general theory producing the

relations. Specifically, the handlebody theory for manifolds with boundaries and corners is

not as advanced as the standard Morse theory for closed manifolds. For the 2-dimensional

case, we were able to use relations previously proposed in the literature and to show the

sufficiency of these relations by finding the appropriate normal form for 2-dimensional open-

closed cobordisms. Our induction proof shows that the proposed relations are in fact necessary

and sufficient to reduce an arbitrary open-closed cobordism to the normal form. To extend

these results to higher-dimensions, it is expected that a more sophisticated procedure will be

required, most likely involving a handlebody theory for manifolds with faces.

We close this chapter by commenting on a different approach to TQFTs with corners. In

the literature, for example [48], extended TQFTs are often defined for manifolds with corners

in which the basic building blocks have the shape of bigons [48] with only one sort of boundary

along which one can always glue. This is a special case of our definition which is obtained

if every coloured boundary between two corners is shrunk until it disappears and there is a

single corner left that now separates two black boundaries.



Chapter 3

State sum construction of

open-closed TQFT

3.1 The Fukuma, Hosono, and Kawai state sum

In this section we provide a brief sketch of the Fukuma, Hosono, and Kawai (FHK) state

sum construction of 2-dimensional topological quantum field theories. For other expository

articles on this 2-dimensional TQFT see [64–67]. The aim of this section is to provide a

preview of what is to come as well as to highlight the essential differences between the state

sum construction of open-closed cobordisms with the original FHK construction.

Fukuma, Hosono and Kawai found a way to construct 2-dimensional (closed) topological

quantum field theories from semisimple algebras over the complex numbers [40]. Though

they did not put it this way, their idea amounts to expressing any 2-dimensional cobordism

in terms of a string diagram in the symmetric monoidal category Vect
C

of complex vector

spaces. Viewed in this light, it is not difficult to see that their construction can be adapted

to other symmetric monoidal categories. In particular, the construction works just as well for

vector spaces over arbitrary fields k, but in this case the algebras required in the recipe are

called strongly separable. When the field k = C the notions of strongly separable algebra

and semisimple algebra coincide. The defining feature of strongly separable algebras is the

nondegeneracy of a certain canonically associated bilinear form. We will discuss this more in

Section 3.2.2.

In order to construct the FHK 2-dimensional TQFT Z : 2Cob → Vect
C

one starts by
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choosing a triangulation of the cobordism M :

One then takes the Poincaré dual of this triangulation:

and interprets the result as a string diagram in some symmetric monoidal category C.

This means that each edge in the triangulation of ∂in(M) corresponds to some object A ∈ C

and associated to the incoming boundary of M triangulated with m1 edges we associate the

object A⊗m1 ∈ C. Likewise, to the outgoing boundary ∂out(M) triangulated with m2 edges we

associate the object A⊗m2 . The Poincaré dual of the triangulation is then to be interpreted as

a morphism in C mapping A⊗m1 to A⊗m2 . For ease of exposition we will restrict our discussion

to the case of Vect
C

for the remainder of this section.

If A is a finite dimensional C-algebra then the left regular representation of A is given by

L : A → End
C

(A) : a 7→ La with La : A → A : b 7→ ab. As will be discussed in Section 3.2.2,

the trace of the matrices of the left-regular representation equips A with a canonical bilinear

form gcan : A⊗A→ C : a⊗ b 7→ trA(Lab). When the algebra A is semisimple (hence strongly

separable) this canonical bilinear form is nondegenerate. We will show in Section 3.2.1 that a

nondegenerate invariant bilinear form on A equips A with the structure of a Frobenius algebra.

When A is strongly separable and the Frobenius structure is induced by the canonical bilinear

form the resulting Frobenius structure will be symmetric.
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In Section 3.2.3 we will show that the nondegeneracy of the canonical bilinear form is

equivalent to the invertibility of what we call the window element:

a
��

��

:=

•
��

•
�� ��

��

•
�� 		

��

. (3.1.1)

One can check that the window element a is in the centre of the algebra A; when A is strongly

separable a is a central invertible element. Here we think of an element of the algebra A as

a map C → A. The invertibility of the window element implies there exists an element

a−1 : C→ A such that

a
��

a-1
��

•
�� ��

��

= •
��
. (3.1.2)

When the central invertible element a corresponds with the algebra unit η : C→ A, then

in this case, the bubble move

•
�� ��

��

•
�� 		

��

=
��

��

(3.1.3)

is satisfied because

•
�� ��

��

•
�� 		

��

=

•
��

•
�� ��

��

•
�� 		

��




��

•
�� 		

��

=
•
��
��

•
�� 		

��

=
��

��

. (3.1.4)

The bubble move was a crucial ingredient used by Fukuma, Hosono, and Kawai to establish

the triangulation independence of their closed state sum TQFT Z(M). Furthermore, using

the bubble move and the associativity of the algebra A, they showed that the linear map

corresponding to the triangulated cylinder is an idempotent p on the algebra A. They then

showed that one can recover a commutative Frobenius algebra, hence a functor Z : 2Cob→

Vect
C

, by projecting the algebra A onto the image of the idempotent im p. Indeed, they

showed that the image of the idempotent is isomorphic to the centre of the algebra A. By

restricting the symmetric Frobenius algebra structure induced by the canonical nondegenerate

form on A to the centre of A they obtained a commutative Frobenius algebra and hence a

2-dimensional TQFT.

The generalization of the Fukuma, Hosono, and Kawai state sum to open-closed cobor-

disms is completely analogous to the construction above with only a few minor alterations
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required.

i) Rather than semisimple algebras the refined state sum uses strongly separable algebras.

This generalization is needed in order to generalize the target category from Vect
C

to

arbitrary symmetric monoidal categories.

ii) In order to generalize the notion of the image of an idempotent, the categories under

consideration will have to be abelian so that kernels, cokernels, images, and coimages are

all defined.

iii) •
�� ��

��

•
�� 		

��

=
a
��
��

•
�� 		

��

The refined state sum is such that window element must be chosen to

not be the identity, a 6= η, otherwise all information about the window

number of an open-closed cobordism will be lost. This amounts to

modifying the bubble move by an invertible central element. In this case, the algebra A

will still be strongly separable and the canonical ‘bilinear form’ will still be nondegenerate.

iv) The modified bubble move requires local corrections to the state sum in order to correct

for the bubble move no longer holding on the nose. This is achieved by requiring the

state sum to assign the inverse of the window element a−1 to each interior vertex of the

triangulation. To illustrate this point we consider for simplicity a degenerate interior

triangulation and the corresponding string diagram generated using the FKH state sum:

b  

•
�� ��

��

•
�� 		

��

=
��

��

. (3.1.5)

On the same degenerate triangulation the new state sum assigns a factor of the inverse

window element to the interior vertex. Below we illustrate this and show the correspond-

ing string diagram and the modified bubble move in action

b

a−1
 

•
�� ��

��

•
�� 		

��a−1

•
�� 		

��

=
��

��

. (3.1.6)

v) The triangulations of an open-closed cobordism are arranged so that the corners of the open-

closed cobordism correspond to a vertex in the triangulation. These vertices are then given

slightly different treatment than the other vertices in the triangulation of the black boundary.
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vi) In order to have a well defined gluing of triangulated open-closed cobordisms the inverse

of the window element must also be assigned to the interior vertices of the black boundary

triangulation. This is because gluing two open-closed cobordisms along their black boundary

turns vertices on the black boundary into internal vertices. For the prescription to be well-

defined these new internal vertices must have a factor of the inverse window element associated

to them.

There are several ways of doing this. Essentially, all that matters is that some fraction of

the inverse window element is associated to the incoming and outgoing interior vertices of

the black boundary so that when they are glued the product of the factors equals the inverse

window element—the factor associated to an internal vertex. Some examples are drawn below:

bb b

bb b

√
a−1

√
a−1

 bb b

a−1

bb b

bb b

a−1

 bb b

a−1

bb b

bb b

a−1
 bb b

a−1
.

(3.1.7)

The first of these possibilities requires that the window element have a square root which

may not be the case for generic symmetric abelian monoidal categories. To avoid issues

like these, we will choose to solve the gluing problem by the third method featured above,

that is, by assigning the inverse window element to interior vertices on the outgoing black

boundary and doing nothing to the incoming interior vertices. Note that since a is central,

so is a−1 so that this choice of convention does not contribute anything to the state sum. In

Section 3.2.4 (Theorem 3.2.18) we will show that these conventions lead to a natural choice

of knowledgeable Frobenius algebra and hence to an open-closed topological field theory.

This chapter is structured as follows. In Section 3.2, we collect the key definitions and facts

about symmetric Frobenius algebras, strongly separable symmetric Frobenius algebras, and

knowledgeable Frobenius algebras. In Section 3.3, we present a combinatorial treatment of the

category 2Cobext of open-closed cobordisms. The state sum construction of combinatorial

open-closed TQFTs is then presented in Section 3.4.

The groupoid algebra k[G] of a finite groupoid G forms an example of a strongly separable

algebra for suitable fields k. This chapter culminates by showing that the generalized state

sum for this algebra yields an easy example of an open-closed TQFT with D-branes. For a

more compact treatment of the material presented in this chapter see [2].
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3.2 Strong Separability

The symmetric monoidal categories of interest will be abelian symmetric monoidal categories

so that the Hom spaces are abelian groups and the notions of kernels, cokernels, images and

coimages are defined. Such categories include the categories of vector spaces, graded vector

spaces, R-modules for a commutative ring R, and chain complexes of each of these structures.

For convenience we have collected some facts and definitions pertaining to abelian categories

in Appendix B. We denote a symmetric monoidal category C as (C,⊗,1, α, λ, ρ, τ) where C is

a category and ⊗ provides C with a monoidal structure with unit object 1 whose associator

is denoted α and whose left and right unit constraints are given by λ and ρ. The symmetric

braiding is denoted τ .

Recall from Section 2.2 that if C is locally small, the set Hom(1,1) forms a commutative

monoid. The monoid Hom(1,1) acts on Hom(X,Y ) for all X,Y ∈ |C| by ξ · f := λY ◦ (ξ ⊗

f) ◦ λ−1
X where f ∈ Hom(X,Y ) and ξ ∈ Hom(1,1). Using string diagram notation for the

morphisms of C, the coherence theorem for monoidal categories allows us to view the elements

of Hom(1,1) as scalars by which the entire diagram is multiplied.

3.2.1 Symmetric Frobenius algebras

In this section, we introduce the notion of a non-degenerate symmetric invariant pairing in

order to characterize symmetric Frobenius algebras. In the subsequent sections, we use it to

define strongly separable algebras and to classify all symmetric Frobenius algebra structures

of a strongly separable algebra.

Definition 3.2.1. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category and (A,µ, η) be

an algebra object in C.

1. A pairing on A is a morphism g : A⊗A→ 1 of C.

2. A pairing g : A⊗A→ 1 is called non-degenerate if there exists a morphism g∗ : 1→ A⊗A

of C (called the inverse of g) such that the zig-zag identities hold,

ρA ◦ (idA ⊗ g) ◦ αA,A,A ◦ (g∗ ⊗ idA) ◦ λ−1
A = idA,

λA ◦ (g ⊗ idA) ◦ α−1
A,A,A ◦ (idA ⊗ g

∗) ◦ ρ−1
A = idA.

(3.2.1)

3. A pairing g : A⊗A→ 1 is called symmetric if g = g ◦ τA,A.
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4. A pairing g : A⊗A→ 1 is called invariant1 if,

g ◦ (idA ⊗ µ) ◦ αA,A,A = g ◦ (µ⊗ idA). (3.2.2)

The string diagrams for a pairing g : A ⊗ A → 1 on an algebra object (A,µ, η) in some

symmetric monoidal category C are as follows:

�� ��
A A

g ,

�� ��
A A

g∗ . (3.2.3)

Our shorthand notation using blackboard framing then reads:

g = •
�� 		

, g∗ = •
�� ��
. (3.2.4)

The conditions of non-degeneracy, symmetry and invariance are depicted as follows:

•
�� ��

��

�� •
�� 		 =

��

��

=
�� •
�� ��

��•
�� 		 ,

�� ��

•
�� 		 =

�� ��

•
�� 		 ,

•
�� 		

��




•
�� 		 =

�� •
�� 		

��

•
�� 		 . (3.2.5)

For an algebra object (A,µ, η) equipped with a symmetric invariant bilinear pairing g we also

use the following shorthand notation for the ‘trilinear form’ g(3) : (A ⊗ A)⊗ A → 1 which is

defined by:

g(3) = •
�� �� ��

:=
•
�� 		

��
��

•
�� 		 , (3.2.6)

and which has the following cyclic symmetry:

  �� ��

•
�� �� �� =

�� �� ��

•
�� �� �� =

~~����

•
�� �� �� . (3.2.7)

Lemma 3.2.2. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category. Every symmetric

Frobenius algebra object (A,µ, η,∆, ε) in C gives rise to a non-degenerate symmetric invariant

pairing g := ε ◦ µ on A with inverse g∗ := ∆ ◦ η. Conversely, given an algebra object

(A,µ, η) in C and a non-degenerate symmetric invariant pairing g on A, there is a symmetric

Frobenius algebra object (A,µ, η,∆, η) with ∆ := (µ ⊗ idA) ◦ α−1
A,A,A ◦ (idA ⊗ g

∗) ◦ ρ−1
A and

ε := g ◦ (idA ⊗ η) ◦ ρ
−1
A .

1Some authors use the term associative rather than invariant, see, for example [19].
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The defining equations used in this lemma can be read diagrammatically as:

•
�� 		

:=
•
�� 		

��

•
�� , •

�� ��
:=
•
��

•
�� ��

�� , and •
�� ��

��

:=
�� •
�� ��

•
�� 		

��
��

, •
��

:=
�� •
��

•
�� 		 . (3.2.8)

Notice that every symmetric Frobenius algebra object (A,µ, η,∆, ε) in C is a rigid object of

C with left-dual2 (A, ε ◦ µ,∆ ◦ η).

3.2.2 Strongly separable algebras

Every rigid algebra object in a symmetric monoidal category is equipped with a canoni-

cal pairing. Recall first the special case of C = Vectk for an arbitrary field k. Let A be

a finite-dimensional algebra over k and denote the left-regular representation by L : A →

Endk(A), a 7→ La with La : A → A, b 7→ ab. By associativity, Lab = La ◦ Lb for all a, b ∈ A.

The trace of the matrices of the left-regular representation equips A with a canonical bilinear

form,

gcan : A⊗A→ k, a⊗ b 7→ trA(Lab), (3.2.9)

which can be shown to be symmetric and invariant. We are interested in those algebras

for which this canonical bilinear form is non-degenerate. These are the strongly separable

algebras. Let us first recall the definition.

Definition 3.2.3. Let A be an algebra over a commutative ring r. We denote by Aop the

opposite algebra of A, by Ae = A⊗Aop its enveloping algebra and by µ : Ae → A, a⊗ b 7→ ab

the augmentation mapping. A is called separable if there is an element e ∈ Ae (called a

separability idempotent) such that,

1. (a⊗ 1)e = (1⊗ a)e holds in Ae for all a ∈ A.

2. µ(e) = 1.

A is called strongly separable if A is separable with a separability idempotent that satisfies

τA,A(e) = e.

Theorem 3.2.4 (see, for example [68]). Let A be an algebra over any field k. Then the

following are equivalent:

1. A is finite-dimensional over k, and the canonical bilinear form is non-degenerate.

2It is right-dual at the same time, but we do not refer to this property in the following.
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2. A is strongly separable.

Every strongly separable algebra therefore carries a canonical symmetric Frobenius algebra

structure by Lemma 3.2.2. The following definition of a canonical pairing for generic C reduces

to the canonical bilinear form in the case of C = Vectk.

Proposition 3.2.5. Let (C,⊗,1, α, λ, ρ, τ) be a symmetric monoidal category and (A,µ, η)

be an algebra object in C such that the object A is rigid with left-dual (A∗, evA, coevA). Then

there is a symmetric invariant pairing on A given by,

gcan := evA ◦ τA,A∗ ◦ (µ⊗ idA∗) ◦ α−1
A,A,A∗ ◦ (µ⊗ coevA) ◦ ρ−1

A⊗A =

•
�� 		

�� ��

•
�� 		

��
JJ

�� FF

[[

. (3.2.10)

which we call the canonical pairing.

Definition 3.2.6. A rigid algebra object in a symmetric monoidal category is called strongly

separable if its canonical pairing is non-degenerate.

By Theorem 3.2.4, this notion of a strongly separable algebra object in some symmetric

monoidal category agrees with the usual definition in the case C = Vectk. We are not aware

of any such result for the more general case of modules over a commutative ring. In order to

illustrate how strong the condition of strong separability is, we include the following results

and examples from [68,69].

Theorem 3.2.7. Let A be an algebra over some field k.

1. If A is strongly separable, then A is finite-dimensional, separable, and semisimple.

2. If A is separable and commutative, then A is strongly separable.

3. If A is finite-dimensional and semisimple and char k = 0, then A is strongly separable.

4. If A is finite-dimensional and semisimple and k is a perfect field, then A is separable.

Example 3.2.8. Let k be a field and G be a finite group.

1. If char k does not divide the order ofG, then the group algebra k[G] is strongly separable.

2. If char k divides the order of G, then k[G] is neither semisimple nor separable.
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Example 3.2.9. Let k be a field and Mn(k) be the algebra of (n× n)-matrices over k.

1. If char k does not divide n, then Mn(k) is strongly separable.

2. If char k divides n, then Mn(k) is semisimple and separable, but not strongly separable.

In both examples, the non-degeneracy of the canonical bilinear form is a convenient cri-

terion for strong separability. We explain below why in the Examples 3.2.8(2) and 3.2.9(2),

the state sum construction fails. In particular, for a finite field of non-zero characteristic p,

the original Fukuma–Hosono–Kawai state sum [40] cannot be applied to the (p × p)-matrix

algebra A := Mp(k) although k is perfect and Mp(k) is finite-dimensional, separable, and

semisimple.

3.2.3 Strongly separable symmetric Frobenius algebras

In this section, we compare the pairing ε ◦ µ of a generic symmetric Frobenius algebra with

the canonical pairing. They differ by multiplication with a central element which we call the

window element3.

In a generic locally small symmetric monoidal category (C,⊗,1, α, λ, ρ, τ), we use the

terminology element of A for a morphism a : 1 → A. The set Hom(1, A) of elements of an

algebra object (A,µ, η) in C forms a monoid with respect to convolution a ·b := µ◦(a⊗b)◦λ−1
1

for elements a, b ∈ Hom(1, A) and with unit η. An element a ∈ Hom(1, A) is called central if

it is contained in the commutative submonoid,

Z(A) := { a ∈ Hom(1, A) : µ ◦ (a⊗ idA) ◦ λ−1
A = µ ◦ (idA ⊗ a) ◦ ρ

−1
A }. (3.2.11)

The set of invertible elements of A forms a group Hom(1, A)× ⊆ Hom(1, A), and the set of

invertible central elements Z(A)× := Z(A) ∩ Hom(1, A)× ≤ Hom(1, A)× a subgroup. This

means in particular that the inverse of every central element is central, too. Z(A) acts on

Hom(A,A) by

Z(A)×Hom(A,A)→ Hom(A,A), (a, f) 7→ a · f := µ ◦ (a⊗ f) ◦ λ−1
A . (3.2.12)

We also have (a · idA) ◦ η = a and (a · idA) ◦ (b · idA) = (a · b) · idA for all a, b ∈ Z(A) as well as

µ ◦ ((a · idA)⊗ idA) = (a · idA) ◦ µ = µ ◦ (idA ⊗ (a · idA)), (3.2.13)

3This terminology is inspired by the open-closed cobordism that is associated with this element.
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and for a Frobenius algebra object (A,µ, η,∆, ε) also,

((a · idA)⊗ idA) ◦∆ = ∆ ◦ (a · idA) = (idA ⊗ (a · idA)) ◦∆. (3.2.14)

The following diagrams show an element a ∈ Hom(1, A), the morphism a · idA, and the

centrality condition:

a = a
��
, a · idA =

a
��
��

•
�� 		

��

,
a
��
��

•
�� 		

��

=
�� a
��

•
�� 		

��

. (3.2.15)

Definition 3.2.10. Let (A,µ, η,∆, ε) be a symmetric Frobenius algebra object in a locally

small symmetric monoidal category C. The window element of A is defined by,

a := µ ◦∆ ◦ η =

•
��

•
�� ��

��

•
�� 		

��

. (3.2.16)

The window element is a central element. The comparison between the pairing ε ◦ µ of a

generic symmetric Frobenius algebra and the canonical pairing can be done as follows.

Proposition 3.2.11. Let C be a locally small symmetric monoidal category and (A,µ, η,∆, ε)

be a symmetric Frobenius algebra object in C. Then the canonical pairing of A is given by,

gcan = ε ◦ (a · idA) ◦ µ, (3.2.17)

where a denotes the window element.

Proof. Notice that A is a rigid object of C, and so it makes sense to study the canonical

pairing (3.2.10). We use the diagrams of (3.2.4) for g := ε ◦ µ and g∗ := ∆ ◦ η:

gcan =

•
�� 		

�� ��

•
�� 		

��
JJ

�� FF

[[

=

•
�� 		

��
•
�� ��

•
�� 		

��




�� ��

•
�� 		

=

•
�� 		

��
•
�� ��

•
�� 		

��




•
�� 		 =

•
��

•
�� 		

��
•
�� ��

��

•
�� 		

��
��

•
�� 		

��

•
��

=

•
�� 		

��

a
��
��

•
�� 		

��

•
��

. (3.2.18)

The first equality is the definition; for the second one, we have exploited the fact that A

satisfies the zig-zag identities (2.2.1) both with (A∗, evA, coevA) and with (A, g, g∗); the third

equality is symmetry; the fourth one follows from the axioms of a Frobenius algebra; and the

fifth is the definition of the window element.
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In the above proposition, the pairing g := ε ◦ µ is always non-degenerate whereas the

canonical pairing is non-degenerate if and only if the algebra is strongly separable.

Theorem 3.2.12. Let (C,⊗,1, α, λ, ρ, τ) be a locally small symmetric monoidal category and

(A,µ, η,∆, ε) be a symmetric Frobenius algebra object in C with window element a. Then

the following are equivalent:

1. The algebra object (A,µ, η) is strongly separable.

2. The window element is invertible.

Proof. Let (A,µ, η) be strongly separable. Then the canonical pairing is non-degenerate and

therefore has an inverse g∗can : 1 → A ⊗ A. We denote the pairing g := ε ◦ µ and its inverse

g∗ := ∆ ◦ η by the diagrams of (3.2.4) and the canonical pairing and its inverse by,

gcan = ∗
�� 		

, g∗can = ∗
�� ��
. (3.2.19)

Define ã := λA ◦ (ε⊗ idA) ◦ g∗can. Then ã is the inverse of a because,

a
��

ea
��

•
�� ��

��

=

∗
�� ��

•
��
��

a
��
��

•
�� 		

��

=

∗
�� ��

•
��
��

a
��
��

•
�� 		

��
•
�� ��

•
�� 		

��

=

∗
�� ��

•
�� ��

•
��

•
�� 		

��
��

a
��
�� ��

•
�� 		

��
��

•
��

��

=
∗
�� ��

•
�� ��

•
��

∗
�� 		

��

=
•
�� ��

•
��
��

= •
��
. (3.2.20)

The first equality is the definition of ã; the second one a zig-zag identity for (A, g, g∗); the

third one is a consequence of the axioms of a Frobenius algebra; the fourth one is (3.2.17);

the fifth one is a zig-zag identity for (A, gcan, g
∗
can); and the last equation holds by the axioms

of a Frobenius algebra.

Conversely, let the window element a have an inverse a−1. Then a similar computation

shows that the canonical pairing satisfies the zig-zag identities with the inverse g∗can = ∆◦a−1

and is therefore non-degenerate.

Combined with Proposition 3.2.11, the preceding theorem implies that the symmetric

Frobenius algebra structures of a given strongly separable algebra are characterized by the

invertible central elements. The proposition below describes the extent to which the notion of

a strongly separable symmetric Frobenius algebra generalizes the notion of a special symmetric

Frobenius algebra.
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Proposition 3.2.13. Let C be a locally small symmetric monoidal category and (A,µ, η,∆, ε)

be a symmetric Frobenius algebra object in C such that dimA is invertible in Hom(1,1). Then

the following are equivalent:

1. The Frobenius algebra object (A,µ, η,∆, ε) is special with ε ◦ η = ξ
1

· id
1

and µ ◦∆ =

ξA · idA for some invertible ξ
1

, ξA ∈ Hom(1,1).

2. The algebra object (A,µ, η) is strongly separable, and the window element is of the form

a = ζ · η for some invertible ζ ∈ Hom(1,1).

In this case, ξA = ζ and ξ
1

= ξ−1
A dimA.

Proof. If A is special, the window element is a = µ ◦ ∆ ◦ η = (ξA · idA) ◦ η = ξA · η. It is

invertible with a−1 = ξ−1
A · η, and so (A,µ, η) is strongly separable.

Conversely, if (A,µ, η) is strongly separable with window element a = ζ · η for some

invertible ζ ∈ Hom(1,1), then the second condition of (2.3.10) holds with invertible ξA = ζ.

For a symmetric Frobenius algebra object in a symmetric monoidal category, the second

condition of (2.3.10) implies the first one with ξ
1

= ξ−1
A dimA:

dimA =

��

�� FF

[[

=

•
�� ��
�� ��

•
�� 		

=
•
�� ��

•
�� 		 =

•
��

•
�� ��

��

•
�� 		

��

•
��

= ξA
•
��

•
�� . (3.2.21)

Since dimA is invertible by assumption, so is ξ
1

.

Remark 3.2.14. Given any strongly separable symmetric Frobenius algebra object (A,µ, η,∆, ε)

with window element a in a locally small symmetric monoidal category C, the identity

(a−1 · idA) ◦ µ ◦∆ =

•
�� ��

��

•
�� 		

��a−1

•
�� 		

��

=
��

��

= idA (3.2.22)

generalizes the ‘bubble move’ of Fukuma–Hosono–Kawai from the canonical symmetric Frobe-

nius algebra structure to the case of a generic symmetric Frobenius algebra structure. In

Section 3.4, we explain why this generalization is needed in order to obtain a sharp invariant

of open-closed cobordisms from the state sum.

For the algebras of Example 3.2.8(2) and Example 3.2.9(2) which are not strongly sep-

arable, the morphism µ ◦∆ is zero, and so there is no way of obtaining an analogue of the

‘bubble move’.
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Example 3.2.15. Let k be a field, char k 6= 2 and n ∈ N such that char k does not divide

n. Assume that there exists some α ∈ k such that α2 = −1/2 (for example k = C).

Let A = Mn(k) be the n×n-matrix algebra over k. Choose a k-basis (eij)1≤i,j≤n of A such

that the multiplication is given by µA(eij ⊗ ekℓ) = δjk eiℓ and the unit by ηA(1) =
∑n

i=1 eii.

The algebra A forms a symmetric Frobenius algebra with ∆A(eij) = α−1
∑n

k=1 eik ⊗ ekj and

εA(eij) = α δij . We compute µA ◦∆A = nα−1 · idA and the window element aA = nα−1 · ηA.

It is invertible with a−1
A = n−1α · ηA, and so A is strongly separable. In fact, A is special with

ξA = nα−1 and ξ
1

= nα. Obviously, Z(A) ∼= k.

Let C = k[x]/(x2 − 1) (see Definition 1.0.2). A k-basis is given by (1, x). C becomes a

commutative Frobenius algebra with ∆C(1) = 1⊗x+x⊗1, ∆C(x) = 1⊗1+x⊗x, εC(1) = 0,

and εC(x) = 1. We compute (µC ◦ ∆C)(c) = 2x c for all c ∈ C, and the window element is

aC = 2x. It is invertible with a−1
C = x/2, and so C is strongly separable, too, but it is not

special.

If we define ı : C → A by ı(1) = ηA(1) and ı(x) = −ηA(1), and ı∗ : A → C by ı∗(eij) =

δij α(x− 1), then (A,C, ı, ı∗) forms a knowledgeable Frobenius algebra. Observe that Z(A) is

1-dimensional over k, but C is 2-dimensional, and so Z(A) 6∼= C.

3.2.4 Idempotents

In this section, we show that every strongly separable symmetric Frobenius algebra A in

an abelian symmetric monoidal category C gives rise to a knowledgeable Frobenius algebra

(A,C, ı, ı∗) in C and hence an open-closed TQFT by Theorem 2.7.2. In Vectk, C is isomorphic

to the centre of A. In general, it arises as the image of the following canonical idempotent.

Proposition 3.2.16. Let (A,µA, ηA,∆A, εA) be a strongly separable symmetric Frobenius

algebra object in a locally small symmetric monoidal category C and let a−1 denote the inverse

of the window element of A. Then the morphism

p = p
��

��

:= (a−1 · idA) ◦ µA ◦ τA,A ◦∆A =

•
�� ��

��

a−1 •

•
��

��

�� ��

(3.2.23)

has the following properties,

1. p2 = p,

2. p ◦ ηA = ηA,
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3. εA ◦ p = εA,

4. p ◦ µA ◦ (p ⊗ p) = µA ◦ (p⊗ p) = p ◦ µA ◦ (p ⊗ idA) = p ◦ µA ◦ (idA ⊗ p),

5. (p⊗ p) ◦∆A ◦ p = (p⊗ p) ◦∆A = (p⊗ idA) ◦∆A ◦ p = (idA ⊗ p) ◦∆A ◦ p,

6. c = p ◦ c for all c ∈ Z(A),

7. (c · idA) ◦ p = p ◦ (c · idA) for all c ∈ Z(A),

8. µ ◦ (p⊗ idA) = µ ◦ τA,A ◦ (p⊗ idA).

Proof. These results are straightforward to prove and many of the proofs can be found in the

literature (see for example [67]). In our case, additional bookkeeping is required to account

for the powers of the window element. Since the element a−1 is in the centre we can move

it anywhere in the diagram. For convenience, we will often move the powers of a−1 to the

bottom of the diagram. For example, the first assertion is proved as follows:

p
��

��

p
��

��

=

•

•
��

��

�� ��

•

•
��

��

�� ��

a−2

•
�� 		

��

=

•
•
�� ��

��

•�� vv
��

•
•
�� ��

��

•�� vv
��

a−2

•
�� 		

��

=
•

�� ��

��

•
�� 		

��

~~ ~~

•
�� 		

��

•
�� ��

��

��





��

•
�� ��

•
�� ��

a−2

•
�� 		

��

=
•

�� ��

��

��

��

•
�� 		

��

•
�� 		

��

��

�� •
�� ��

•
�� ��

•
�� ��

��





��





a−2

•
�� 		

��

(3.2.24)

=
•
•
�� ��

��

•�� vv
��

•
�� ��

��

•
�� 		

��

•
�� ��

a−2

•
�� 		

��

=
•

•
��

��

�� ��

•
�� ��

��

•
�� 		

��

•
�� ��

a−2

•
�� 		

��

= •

•
��

��

�� ��

a−1

•
�� 		

��

= p
��

��

(3.2.25)

where the first equality is just the definition, the second equality follows from (3.2.8), the

third follows from naturality and associativity, and the fourth follows from the Frobenius

identities. The first equality in (3.2.25) follows from associativity, while the second equality

follows again from (3.2.8). The second to last equality follows from the definition of a in

(3.2.16), and the final equality is the definition of the idempotent p. The other identities can

be proved similarly.

In Vectk, condition (1) states that p is a projector; condition (8) says that its image is

contained in the centre Z(A), and condition (6) says that the centre Z(A) is contained in the
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image of p, and so p projects onto the centre Z(A). Whereas this Z(A) arises as a subspace

Z(A) = im p ⊆ A, the centre Z(A) according to (3.2.11) consists of morphisms 1 → A. In

Vectk, one can evaluate any such morphism a ∈ Z(A) at the unit 1 ∈ k of the field and finds

that a(1) ∈ Z(A) ⊆ A.

Note that the idempotent (3.2.23) is precisely p = µA ◦ τA,A ◦∆
(can)
A where ∆

(can)
A refers

to the canonical symmetric Frobenius algebra structure on A.

In the state sum, the idempotent (3.2.23) appears whenever a unit interval is closed to

a circle, i.e. it is closely related to the generators ı and ı∗ of (2.5.25). The image of an

idempotent can be defined in any abelian category as follows.

Proposition 3.2.17 (see, for example [70]). Let C be an abelian category and p : A → A

be an idempotent. The image factorization of p yields an object p(A), called the image of p,

which is unique up to isomorphism, together with morphisms coim p : A → p(A) (called the

coimage) and im p : p(A)→ A (called the image) such that the following diagram commutes:

A
coim p

//

p
##G

GG
GG

GG
GG

G p(A)

im p

��

A

(3.2.26)

Since C is abelian, the idempotent p is split. The splitting is given precisely by the two

morphisms of the image factorization, and so we have idp(A) = coim p ◦ im p. Therefore, the

short exact sequence

0 // Np
ker p

// A
coim p

// p(A) //

im p
oo 0 , (3.2.27)

is split as indicated. Here Np denotes the kernel of p. This determines the structure of

A ∼= Np ⊕ p(A) in terms of the following biproduct:

Np

ker p
// Np ⊕ p(A)

coker p
oo

coim p
// p(A)

im p
oo . (3.2.28)

The sequence from right to left is split exact, too.

Theorem 3.2.18. Let C be an abelian symmetric monoidal category and (A,µ, η,∆, ε) be

a strongly separable symmetric Frobenius algebra object in C with window element a. Then

there exists a knowledgeable Frobenius algebra (A,C, ı, ı∗) where C = p(A) is the image of

the idempotent (3.2.23), ı = im p, and ı∗ = coim p ◦ (a · idA). The commutative Frobenius
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algebra structure of C is given by,

µC = coim p ◦ µA ◦ (im p⊗ im p), (3.2.29)

ηC = coim p ◦ ηA, (3.2.30)

∆C = (coim p⊗ coim p) ◦∆A ◦ (a · idA) ◦ im p, (3.2.31)

εC = εA ◦ (a−1 · idA) ◦ im p. (3.2.32)

Proof. The proof uses Proposition 3.2.16 and Proposition 3.2.17.

We show below in Section 3.4 that this knowledgeable Frobenius algebra is precisely the

one that is obtained from our generalized state sum for the strongly separable algebra A. The

following proposition introduces two families of morphisms that are needed in order to show

that the morphisms associated with triangulated open-closed cobordisms do not depend on

the triangulation of the boundary.

Let (A,µ, η,∆, ε) be a Frobenius algebra object in a locally small symmetric monoidal

category C. For k ∈ N, we denote by

µ(k+1) := µ ◦ (µ(k) ⊗ idA), µ(2) := µ, µ(1) := idA (3.2.33)

and by

∆(k+1) := (∆(k) ⊗ idA) ◦∆, ∆(2) := ∆, ∆(1) := idA (3.2.34)

the iterated multiplication and comultiplication. We also write A⊗(k+1) := A⊗k⊗A, A⊗1 := A

and A⊗0 := 1, and for a ∈ Z(A), ak+1 · idA := (ak · idA) ◦ (a · idA) and a0 · idA := idA.

Proposition 3.2.19. Let C be a locally small symmetric monoidal category and (A,µ, η,∆, ε)

be a strongly separable symmetric Frobenius algebra object in C with window element a. Then

for k, ℓ ∈ N, the morphisms

Pkℓ := ∆(k) ◦ (a−(k−1) · idA) ◦ µ(ℓ) : A⊗ℓ → A⊗k, (3.2.35)

Qkℓ := ∆(k) ◦ (a−(k−1) · idA) ◦ p ◦ µ(ℓ) : A⊗ℓ → A⊗k, (3.2.36)

satisfy

Pkℓ ◦ Pℓm = Pkm and Qkℓ ◦Qℓm = Qkm (3.2.37)

for all k, ℓ,m ∈ N. Here p denotes the idempotent of (3.2.23). In particular, Pkk and Qkk are

idempotents, and we have P11 = idA and Q11 = p.
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Proof. In any symmetric Frobenius algebra, we have

µ(k) ◦∆(k) = a(k−1) · idA, (3.2.38)

which implies both claims.

Corollary 3.2.20. Let C be an abelian symmetric monoidal category and (A,µ, η,∆, ε) be

a strongly separable symmetric Frobenius algebra object in C. Then there are isomorphisms

Pkk(A
⊗k) ∼= A and Qkk(A

⊗k) ∼= p(A) (3.2.39)

for all k ∈ N.

Proof. The isomorphisms with their inverses are given by

Φk = coim Pkk ◦ Pk1 : A→ Pkk(A
⊗k), (3.2.40)

Φ−1
k = P1k ◦ im Pkk : Pkk(A

⊗k)→ A (3.2.41)

as well as

Ψk = coim Qkk ◦Qk1 ◦ im p : p(A)→ Qkk(A
⊗k), (3.2.42)

Ψ−1
k = coim p ◦Q1k ◦ im Qkk : Qkk(A

⊗k)→ p(A). (3.2.43)

3.3 Combinatorial open-closed cobordisms

Open-closed cobordisms can be triangulated as follows. We use the terminology of [71].

Given an open-closed cobordism M , the underlying topological manifold is a compact

oriented 2-manifold with boundary. We therefore have a finite simplicial complex K whose

underlying polyhedron we denote by |K| ⊆ Rp for some p, and a homeomorphism TM : |K| →

M which we call a triangulation. The simplicial complex K satisfies the conditions that

guarantee that |K| forms an oriented topological 2-manifold, i.e. the link of each d-simplex is

a (1− d)-sphere iff the simplex is in the interior of |K|, and it is a (1− d)-ball iff the simplex

is in the boundary of |K|. Furthermore, for each 2-simplex σ, it is specified whether σ or its

oppositely oriented simplex σ∗ is contained in |K|, and each 1-simplex in the interior of |K|

appears as a face of precisely two 2-simplices with opposite induced orientations.

If M and N are equivalent open-closed cobordisms, their underlying topological manifolds

are homeomorphic. If we have triangulations TM : |K| →M and T̃M : |L| → N with simplicial
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complexes K and L, Pachner’s theorem [47] says that the simplicial complexes K and L are

related by a finite sequence of moves. These moves are the bistellar moves (called the 1-3 and

2-2 moves),

b b

b

←→

b b

b

b

and

b b

bb

b

←→

b b

bb

b

, (3.3.1)

applicable to all 2-simplices, and the elementary shellings

b

b

b

b

←→

b

b

b

b

b

and

b

b

b

b

b

←→

b

b

b

b

b

, (3.3.2)

applicable to certain 2-simplices some of whose faces coincide with the boundary. The interior

of the manifold is indicated by the shading in our pictures. Recall that for finite simplicial

complexes which represent compact manifolds with non-empty boundary, each bistellar move

can be obtained from a finite sequence of elementary shellings.

The set of corners ∂0M ∩ ∂1M of every open-closed cobordism M is a finite set. Given

some triangulation TM : |K| → M , we can apply a finite sequence of elementary shellings

in order to subdivide the 1-simplices in the boundary in such a way that to every corner of

M , there corresponds a 0-simplex in K, i.e. that ∂0M ∩ ∂1M ⊆ TM (|K0|) where K0 ⊆ K

denotes the 0-skeleton of K. From now on we assume, without loss of generality, that every

triangulation has this property. Given a 1-simplex σ ∈ K in the boundary, we therefore have

either TM (|σ|) ⊆ ∂0M or TM (|σ|) ⊆ ∂1M , i.e. the 1-simplices in the boundary are either black

or coloured.

Both elementary shellings of (3.3.2) replace two boundary 1-simplices (edges) by a single

edge or vice versa. For triangulations with the special property, each of the elementary

shellings (3.3.2) belongs to one of the following four types:

1. two black edges ←→ one black edge,

2. two coloured edges ←→ one coloured edge,

3. one black and one coloured edge ←→ one black edge,

4. one black and one coloured edge ←→ one coloured edge.

It is not difficult to see that the elementary shellings of types (3.) and (4.) can be obtained

from a finite sequence of bistellar moves and elementary shellings of types (1.) and (2.).
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When we construct open-closed TQFTs in Section 3.4 below, we consider triangulations

of the open-closed cobordisms and then show that the linear map associated with every given

cobordism is invariant under the bistellar moves (3.3.1) and under elementary shellings of

types (1.) and (2.). Then this linear map is independent of the choice of the triangulation.

3.3.1 Smoothing theory

When one studies smooth manifolds by combinatorial techniques, the relation between com-

binatorial and smooth manifolds is described by two types of theorems:

• Triangulation: Every compact smooth manifold (with boundary) admits a Whitehead

triangulation. If two such manifolds are diffeomorphic, then their triangulations are

related by a finite sequence of the appropriate Pachner moves.

• Smoothing: Given a finite simplicial complex K that satisfies the conditions which

ensure that its underlying polyhedron |K| forms a topological manifold (with boundary),

one needs to know (a) under which conditions there exists a smooth manifold that has

|K| as its triangulation and (b) whether the resulting smooth manifold is unique up to

diffeomorphism.

Such theorems are available in order to compare smooth manifolds with boundary and com-

binatorial manifolds with boundary, but we are not aware of any systematic treatment for

manifolds with corners, manifolds with faces, or 〈2〉-manifolds.

In the preceding section, we have solved the triangulation problem for open-closed cobor-

disms by resorting to the underlying topological manifold which is just a topological 2-manifold

with boundary. It admits a triangulation, and this triangulation is unique up to combinatorial

equivalence, i.e. Pachner moves, by the validity of the Combinatorial Triangulation Conjec-

ture and the Hauptvermutung for 2-dimensional manifolds, see, for example [72]. We have

then dealt with the corner points ‘by hand’.

The other direction, a solution to the smoothing problem, is not needed if one is just

interested in a combinatorial construction of open-closed TQFTs. For completeness, we nev-

ertheless sketch how one can obtain the corresponding smoothing theorem: let K be a finite

simplicial complex that triangulates an open-closed cobordism. Then every 1-simplex in the

boundary is either black or coloured as we have explained above. The underlying polyhe-

dron |K| together with this partitioning of the boundary is already sufficient to read off the

topological invariants defined in Section 2.5.3. By the normal form of open-closed cobordisms
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of Definition 2.6.3, there exists an open-closed cobordism with the given invariants, and by

Corollary 2.6.6, it is unique up to equivalence.

3.4 State Sum Construction

We begin this section with an overview of the state sum construction in informal language.

Given a strongly separable symmetric Frobenius algebra object (A,µA, ηA,∆A, εA) in an

abelian symmetric monoidal category C and a connected open-closed cobordism M with tri-

angulation TM : |K| →M , we construct a morphism Z(M) in C.

Figure 3.1: ~n = (1, 0),

~n′ = (1), h1 = 2, h2 =

5, h3 = 4, m1 = 7, and

m2 = 4.

For the duration of this section let M be a connected open-

closed cobordism with source ∂0M
in := ~n = (n1, · · · , nk) and tar-

get ∂0M
out := ~n′ = (n′1, · · · , n

′
k′). Let j enumerate the black

boundary components of M so that hj denotes the number of 1-

simplices in the triangulation of the component nj for 1 ≤ j ≤ k or

the component n′j for k+1 ≤ j ≤ k+k′. The number of 1-simplices

of ∂0M
in is given by the sum m1 :=

∑k
j=1 hj , and the number of

1-simplices of ∂0M
out by the sum m2 :=

∑k+k′

j=k+1 hj .

As a first step to constructing the morphism Z(M), we con-

struct a morphism ZTM (M) : A⊗m1 → A⊗m2 . These morphisms depend on the triangulation

of the black boundary, but they are already invariant under bistellar moves and under elemen-

tary shellings of type (2.), i.e. those in which all the involved boundary edges are coloured.

Define the symbol A(nj) corresponding to the boundary component nj to be A if nj = 1

and p(A) if nj = 0 and define A⊗~n to be the ordered tensor product
⊗k

j=1A
(nj). Likewise,

we set A⊗~n′
equal to the ordered tensor product

⊗k+k′

j=k+1A
(n′
j).

In Section 3.4.3, we show that the isomorphisms Pkk(A
⊗k) ∼= A and Qkk(A

⊗k) ∼= p(A)

of Corollary 3.2.20 correspond to triangulated cylinders over I or S1. We construct a map

Z(M) : A⊗~n → A⊗~n′
using these isomorphisms and the morphism ZTM (M). Since the claim

of Corollary 3.2.20 is independent of k, and since the isomorphisms used in that corollary

correspond to triangulated cylinders over I or S1, the invariance under bistellar moves and

elementary shellings of type (2.) can be used to show independence of the boundary trian-

gulation. The morphism Z(M) is then also invariant under elementary shellings of type (1.),

i.e. those involving the black boundary. Z(M) is therefore independent of the triangulation

and thus well-defined for the open-closed cobordism M .
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One can verify explicitly that composition and disjoint union work as required, and so

the state sum defines an open-closed TQFT Z : 2Cobext → C. The objects of C associated

with the interval and the circle are A and p(A), respectively, by construction. What is the

knowledgeable Frobenius algebra that characterizes this TQFT?

In order to answer this question, we compute the morphisms of C associated with the gen-

erating open-closed cobordisms (2.5.25) and show that the open-closed TQFT is characterized

by the knowledgeable Frobenius algebra of Theorem 3.2.18.

3.4.1 Defining the state sum

We first describe how to construct the morphism ZTM (M) : A⊗m1 → A⊗m2 . It is defined

by a string diagram in C obtained from the graph Poincaré dual to the triangulation, see

Figure 3.2. By the coherence theorem for symmetric monoidal categories, it does not matter

how one projects the Poincaré dual graph onto the drawing plane.

For every 2-simplex (triangle), we put a ‘trilinear form’ g(3) (c.f. (3.2.6)), and for every

edge in the interior, we have an inverse bilinear form g∗ = ∆A ◦ ηA. Note that g(3) has a

symmetry under the cyclic group C3, but not in general under the symmetric group S3, and

so this assignment depends on the orientation.

For every edge on the coloured boundary ∂1M , we put a unit ηA. For every interior

0-simplex (vertex), we multiply the resulting morphism by the inverse a−1 of the window

element. Since a−1 is central and the cobordism connected, it does not matter where in the

diagram we do this.

At this stage, we have a morphism A⊗(m1+m2) → 1 of C. Finally, for every edge in the black

out-boundary ∂0M
out, we put a g∗, too, in order to turn this into a morphism A⊗m1 → A⊗m2 .

Then, for every vertex in the black out-boundary that is not a corner, we multiply by a−1.

The terminology sum in ‘state sum’ is justified by the following point of view: If C = Vectk

and if one chooses a basis of A and expands all linear maps in this basis, the state sum contains

a sum over the basis vectors for each edge in the interior of M . This is the sum involved in

the state sum.

The morphisms specified by the string diagram have two important properties.

• Gluing triangulated open-closed cobordisms along a common black boundary that is

triangulated with the same number of edges, corresponds to the composition of mor-

phisms.
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Figure 3.2: This figure illustrates the state sum for an open-closed cobordisms M .

• The disjoint union of open-closed cobordisms gives the tensor product of morphisms.

The definition reads in detail as follows.

Definition 3.4.1. Let (A,µA, ηA,∆A, εA) be a strongly separable symmetric Frobenius alge-

bra in an abelian symmetric monoidal category C. Let M be an open-closed cobordism with

triangulation TM : |K| →M . Let K(j) ⊆ K denote the set of j-simplices, j ∈ {0, 1, 2}.

We characterize the edges, i.e. the elements σ{i,j} ∈ K(1), by two-element sets {i, j} ⊆

K(0), i 6= j, of vertices. The oriented triangles σ(i,j,k) ∈ K(2) are characterized by triples

(i, j, k) ∈ K(0) ×K(0) ×K(0) of vertices, modulo a permutation by a 3-cycle.

We define the morphism ZTM (M) : A⊗m1 → A⊗m2 as a composition

ZTM (M) := Z
(2)
TM
◦ (a−k · idA⊗N ) ◦ τ ◦ Z

(1)
TM
. (3.4.1)

where N = m2 + |{σ ∈ K(1) : σ ⊆ ∂M }|+ 2|{σ ∈ K(1) : σ ⊆M\∂M }| = m2 + 3|K(2)|. The

power of the inverse window element in (3.4.1) is k = |{σ ∈ K(0) : σ ⊆ M\∂M }| + |{σ ∈

K(0) : σ ⊆ ∂0M
out\(∂0M ∩ ∂1M) }| — the number of interior vertices plus the number of
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vertices on the outgoing edge that are not corners. We exploit the coherence theorem for

monoidal categories and suppress the associativity and unit constraints of C and define

Z
(1)
TM

:=

( m1⊗

j=1

idA

)
⊗

( m2⊗

j=1

g∗
)
⊗

( ⊗

σ∈K(1) :
σ⊆M\∂M

g∗
)
⊗

( ⊗

σ∈K(1) :
σ⊆∂1M

ηA

)
: A⊗m1 → A⊗N . (3.4.2)

and

Z
(2)
TM

:=

( m2⊗

j=1

idA

)
⊗

( ⊗

σ∈K(2)

g(3)

)
: A⊗N → A⊗m2 , (3.4.3)

The morphism τ : A⊗N → A⊗N permutes the tensor factors. In order to specify this permu-

tation, we associate the factors of the target of (3.4.2) and those of the domain of (3.4.3) with

the edges σ{i,j} ∈ K
(1). This is denoted by superscripts such as A{i,j}. The permutation τ

is specified by requiring that it maps each factor A{i,j} to one whose superscript is the same

edge.

The superscripts for the A’s in the target of (3.4.2) are as follows. We go through the

factors of (3.4.2) from left to right.

• For every edge σ{i,j} in the black in-boundary ∂0M
in, we have idA : A → A{i,j}. There

are m1 edges of this sort.

• For every edge σ{i,j} in the black out-boundary ∂0M
out, we have g∗ : 1→ A{i,j}⊗A{i,j}.

This edge therefore appears twice as a superscript, but due to the symmetry of g∗, we

need not distinguish the two. There are m2 edges of this sort.

• For every edge σ{i,j} ⊆ M\∂M in the interior, we have g∗ : 1 → A{i,j} ⊗ A{i,j}. Again

the superscript occurs twice, and we do not distinguish.

• For every edge σ{i,j} ⊆ ∂1M in the coloured boundary, we have ηA : 1→ A{i,j}.

The superscripts for the A’s in the domain of (3.4.3) are as follows.

• For every edge σ{i,j} in the black out-boundary ∂0M
out, we have idA : A{i,j} → A.

• For every oriented triangle σ(i,j,k) ∈ K(2), we have g(3) : A{i,j} ⊗ A{j,k} ⊗ A{k,i} → 1.

Due to the cyclic symmetry of the ‘trilinear form’ g(3), this morphism is invariant under

permutations of the triple (i, j, k) by a 3-cycle.

Notice that the edges that appear as superscripts in the target of (3.4.2) and those in the

domain of (3.4.3) agree including their multiplicities, and that the permutation τ is well

defined.

See (3.4.7) for an example of the diagram produced by the state sum.
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3.4.2 Invariance under Pachner moves

Proposition 3.4.2. For a connected open-closed cobordism M with triangulation TM , the

state sum ZTM (M) is invariant under the 1-3 and 2-2 Pachner moves and under the elementary

shellings of type (2.).

Proof. The 2-2 Pachner move follows from the cyclic symmetry of the ‘trilinear form’ g(3).

b

b

b

b b b b

i

j

l

k

=

•
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=

b

b

b

b

b

b

b

i

j

l

k

(3.4.4)

The 1-3 Pachner move is slightly more difficult because it involves subdividing a triangle

which inserts an additional internal vertex. It makes use of the bubble move (3.2.22):
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(3.4.5)

b

b

b

!
b

b

b

There are two elementary shellings (3.3.2) of type (2.). Re-

call that the state sum assigns to each edge of the coloured

boundary the algebra unit ηA : 1→ A. The first move of (3.3.2)

follows directly from the unit axioms. The second move turns an interior vertex into an ex-

terior vertex (featured to the right). This move follows from the bubble move (3.2.22):

a−1

•
�� 		

��

•
�� 		

��

•
�� ��

��

•
��

=
•
�� 		

��

•
��

•
��

(3.4.6)

Note that the bubble move (3.2.22) is required to prove the above proposition. This is

the reason why we cannot define the state sum for the non strongly separable algebras of

Example 3.2.8(2) and 3.2.9(2).

For convenience, we sometimes use degenerate triangulations in which the two vertices in

the boundary of an edge agree. In this case it is always understood that we apply bistellar

moves and elementary shellings in order to turn them into proper simplicial complexes.
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An example showing the diagram produced by the state sum on the torus T 2 is depicted

below:

 

b b

bb

b

b

b

b

b bb

qp

qp

utut
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(3.4.7)

Here we have used the triangulation of the torus as a rectangle where the dotted and dashed

lines are identified in the usual way. After the identifications this triangulation has a single

interior vertex and hence the single factor of a−1 that appears in the string diagram on the

right.

3.4.3 Independence of the triangulation of black boundaries

We now define a morphism Z(M) from the morphism ZTM (M) which does not depend on

the choice of triangulation of the black boundary. Observe that to each black boundary

component nj triangulated with hj edges, we have associated the vector space A⊗hj .

Proposition 3.4.3. For the triangulations T kℓI×I and T kℓS1×I of the flat strip I × I and the

cylinder S1 × I with ℓ incoming edges and k outgoing edges in their black boundaries, the

state sum of Definition 3.4.1 yields the morphisms Pkℓ : A
⊗ℓ → A⊗k and Qkℓ : A

⊗ℓ → A⊗k of

Proposition 3.2.19. That is,

ZT kℓI×I
(I × I) = Pkℓ, (3.4.8)

ZT kℓ
S1×I

(S1 × I) = Qkℓ. (3.4.9)

Proof. Write down the string diagram defining the state sum, c.f. Figure 3.2, and use the

bubble move and the axioms of a symmetric Frobenius algebra.

We here include the simplest triangulations of S1 × I and I × I and the associated mor-

phisms for k = ℓ = 1:

ZT 11
S1×I

( ) =

b b

bb

bb

b

b

b = •

•
��

��

�� ��

a−1

•
�� 		

��

(3.4.10)
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ZT 11
I×I

( ) =

b b

bb

bb

b

b

b = �� (3.4.11)

P44

M

Given any triangulated open-closed cobordism M with a black boundary

component homeomorphic to I and triangulated with ℓ edges, one can now

glue a suitably triangulated cylinder I × I to that boundary. By Proposi-

tion 3.4.2, this yields the same morphism ZTM (M). Similarly, for every black

boundary component homeomorphic to S1 and triangulated with ℓ edges, one can glue a suit-

ably triangulated S1 × I to that boundary, again leaving ZTM (M) unchanged. It is therefore

sufficient to consider the restriction of ZTM (M) to the appropriate images of the idempotents

Pℓℓ and Qℓℓ, respectively. We therefore define:

Definition 3.4.4. For every open-closed cobordism M with triangulation TM , we define the

state sum Z̃TM (M) by subsequently pre- and post-composing ZTM (M) with the following

morphisms: for each nj ∈ ~n = ∂0M
in triangulated with hj edges, pre-composition with

im Phjhj if nj = 1 and pre-composition with im Qhjhj if nj = 0; for each n′j ∈ ~n
′ = ∂0M

out

triangulated with hj edges, post-composition with coim Phjhj if nj = 1 and post-composition

with coim Qhjhj if nj = 0.

If we write R
(0)
kℓ := Pkℓ and R

(1)
kℓ := Qkℓ, then the above composite is the morphism

Z̃TM (M) =
( k+k′⊗

j=k+1

coim R
(nj)
hjhj

)
◦ ZTM (M) ◦

( k⊗

j=1

im R
(nj)
hjhj

)
:

k⊗

j=1

R
(nj)
hjhj

(A⊗hj )→
k+k′⊗

j=k+1

R
(nj)
hjhj

(A⊗hj ). (3.4.12)

One can now use the isomorphisms of Corollary 3.2.20 in order to relate the Z̃TM (M) for

different triangulations of the black boundary as follows. The morphism Z̃TM (M) is com-

pletely determined by the triangulation of the boundary ∂0M by Proposition 3.4.2. Hence,

the morphism Z̃TM (M) associated to a triangulation TM is related to the morphism Z̃T ′
M

(M)

obtained from a different triangulation T ′
M by gluing on cylinders whose boundaries are ap-

propriately triangulated. These cylinders yield precisely the morphisms Pkℓ and Qkℓ.

Definition 3.4.5. For every open-closed cobordism M , we choose a triangulation TM . We

define the state sum Z(M) by subsequently pre- and post-composing Z̃TM (M) with the fol-

lowing morphisms: For each nj ∈ ~n = ∂0M
in triangulated with hj edges, pre-composition
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with Φhj if nj = 1 and pre-composition with Ψhj if nj = 0; For each n′j ∈ ~n′ = ∂0M
out

triangulated with hj edges, post-composition with Φ−1
hj

if nj = 1 and post-composition with

Ψ−1
hj

if nj = 0. This yields the morphism

Z(M) =
( k+k′⊗

j=k+1

(Ξ
(nj)
hj

)
−1)
◦ Z̃TM (M) ◦

( k⊗

j=1

Ξ
(nj)
hj

)
: A⊗~n → A⊗~n′

, (3.4.13)

where we write Ξ
(0)
hj

:= Ψhj and Ξ
(1)
hj

:= Φhj .

The definition of Z(M) is illustrated below:

Z ///o/o/o

A⊗ p(A)

P22

(
A⊗2

)
⊗Q55

(
A⊗5

)

P44

(
A⊗4

)

A

Φ2⊗Ψ5
��

eZTM (M)

��

Φ−1
4��

(3.4.14)

Theorem 3.4.6. The morphism (3.4.13) is well defined, i.e. it does not depend on the triangu-

lation TM of M . In particular, it is independent of the numbers hj of edges in Definition 3.4.4

and Definition 3.4.5.

Proof. Insert (3.4.12) into (3.4.13) and draw the cylinders over I and over S1 whose triangu-

lations are given by im Phjhj ◦Φhj = Phj1, etc. and glue them to the triangulation used in the

state sum ZTM (M) of Definition 3.4.1. The invariance under bistellar moves and elementary

shellings of type (2.) of Proposition 3.4.2 then implies the theorem.

The following proposition provides a more intuitive description of the state sum Z(M).

Theorem 3.4.7. Given an open-closed cobordism M with triangulation TM the state sum

Z(M) is equal to ZT ′
M

(M ′) where M ′ is the triangulated open-closed cobordism obtained from

M by pre- and post-composing with cylinders and strips with the simplest triangulations.

Proof. This is immediate from the definitions of Z(M) and ZTM (M) and from Propositions

3.2.19 and 3.4.3.
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3.4.4 Open-closed Topological Quantum Field Theories

From Definition 3.4.1, it is obvious that the state sum Z(M) associates with the composition

of open-closed cobordisms the composition of morphisms of C and with the disjoint union of

open-closed cobordisms the tensor product of morphisms in C. It is not difficult to see that

we get a symmetric monoidal functor Z : 2Cobext → C, i.e. an open-closed TQFT.

In this section, we show that this open-closed TQFT is the one characterized by the

knowledgeable Frobenius algebra of Theorem 3.2.18.

Generators via the state sum construction

Below we provide a choice of triangulation for some of the generators in 2Cobext.

b b

b

b b

bb

a−1

a−1
b b

b

a−1

a−1

b

b

b b

b

b

b b

b

a−1
bb

b bb

(3.4.15)

Those edges with matching arrow heads on the triangulations are to be identified. The

black boundaries are depicted slightly thicker than the coloured boundaries. A choice of

triangulation for the remaining generators is immediate from those above. The factors of a−1

are meant to remind the reader which vertices in the triangulation contribute factors of a−1.

Using these triangulations we can compute the morphisms ZTM (M) associated to the open-

closed cobordisms M generating 2Cobext. For completeness, we include the triangulation of

the cylinders S1 × I and I × I as well.
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ZTM
( )

=
•
�� ��

��a−2

•
�� 



��

•

•
��

��

�� ��

•

•
��

��

�� ��

=

•
�� ��

��

p
��

��

p
��

��

ZTM
( )
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•
��a−1

•
�� 		

��

(3.4.16)

ZTM
( )

=

•
�� ��

��

a−3

•
�� 
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��

•
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��

�� ��

•

•
��

��

�� ��
=

•
�� ��

��

a−1

•
�� 
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p
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p
��

��

ZTM
( )

= •
��

(3.4.17)

ZTM
( )

= •
�� 		

��
ZTM

( )
=
•
�� ZTM

( )
= •

�� ��

��

ZTM
( )

= •
��

(3.4.18)

ZTM
( )

=
•

•
��

��

�� ��
=

p
��

��

a

•
�� 		

��

ZTM
( )

= •

•
��

��

�� ��

a−1

•
�� 		

��

= p
��

��

(3.4.19)

ZTM
( )

= •

•
��

��

�� ��

a−1

•
�� 		

��

= p
��

��

ZTM
( )

= �� (3.4.20)

Theorem 3.4.8. Let C be an abelian symmetric monoidal category and A be a rigid and

strongly separable algebra object in C that is equipped with the structure of a symmetric

Frobenius algebra. Then the state sum (3.4.1) defines an open-closed TQFT Z : 2Cobext → C.

It is characterized by the knowledgeable Frobenius algebra constructed from A in Theo-

rem 3.2.18.

Proof. Using the triangulations of the generators given in (3.4.16)-(3.4.20), compute the mor-

phisms ZTM (M) for each generator of 2Cobext. Pre and post composing with the relevant

maps specified in Definitions 3.4.4 and 3.4.5 produces the knowledgeable Frobenius algebra

(A,Z(A), ı, ı∗) defined in Theorem 3.2.18. For example, ZTM ( ) = µA ◦ (p ⊗ p) so that

Z̃TM ( ) = coim Q11 ◦ µA ◦ (p⊗ p) ◦ (im Q11 ⊗ im Q11). Noting that Q11 = p and using the

image factorization of p (3.2.26) together with the idempotent property p2 = p it is easy to

check that

Z ( ) = coim p ◦ µA ◦ (im p⊗ im p) (3.4.21)
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as specified in Theorem 3.2.18.

Since 2Cobext is the strict symmetric monoidal category freely generated by a knowl-

edgeable Frobenius algebra object, this uniquely determines a symmetric monoidal functor

Z : 2Cobext → C.

Recall that given an open-closed TQFT, the algebra object A := Z(I) does not necessarily

determine the object C := Z(S1). Consider, for example, the knowledgeable Frobenius algebra

(A,C, ı, ı∗) of Example 3.2.15 in which C 6∼= Z(A), and secondly the knowledgeable Frobenius

algebra (A,Z(A), ı′, ı′∗) constructed in Theorem 3.2.18 based on the sameA. Both characterize

an open-closed TQFT, but only the latter one can be obtained from the state sum.

Conversely, in an open-closed TQFT, the object Z(S1) does not determine the object

Z(I). This can be easily seen from Example 3.4.9 below.

3.4.5 Examples

In Chapter 2 it was shown that connected open-closed cobordisms are determined up to

orientation-preserving diffeomorphism preserving the black boundary by a set of topological

invariants defined in the work of Baas, Cohen, and Ramı́rez [29]. These topological invariants

are the genus (defined as the genus of the underlying topological 2-manifold), the window

number, defined as the number of components of ∂1M diffeomorphic to S1, and the boundary

permutation. For a surface M (∂0M = ∅) only the genus and window number are relevant.

In this context we will refer to the window number as the number of punctures in M .

Let (A,C, ı, ı∗) be a knowledgeable Frobenius algebra in a symmetric monoidal category C.

We call µC ◦∆C : C → C the genus-one operator and ı∗ ◦ ı : C → C the window operator. The

invariant associated to the connected surface M ℓ
k of genus ℓ with k punctures is determined

by evaluating the morphism

Z(M ℓ
k) = εC ◦

(
ı∗ ◦ ı

)k
◦

(
µC ◦∆C

)ℓ
◦ ηC : 1→ 1 (3.4.22)

in C.

In this section, we provide several examples of strongly separable symmetric Frobenius

algebras and use the genus-one operator and the window operator to compute the state sum

invariant Z
(
M ℓ
k

)
.
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Example 3.4.9. Let k be a field, n ∈ N, and m1, . . . ,mn ∈ N, and consider the direct

product4

A :=

n⊕

j=1

Mmj (k) (3.4.23)

of matrix algebras. We choose a basis {e
(j)
pq }1≤p,q≤mj ,1≤j≤n of A such that the multiplication

reads µA(e
(j)
pq ⊗e

(ℓ)
rs ) = δjℓδrqe

(j)
ps with unit ηA(1) =

∑n
j=1

∑mj
p=1 e

(j)
pp . The k-algebra (A,µA, ηA)

is strongly separable if and only if for all j, char k does not divide mj . From now on we

assume that this condition holds.

The centre Z(A) of A has a basis {zj}1≤j≤n of orthogonal idempotents zj :=
∑mj

p=1 e
(j)
pp ,

i.e. µA(zj ⊗ zℓ) = δjℓzj . The symmetric Frobenius algebra structures (A,µA, ηA,∆A, εA) are

characterized by the invertible central elements a =
∑n

j=1 ajzj , i.e. aj ∈ k\{0} for all j, as

follows:

∆A(e(j)pq ) = ajm
−1
j

mj∑

r=1

e(j)pr ⊗ e
(j)
rq , (3.4.24)

εA(e(j)pq ) = δpqmja
−1
j , (3.4.25)

and indeed one finds (µA ◦∆A ◦ ηA)(1) = a for the window element. This illustrates further

the distinction between special Frobenius algebras and strongly separable Frobenius algebras.

A is special if and only if ai = aj for all i, j. We compute the idempotent p of (3.2.23) as

follows:

p(e(j)pq ) = δpqm
−1
j

mj∑

r=1

e(j)rr , (3.4.26)

and indeed the image is p(A) ∼= Z(A) with the splitting

im p : p(A)→ A, zj 7→

mj∑

p=1

e(j)pp , (3.4.27)

coim p : A→ p(A), e(j)pq 7→ δpqm
−1
j zj . (3.4.28)

where im p is just the inclusion. The knowledgeable Frobenius algebra (A,C, ı, ı∗) of Theo-

rem 3.2.18 for this algebra A is given by the following commutative Frobenius algebra structure

4We write ⊕ because this is actually the biproduct in the abelian category Vectk.
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(C,µC , ηC ,∆C , εC) on C := Z(A):

µC(zj ⊗ zℓ) = δjℓzj , (3.4.29)

ηC(1) =

n∑

j=1

zj, (3.4.30)

∆C(zj) = a2
jm

−2
j zj ⊗ zj, (3.4.31)

εC(zj) = m2
ja

−2
j , (3.4.32)

together with

ı : C→A, zj 7→

mj∑

p=1

e(j)pp , (3.4.33)

ı∗ : A→C, e(j)pq 7→ajm
−1
j δpqzj . (3.4.34)

We finally compute the genus-one operator (µC ◦ ∆C)(zj) = a2
jm

−2
j zj and the window

operator (ı∗ ◦ ı)(zj) = ajzj , and so the invariant (3.4.35) associated with the genus ℓ-surface

with k punctures, k, ℓ ∈ N0, is

Z(M ℓ
k)(1) = (εC ◦ (ı∗ ◦ ı)k ◦ (µC ◦∆C)ℓ ◦ ηC)(1) =

n∑

j=1

a
k+2(ℓ−1)
j m

−2(ℓ−1)
j . (3.4.35)

Fukuma–Hosono–Kawai [40] choose the canonical Frobenius algebra structure on A, i.e.

a = η and therefore aj = 1 for all j. In this case, the invariant is blind to the window number

k. With a generic symmetric Frobenius algebra structure, however, one can easily obtain an

invariant that can distinguish any two inequivalent connected surfaces.

Example 3.4.10. Let G be a finite group, k a field, and A := k[G] be the group algebra.

We choose the basis {g}g∈G for A and have µA(g ⊗ h) = gh for g, h ∈ G and ηA(1) = e. The

k-algebra (A,µA, ηA) is strongly separable if and only if char k does not divide the order |G|

of G. We now assume that this condition holds.

We denote by [g] := {hgh−1 : h ∈ G } ⊆ G the conjugacy class of g ∈ G and by G/ ∼:=

{ [g] : g ∈ G} the set of classes. Then the centre Z(A) has the basis {z[g]}[g]∈G/∼ where

z[g] :=
∑

h∈[g] h denotes the class sum. We have the unit ηA(1) =
∑

[g]∈G/∼ z[g] and µA(z[g] ⊗

z[h]) =
∑

[ℓ]∈G/∼ µ
[ℓ]
[g],[h]z[ℓ] for all g, h ∈ G with some µ

[ℓ]
[g],[h] ∈ k.

The z[g] are in general not orthogonal idempotents. Working with a generic invertible

central element in the basis {z[g]}[g]∈G/∼ is not very instructive. If k is algebraically closed,

the irreducible characters χρ : G→ k provide us with a basis {zρ}ρ of orthogonal idempotents
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zρ := dρ|G|
−1 ∑

g∈G χρ(g)g, dρ = χρ(e), for Z(A). We then get the same results as for a direct

product
⊕

ρMdρ of dρ × dρ-dimensional matrix algebras.

In the following, we restrict ourselves to the symmetric Frobenius algebra structure

∆A(g) =
∑

h∈G
h⊗ h−1g, (3.4.36)

εA(g) =





1, if g = e

0, else

(3.4.37)

which is characterized by the window element (µA ◦ ∆A ◦ ηA)(1) = |G|e = |G|ηA(1). The

symmetric Frobenius algebra (A,µA, ηA,∆A, εA) is therefore special in the sense of (2.3.10).

In this case

g∗(1) = (∆A ◦ µA)(1) =
∑

h∈G
h⊗ h−1, (3.4.38)

g(3)((g ⊗ h)⊗ ℓ) = (εA ◦ µA ◦ (µA ⊗ idA))((g ⊗ h)⊗ ℓ) =





1, if ghℓ = e

0, else

(3.4.39)

The state sum Z(M) then agrees with the partition function of a topological gauge theory

with gauge group G or, in other words, with the volume of the moduli space of flat G-bundles

on M . In the state sum of Definition 3.4.1, the window element |G| is divided out for every

vertex in the interior of M (this prefactor of Z(M) is sometimes called the anomaly). In

the closed TQFT, the meaning of this factor is somewhat mysterious — the factor is merely

needed in order to make the 1-3 Pachner move work — but in our extension to the open-closed

TQFT, the factor |G| is directly related to the symmetric Frobenius algebra structure of A

and thereby to topology.

Remark 3.4.11. Although our state sum of Definition 3.4.1 requires an oriented 2-manifold,

the previous example with the group algebra A = k[G] makes sense even for unoriented man-

ifolds (without boundary). This is possible because A also has the structure of an involutory

Hopf algebra (A,µA, ηA,∆
Hopf
A , εHopf

A , SA) with

∆Hopf
A (g) = g ⊗ g, (3.4.40)

εHopf
A (g) = 1, (3.4.41)

SA(g) = g−1, (3.4.42)

with a co-integral
∑

g∈G g and an integral g 7→ δG(g) where δG(e) = 1 and δG(g) = 0 for all g 6=

e. For this involutory Hopf algebra, one can evaluate Kuperberg’s 3-manifold invariant [51]
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which does not refer to the 3-simplices and therefore makes sense for (unoriented) 2-manifolds,

too. In the oriented case, it agrees with our state sum. The unoriented case is treated in more

generality in [31].

3.5 State sums with D-branes

Our next example, the groupoid algebra of a finite groupoid, also yields the state sum of an

open-closed TQFT in a straightforward way, but in addition it provides us with an example

of an S-coloured open-closed TQFT, c.f. 2.8.

A groupoid G = (X,G, s, t, ı, ◦,−1) consists of sets X (objects) and G (morphisms) and

maps s : G→ X (source), t : G→ X (target), ı : X → G (identity), ◦ : Gt×s G := { (h1, h2) ∈

G × G : t(h1) = s(h2) } → G (composition, written from left to right) and −1 : G → G

(inversion) such that the following conditions are satisfied,

1. s(ı(x)) = x and t(ı(x)) = x for all x ∈ X,

2. s(h1 ◦ h2) = s(h1) and t(h1 ◦ h2) = t(h2) for all (h1, h2) ∈ Xt×s X,

3. (h1 ◦ h2) ◦ h3 = h1 ◦ (h2 ◦ h3) for all h1, h2, h3 ∈ G for which t(h1) = s(h2) and

t(h2) = s(h3),

4. ı(s(h)) ◦ h = h = h ◦ ı(t(h)) for all h ∈ G,

5. s(h−1) = t(h) and t(h−1) = s(h) for all h ∈ G,

6. h−1 ◦ h = ı(t(h)) and h ◦ h−1 = ı(s(h)) for all h ∈ G.

The groupoid is called finite if G is a finite set. For every x ∈ X, we denote its connected

component by [x] := { t(h) : h ∈ G, s(h) = x }. The groupoid is called connected if X = [x]

for some x ∈ X. For x ∈ X, the star of G at x is the set,

stG(x) = { g ∈ G : s(g) = x }. (3.5.1)

We denote the order of the star of G at x ∈ X by N[x] := |stG(x)|. It depends only on the

connected component [x] of x ∈ X.

Given a finite groupoid G = (X,G, s, t, ı, ◦,−1) and a field k, the groupoid algebra (k[G], µ, η)
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is the free vector space k[G] on the set of morphisms with the operations,

µ(h1 ⊗ h2) =




h1 ◦ h2, if t(h1) = s(h2)

0, else

(3.5.2)

η(1) =
∑

x∈X
ı(x), (3.5.3)

where h1, h2 ∈ G.

Example 3.5.1. Let (G) = (X,G, s, t, ı, ◦,−1) be a finite groupoid and consider the groupoid

algebra A := k[G]. The k-algebra A is strongly separable if and only of char k does not divide

N[x] for any x ∈ X. From now on, we assume that this is the case.

We denote by G(0) := { g ∈ G : s(g) = t(g) } ⊆ G the set of automorphisms, by [g] :=

{h ◦ g ◦ h−1 : h ∈ G, t(h) = t(g) } the conjugacy class of the automorphism g ∈ G(0), and by

G(0)/ ∼:= { [g] : g ∈ G(0) } the set of conjugacy classes. Choose the basis {h}h∈G of A. We

find the centre Z(A) ∼= k[G(0)/ ∼] with a basis {z[g]}g∈G(0)/∼ where z[g] :=
∑

h∈[g] h denotes

the class sum.

The canonical symmetric Frobenius algebra structure (A,µA, ηA,∆A, εA) is given by

εA(g) =




N[s(g)], if g = ı(s(g))

0, else

(3.5.4)

∆A(g) =
1

N[t(g)]

∑

h∈G : s(h)=s(g)

h⊗ (h−1 ◦ g), (3.5.5)

from which we obtain the canonical idempotent (3.2.23)

p(g) =




z[g]/N[t(g)], if t(g) = s(g)

0, else

(3.5.6)

with the image decomposition

im p : Z(A)→A, z[g] 7→
∑

h∈[g]

h, (3.5.7)

coim p : A →Z(A), g 7→




z[g]/N[t(g)], if s(g) = t(g)

0, else.

(3.5.8)

From these data, one can compute the knowledgeable Frobenius algebra (A,Z(A), ı, ı∗) that

appears in Theorem 3.2.18 with ı = im p and ı∗ = coim p. The state sum construction

therefore yields the corresponding open-closed TQFT.
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There is, however, another point of view according to which the groupoid algebra gives

rise to an X-coloured knowledgeable Frobenius algebra (Section 2.8). Although this example

is rather trivial, it nicely illustrates where the various structures appear.

Example 3.5.2. Let G = (X,G, s, t, ı, ◦,−1) be a finite groupoid and k be a field such that

char k does not divide N[x] for any x ∈ X. Denote by Hom(x, y) = { g ∈ G : s(g) = x, t(g) =

y } the morphisms from x to y. Then there is a family of vector spaces Axy := k[Hom(x, y)].

By restricting the operations of the groupoid algebra A = k[G] to the Axy, we obtain the

following linear maps:

µxyz : Axy ⊗Ayz → Axz, g1 ⊗ g2 7→ g1 ◦ g2, (3.5.9)

ηx(1) : k → Axx, 1 7→ ı(x), (3.5.10)

∆xyz : Axz → Axy ⊗Ayz, g 7→
1

N[t(g)]

∑

h∈G : s(h)=x

h⊗ h−1 ◦ g, (3.5.11)

εx : Axx → k, g 7→




N[s(g)], if g = ı(x)

0, else

(3.5.12)

for x, y, z ∈ X. Similarly by restricting ı and ı∗, we find for all x ∈ X:

ıx : Z(A)→Axx, z[g] 7→
∑

h∈[g] : h∈Hom(x,x)

h, (3.5.13)

ı∗ : Axx →Z(A), g 7→
1

N[x]
z[g]. (3.5.14)

Then we have an X-coloured knowledgeable Frobenius algebra

({Axy}, {µxyz}, {ηx}, {∆xyz}, {εx}, Z(A), {ıx}, {ı
∗
x}). (3.5.15)

The commutative Frobenius algebra structure of Z(A) is as in Theorem 3.2.18. In particular,

each Axx, x ∈ X, forms a symmetric Frobenius algebra, the ıx : Z(A) → Axx are algebra

homomorphisms, and each Axy forms an (Axx, Ayy)-bimodule with dual Ayx. Observe that

the state sum can be evaluated directly for the full groupoid algebra

A =
⊕

x,y∈X
Axy, (3.5.16)

and so the vector space associated with the unit interval is precisely this direct sum. If one

restricts it to the subspaces Axy corresponding to the boundary colours x, y ∈ X of a given

interval, one obtains an X-coloured open-closed TQFT. The full state sum with A, however,

contains more than just these homogeneous elements. It includes their linear combinations

as well.
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This last example is especially relevant in the context where the open-closed cobordisms

are interpreted as open and closed string worldsheets. In this case, the colours of an X-

coloured knowledgeable Frobenius algebra are interpreted as the set of boundary conditions,

or D-branes, for the open strings. The decomposition of the finite groupoid algebra then

allows the state sum to compute topological invariants of open and closed string worldsheets

equipped with D-brane labels from the set of objects X of the groupoid G.



Chapter 4

Khovanov homology for tangles

4.1 Background

4.1.1 The Jones Polynomial

A link L of m components is a submanifold of S3 that is diffeomorphic to a disjoint union

of m simple closed curves. A link with one component is a knot. Two links L1 and L2 are

considered equivalent if they are isotopic. We will be interested in ‘local’ versions of knot and

link diagrams that are confined to a rectangular cube.

Definition 4.1.1. An unoriented (n,m)-tangle T is a proper, smooth embedding of a 1-

manifold with boundary into R2× [0, 1] such that the boundary ∂T of T satisfies the condition

∂T = T ∩
(
R

2 × {0, 1}
)

= {1, 2, . . . , n} × {0} × {1} ∪ {1, 2, . . . ,m} × {0} × {0}, (4.1.1)

and near the endpoints T is perpendicular to the boundary. An oriented (n,m)-tangle is

equipped with an orientation of each of its components.

We define the source of a (n,m)-tangle T to be the component of ∂T given by {1, 2, . . . , n}×

{0}×{1} and the target of the (n,m)-tangle T to be the component of ∂T given by {1, 2, . . . ,m}×

{0} × {0} (tangles are read from top to bottom). Note that a (0, 0)-tangle is just a link. For

simplicity we sometimes refer to an (n,m)-tangle as a tangle for short. Two tangles are

equivalent if they are isotopic by boundary preserving diffeomorphisms.

Tangles are determined up to equivalence by their plane diagrams, which are defined as

generic planar projections of the tangle onto the ‘back wall’ R × [0, 1]. The projection is

generic if it has only transversal double points as singularities. Two plane diagrams are called
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plane isotopic if they belong to a 1-parameter family of generic projections, meaning that the

combinatorial structure of the tangle is left unchanged.

Theorem 4.1.2. Two tangle diagrams represent equivalent tangles if and only if one can be

obtained from the other by a finite sequence of Reidemeister moves:

! ! ! ! (4.1.2)

and plane isotopies.

The Jones polynomial J(L) of a link diagram L is a Laurent polynomial in Z[q, q−1] that

is an invariant of the link L. Let L be a plane diagram of an oriented link with n+ positive

crossings ! and n− negative ones ", n := n+ + n−. The Kauffman bracket 〈L〉, from which

one can compute the unnormalized Jones polynomial1 Ĵ(L) := (−1)n−qn+−2n−〈L〉, can be

recursively defined as follows:

〈∅〉 = 1; 〈©L〉 = (q + q−1)〈L〉; 〈0〉 = 〈1〉 − q〈H〉. (4.1.3)

In particular, for every crossing (0), each of the two smoothings, the 0-smoothing (1) and

the 1-smoothing (H) give a contribution to the Kauffman bracket, with a different sign and

a different power of q. For the link diagram L with n crossings, there are 2n smoothings,

labeled by sequences α = (α1, . . . , αn) ∈ {0, 1}
n where αj ∈ {0, 1} indicates whether the j-th

crossing was resolved by the 0- or the 1-smoothing. Each of the diagrams Sα, α ∈ {0, 1}
n,

corresponding to the 2n smoothings, is free of crossings and therefore consists of a disjoint

union of a finite number of circles.

Example 4.1.3. Consider the Hopf link . The Kauffman bracket is given by

〈 〉
=

〈 〉
− q

〈 〉
(4.1.4)

=
〈 〉

− q
〈 〉

− q
(〈 〉

− q
〈 〉)

(4.1.5)

= (q + q−1)2 − q(q + q−1)− q
(
(q + q−1)− q(q + q−1)2

)
(4.1.6)

= 1 + q−2 + q2 + q4. (4.1.7)

1We have adopted the conventions of Khovanov [12]. The usual definition of the Jones polynomial is

obtained by substituting −
√

t for q in the normalized polynomial J(L) := bJ(L)/(q + q−1).
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If the Hopf link has the orientation given by so that n+ = 0 and n− = 2, then the

unnormalized Jones polynomial is given by

Ĵ
( )

:= (−1)2q−4
〈 〉

= 1 + q−2 + q−4 + q−6. (4.1.8)

Perhaps the first hint that the unnormalized Jones polynomial Ĵ(L) might be related to the

Euler characteristic of some homology theory comes from the skein relation 〈0〉 = 〈1〉− q〈H〉

in the definition of the Kauffman bracket. If we define the height of a resolution Sα of a

link diagram L to be the number of 1’s in the sequence α = (α1, . . . , αn) ∈ {0, 1}
n, then

it is apparent from the skein relation that if the resolution Sα contains r 1-smoothing then

associated to Sα will be the prefactor (−q)r. Further, every resolution Sα at height r will

have associated to it this same prefactor. This phenomenon is best illustrated by Bar-Natan’s

wonderful diagram2 [14] illustrating how one can compute the unnormalized Jones polynomial

of an n crossing link by assigning to each vertex of the hypercube {0, 1}n the complete

resolution Sα of L where the sequence α corresponds to the edge of the cube {0, 1}n.

1

3

2 q(q+q−1)

100

CC
CC

CC
C

CC
CC

CC
C+

q2(q+q−1)2

110

DD
DD

DD
DD

DD
DD

DD
D

+

(q+q−1)2

000

||||||||||||||

DD
DD

DD
DD

DD
DD

D

��

q(q+q−1)

010

{{{{{{{{{{{{{{{

EE
EEEEEE

EEEEE

+

q2(q+q−1)2

101

+

q3(q+q−1)3

111

��

q(q+q−1)

001

yyyyyy

yyyyyy

��

q2(q+q−1)2

011

xxxxxxxxxxxxxx

��

(q + q−1)2 − 3q(q + q−1) + 3q2(q + q−1)2 − q3(q + q−1)3

(4.1.9)

= q−2 + 1 + q2 − q6
·(−1)n− qn+−2n−

−−−−−−−−−−−−−−→
(with (n+, n−) = (3, 0))

q + q3 + q5 − q9
·(q+q−1)−1

−−−−−−−→ J(&) = q2 + q6 − q8.

The computation above amounts to assigning to each vertex Sα consisting of k circles

the term (−1)rqr(q + q−1)k where r is the height of the smoothing Sα. Note that in the

2Thanks to Dror Bar-Natan for use of this diagram the two others in the next two sections.
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computation above, the terms at a given height r are summed first so that the alternating

sum appears at the bottom when we sum over the factors corresponding to each height.

Finally, the computation is completed by multiplying by the normalization (−1)n−qn+−2n−

determined from the orientation of L.

4.1.2 Khovanov homology for links

The diagram (4.1.9) can be thought of as the jumping off point for describing Khovanov’s

categorification of the Jones polynomial. Rather than assigning the factor (−1)rqr(q + q−1)k

to the resolution Sα of height r and consisting of k circles, we instead associate a graded

vector space V ⊗k whose grading has been shifted appropriately according to the height r.

More specifically, V is chosen to be a graded vector space with two basis elements v+ and

v− of degrees ±1, respectively. This ensures that the graded dimension qdimV of V is equal to

(q+q−1). To the resolution Sα, we associate the vector space V ⊗k{r} where ·{r} is the degree

shift operator on graded vector spaces, defined on the graded vector space W =
⊕

mWm such

that W{r}m := Wm−r. Here we are building into the theory the property that the graded

dimension of the vector space associated to Sα corresponds to the factors associated to Sα by

the Jones polynomial discussed in the previous section. In particular, the graded dimension

of the vector space qdimV ⊗k{r} = qr(q + q−1)k. The appropriate power of (−1) then arises

by taking the alternating sum of the graded dimensions of the vector spaces associated to

resolutions of a given height.

It is natural to think of the assignment of the vector space V ⊗k{r} to the resolution Sα as

part of a 2-dimensional TQFT. Indeed, each resolution Sα is a closed 1-manifold consisting

of the disjoint union of several circles. For each cycle in the resolution Sα we associate the

vector space V and to the disjoint union we have associated the tensor product of such vector

spaces. It turns out that 2-dimensional topological quantum field theories play an important

role in defining the differential of a complex constructed from the cube of resolutions. This

construction is again best illustrated using one of Bar-Natan’s diagrams [14].
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1

3

2 V {1}

100

◦
d1⋆0

//

◦

EEEE
EEEE

d10⋆
""E

EEE
EEE

E⊕

V ⊗2{2}

110

d11⋆

""F
FFFFFFFFFFFFFFFFF

⊕

V ⊗2

000

d⋆00

==zzzzzzzzzzzzzzzzzz

d0⋆0
//

d00⋆

""F
FFFFF

FFFFF
FFFFF

��

V {1}

010

d⋆10

<<yyyyyyyyyyyyyyyyyy

◦

d01⋆
##G

GGGGGGGGGGGGGGG

⊕

V ⊗2{2}

101

◦
d1⋆1

//

⊕

V ⊗3{3}

111

��

V {1}

001

wwwwwwww

d⋆01

;;wwwwwwww

d0⋆1
//

��

V ⊗2{2}

011

d⋆11

;;vvvvvvvvvvvvvvvvv

��[[
&

]]0 d0 //
[[
&

]]1 d1 //
[[
&

]]2 d2 //
[[
&

]]3

P

|ξ|=0

(−1)ξdξ

��

P

|ξ|=1

(−1)ξdξ

��

P

|ξ|=2

(−1)ξdξ

��

=
[[
&

]] ·[−n−]{n+−2n−}
−−−−−−−−−−−−−−→
(with (n+, n−) = (3, 0))

C(&). (4.1.10)

Let ZKh : 2Cobext → Vectk be a 2-dimensional topological quantum field theory such

that the image of the circle under ZKh is the vector space V . For the purposes of obtaining

the unnormalized Jones polynomial as the graded Euler characteristic of a homology theory it

will be important that the image of the functor ZKh is actually a graded vector space. Define

the chain complex [[L]] by setting the chain space [[L]]r for 0 ≤ r ≤ n, to be the direct sum of the

vector spaces associated to the resolutions at height r, namely [[L]]r =
⊕

α:r=|α|ZKh(Sα){r}.

Each edge dξ of the n dimensional hypercube {0, 1}n, illustrated above for the trefoil knot,

corresponds to changing between a 0-resolution and a 1-resolution of a link diagram L. In

each case, we can associate the edge dξ with a 2-dimensional cobordism containing exactly one

critical point going between the resolutions. The differentials dr for the complex [[L]] are defined

by applying ZKh to the elementary cobordism dξ on each edge of the hypercube, summing

the maps at each height, and applying minus signs using a convention to be discussed prior

to Definition 4.2.3.



4.1. BACKGROUND 121

The Khovanov homology Kh(L) is then defined to be the homology of the complex

C(L) = [[L]] [−n−]{n+ − 2n−}, (4.1.11)

where ·[s] is the operator that shifts complexes s units to the right: [[L]] [s]r := [[L]]r−s. The

resulting homology groups are bigraded and it was shown in [12] that the graded dimensions of

each homology group are an invariant of the link diagram L. In particular, the graded Euler

characteristic χq of the complex C(L) produces the unnormalized Jones polynomial. Bar-

Natan has shown [13, 14] that the Khovanov homology is a strictly stronger knot invariant

meaning that there are knots and links that have the same Jones polynomial, but which can

be distinguished by their Khovanov homology.

4.1.3 Bar-Natan’s ‘picture world’

:

10

0* *1

*0 1*

1+ 2+

0 1 2

00

01

11

(n+, n−) = (2, 0)

The natural extension of Khovanov’s

work is to study the composition prop-

erties of the homology theory by defin-

ing a similar version for tangles rather

than links. Bar-Natan’s insight into con-

structing tangle homologies was to avoid

passing into algebraic categories as long

as possible and study the composition

properties of Khovanov homology using

formal complexes of diagrams — the ‘picture world’. In the picture world we associate a hy-

percube of resolutions to a tangle diagram T and formal sums of surfaces to the edges of the

cube of resolutions. The degree shift of the resulting complex is kept track of using the dashed

arrows pointing to the degree that corresponds to a given height in the cube. As above, the

degree of the complex is shifted by [−n−] where n− is the number of negative crossings of

the tangle diagram. An example taken from [23] is displayed on the right. The key feature is

that the components in the resolutions of a tangle consist, not only of circles, but also arcs:

the corresponding cobordisms between the resolutions now have corners!

Within this picture world, Bar-Natan demonstrated the nice composition properties present

in the general construction of Khovanov homology. He proved the invariance under Reide-

meister moves within the formal picture world as well. At the end of the day, one restricts
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to the subset of tangle diagrams that are links and the picture world is transformed into a

computable algebraic invariant by applying a suitably chosen closed topological quantum field

theory to the surfaces in the formal direct sums. This turns formal direct sums of surfaces

into honest direct sums of the linear maps associated to the surfaces by the TQFT.

The only thing missing from Bar-Natan’s construction is an algebraic characterization

of the TQFTs required to represent all of his surfaces algebraically. By restricting to links,

the issue of algebraically representing cobordisms with corners has been avoided. With the

ground work laid for topological quantum field theories with corners (Chapter 2), we are now

in a position to translate all of the picture world of Bar-Natan into the language of algebra.

In the following sections we describe the required theory needed to turn Bar-Natan’s

picture world into open-closed cobordisms. Once this is done, the formal direct sums of open-

closed cobordisms can be represented algebraically using a suitable choice of open-closed

TQFT, or equivalently a suitable choice of knowledgeable Frobenius algebra.

4.2 Tangle homology

The aim of this chapter is to demonstrate an application of open-closed cobordisms by con-

structing tangle homology theories. To make this application accessible to a broader audience,

and to ease the exposition, we will neglect the additional structure of gradings and filtrations

on our tangle homology theories. The reader should note that because we are considering the

simplified case in which gradings and filtrations are ignored, the tangle homologies defined

in this thesis will not have a direct relationship with the Jones polynomial. The reader who

is interested in full fledged tangle homology theories arising from open-closed TQFTs should

consult the paper [3] where a detailed discussion of gradings and filtrations is supplied and

many more examples are given.

Although the tangle homologies described in the chapter lack filtrations and gradings, they

do exhibit a novel feature not present in the tangle homology considered by Khovanov [73].

Namely, the tangle homology presented below preserves the monoidal structure of the category

of tangles. In particular, the complex corresponding to the disjoint union of two tangles is

the tensor product of the complexes associated to the constituents. This property is a crucial

feature that must be present if one is interested in representing the full braided monoidal

2-category of 2-tangles via a braided monoidal 2-functor. For more on braided monoidal

2-categories and their relationship to 2-tangles, the reader is referred to the papers [74–78].
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We now proceed to adapt Bar-Natan’s tangle homology construction to the context of

open-closed cobordisms. This section draws heavily on the material presented in [12,13,23,73].

4.2.1 Commutative and skew-commutative cubes

Here we review the definitions of commutative and skew-commutative cubes in order to set

up our notation. For more details we refer the reader to Sections 3.2-4.4 of [12], or the review

in Section 3.3 of [73].

A commutative cube is a hypercube where every square face forms a commutative diagram.

This idea is formalized by letting I be a finite set of cardinality |I| and denoting by r(I) the

set of all pairs (L, a) where L is a subset of I and a ∈ I\L. We write the finite set {a, b, . . . , d}

as ab . . . d for simplicity and the disjoint union L1⊔L2 of two sets by L1L2 so that La denotes

the set L ⊔ {a}.

Definition 4.2.1. A commutative I-cube X over a category C assigns an object X(L) of C

to each subset L of I and a morphism ξXa (L) : X(L)→ X(La) to each (L, a) ∈ r(I) such that

the diagram

X(L)
ξXa (L)

//

ξXb (L)

��

X(La)

ξXb (La)

��

X(Lb)
ξXa (Lb)

// X(Lab)

(4.2.1)

commutes for any triple (L, a, b) where L ⊂ I, and a, b ∈ I \ L, a 6= b. The morphisms

ξXa (L) are called the structure maps of X and we will often refer to them as edges of the cube

X. A skew-commutative I-cube over an additive category C is defined in the same way as

a commutative I-cube, except we require that (4.2.1) anti-commutes for every triple (L, a, b)

where L ⊂ I, and a, b ∈ I \ L, a 6= b.

If C is a monoidal category then one can define the internal and external tensor product

of commutative I-cubes in the obvious way. The internal tensor product of two I-cubes X

and Y is an I-cube, denoted X ⊗ Y , with (X ⊗ Y )(L) = X(L) ⊗ Y (L) and structural maps

defined in the obvious way using the tensor product of morphisms in C. The external tensor

product of an I-cube X with an I ′-cube Y is an II ′-cube (X ⊠ Y )(LL′) = X(L) ⊗ Y (L′)

where L ⊂ I and L′ ⊂ I ′ and the obvious structure maps.

Using the internal tensor product of I-cubes one can turn a commutative I-cube into a

skew-commutative I-cube using the skew-commutative I-cube EI over the category of abelian
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groups defined as follows: For a finite set L let o(L) denote the set of total orderings of L. For

x, y ∈ o(L) let p(x, y) = 0 if y can be obtained from x by an even number of transpositions of

two elements and p(x, y) = 1 otherwise. Let E(L) be the free abelian group generated by the

set of x ∈ o(L) modulo the relations x = (−1)p(x,y)y for all pairs x, y ∈ o(L). Hence, E(L) is

isomorphic to Z and for a ∈ I \ L the map o(L) → o(La) that takes x ∈ o(L) to ax ∈ o(La)

induces an isomorphism E(L) ∼= E(La). This definition ensures that setting EI(L) = E(L)

for L ⊂ I together with the isomorphisms above makes EI into a skew-commutative I-cube.

Given a commutative I-cube X over an additive category C, taking the internal tensor

product X ⊗EI forms a skew-commutative I-cube over C. Essentially, tensoring a commuta-

tive I-cube with EI has the effect of consistently ‘sprinkling’ minus signs onto certain edges

of the cube so that each square face anti-commutes. The cubes in Section 4.1 are examples

of skew-commutative I-cubes. Note that omitting the minus signs placed on each edge would

form commutative cubes.

The importance of skew commutative cubes is given by the following:

Definition 4.2.2. Let X be a skew-commutative I-cube over an additive category C. Define

a complex C(X) =
(
Ci(X), di

)
, i ∈ Z of objects of C by

Ci(X) =
⊕

L⊂I,|L|=i
X(L) (4.2.2)

with differentials di : Ci(X)→ Ci+1(X) given by the sum of the structure maps of X. Specif-

ically, for x ∈ X(L), |L| = i, then

di(x) =
∑

a∈I\L
ξXa (L)x. (4.2.3)

Skew-commutativity of X ensures that d2 = 0.

4.2.2 Constructing the complex [[T ]]

Let 2Cobext be the category obtained from 2Cobext by formally enriching it over abelian

groups. Hence, 2Cobext is the pre-additive category whose objects are the objects of 2Cobext

and whose Hom sets 2Cobext(~n, ~n′) are formal Z-linear combinations of the morphisms

2Cobext(~n, ~n′). The additive closure of 2Cobext, denoted by Mat(2Cobext), is the addi-

tive category whose objects are formal direct sums (possibly empty) ⊕ni=1~ni of objects ~ni of

2Cobext, and whose morphisms F :
⊕n

i=1 ~ni →
⊕m

j=1 ~n
′
j are n × m matrices of morphisms

Fij : ~ni → ~n′j of 2Cobext. Morphisms are added using matrix addition and composition is
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defined analogous to matrix multiplication: if F :
⊕n

i=1 ~ni →
⊕m

j=1 ~n
′
j and G :

⊕m
j=1 ~n

′
j →

⊕ℓ
k=1 ~n

′′
k, then GF has components given by

(
(Gjk) ◦ (Fij)

)
ik

:=
∑

j

Gjk ◦ Fij . (4.2.4)

The aim of this section is to define for every tangle diagram T a commutative cube over

the additive category Mat(2Cobext). Tensoring this cube with the skew commutative cube

EI allows one to associate a chain complex [[T ]] to the tangle diagram T using Definition 4.2.2.

In the context in which our commutative cubes will occur, we can identify I with the

set of n numbered crossings corresponding to a link or tangle diagram T . Each subset L

then corresponds to a subset of the n crossings of T . The object X(L) of Mat(2Cobext)

corresponding to the subsets L can be identified with the resolutions Sα of T by assigning

to L ⊂ I the resolution of T where each crossing in the set L has been resolved by the

1-smoothing and those crossings in I \ L have been resolved by the 0-smoothing. Hence, to

each vertex α of the hypercube {0, 1}n we associate a complete smoothing Sα of the tangle

diagram T . In the next subsection we will explain how to orient and order the resolutions Sα

so that they can be identified as objects of 2Cobext.

The structure maps ξXa (L) : X(L) → X(La) then correspond to maps between the res-

olutions of T in which the resolution corresponding to X(La) differs from X(L) by having

exactly one more 1-smoothing than X(L) and being identical everywhere else. Following Bar-

Natan we will denote the structure maps as dξ for simplicity, where it is understood that ξ

is a sequence in {0, 1, ⋆}n with just a single ⋆. The source of the structure map is found by

setting ⋆ to 0 and the target is found by setting ⋆ to 1.

This convention also allows for a convenient rule for inserting the appropriate minus signs

on the edges of a commutative cube, that is, the effect of tensoring a commutative I-cube

with EI . The edge dξ gets multiplied by (−1)ξ := (−1)
P

i<j ξi , where j is the location of ⋆ in

ξ. This is just (−1) to the power of the number of 1’s in the sequence ξ prior to the ⋆. As was

explained in the background section of this chapter, if we define the height of the sequence

α = (α1, · · · , αn) to be
∑

i αi and the height |ξ| of the edge ξ to be the height of its source,

then the complex defined in Definition 4.2.2 can be presented in simplified form as follows:

Definition 4.2.3. Let n be the finite set of cardinality n and let X be a commutative n-

cube over Mat(2Cobext). Define the complex C(X) =
(
Ci(X), di

)
, i ∈ Z of objects in
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Mat(2Cobext) by

Ci(X) :=
⊕

α:i=|α|
Sα, (4.2.5)

with differential

di :=
∑

|ξ|=i
(−1)ξdξ. (4.2.6)

Ordering the resolutions of tangle diagram

Conventions: For T an oriented tangle diagram with n crossing we denote by n+ the

number of positive crossings ! and n− the number of negative ones ". Every crossing (0)

has two smoothings, the 0-smoothing (1) and the 1-smoothing (H).

Given a tangle diagram T , begin by arbitrarily numbering each crossing.

1

2

(4.2.7)

This provides an ordering of the resolutions of T and we will show in Proposition 4.2.5 that

the complex [[T ]] does not depend on this choice of numbering. For notational reasons it is

also convenient to label the edges of T . We reserve a separate set of integers for this (not

underlined). For example,

5 1

2 4

3 6

or 5 2

1 4

3 6

(4.2.8)

both chosen arbitrarily without any prescribed labeling system (compare with the notational

convention in Section 3.3 of [13]).

For a tangle diagram T with n crossings and for α ∈ {0, 1}n, the enumeration of the edges

and crossings of T as described above is used to provide an ordering of the components of

the smoothings Sα of T . A total ordering of the components of Sα is needed in order to

interpret Sα as an object of 2Cobext. Recall that the objects ~n of 2Cobext are just sequences

(n1, n2, · · · , nk), k ∈ N0, with nj ∈ {0, 1} and each 1 in the sequence represents the diffeomor-

phism type of an interval (arc) and each 0 in the sequence represents the diffeomorphism type

of the circle. Once the resolutions Sα have been ordered we will then identify each resolution

as an object ~n ∈ 2Cobext where each arc in the resolution is assigned a 1, each circle in the

resolution is assigned a 0, and the sequence is ordered using an ordering convention induced

from the enumeration of the tangle diagram T .

The ordering convention is given by labeling each circle and arc in Sα by the minimal label

of an edge that appears in it. Using this ordering we can then apply a 2-dimensional open-
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closed TQFT Z : 2Cobext → Vectk and interpret the resolution Sα as an ordered tensor

product of copies of the vector space A associated to the interval and the vector space C

associated to the circle.

For example, using the first choice of ordering given in (4.2.8) with the crossings resolved

in the order specified by (4.2.7), we have3

00-smoothing 01-smoothing 10-smoothing 11-smoothing

b

b

b

b

b b

b

b

5 1

2 4

3 6
b b

b b

b

b

b

b

5 1

2 4

3 6
b

b

b

b

b

b

b b

5 1

2 4

3 6

b

b

b

b

b b

b

b

1 2

3 4

5 6
(4.2.9)

which leads to the following ordering of the components and tensor product of vector spaces

A1 ⊗A2 C1 ⊗A2 ⊗A3 A1 ⊗A2 A1 ⊗A3

1

2

1

2

3

2 1
1

3

(4.2.10)

If we had used the numbering given in the second example of (4.2.8) then we would have

obtained the ordering

A1 ⊗A2 A1 ⊗ C2 ⊗A3 A1 ⊗A2 A1 ⊗A3

2

1

2

1

3

1 2
1

3

(4.2.11)

Note that in the above the subscripts are simply for bookkeeping, in particular, A1⊗C2⊗A3

is the same as A⊗C ⊗A. In Proposition 4.2.5 we will also show that this choice of labeling,

again, does not effect the isomorphism class of the complex [[T ]].

Orienting the resolutions of a tangle diagram

In the previous section we used an open-closed TQFT to assign an ordered tensor product

of vector spaces to the resolutions of a tangle diagram. To construct the structure maps of

a commutative I-cube whose vertices are the resolutions of the tangle diagram T , we will

need to interpret each edge as a cobordism between the various resolutions. To interpret

3For tangle homologies derived from state sum TQFTs these resolutions can quite literally be thought of

as being glued together from these numbered arcs.
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these cobordisms algebraically as maps between the corresponding vector spaces we impose a

convention for orienting the resolutions of a tangle diagram T so that the cobordisms between

resolutions can be interpreted as morphisms in the category 2Cobext. Just as the Kauffman

bracket does not depend on the orientation of the tangle T , so too this convention will not

depend on the orientation of T .

To understand the importance of orienting the resolutions of a tangle diagram consider

the cobordism M going between the two resolutions of the elementary right handed crossing

(/). The cobordism M has boundary consisting of the two smoothings, the 0-smoothing (H)

and the 1-smoothing (1), and is traditionally drawn as a saddle.

(4.2.12)

For this saddle to correspond to an open-closed cobordism we must equip it with an

orientation,

but the open-closed cobordism that this corresponds to still depends on the embedding used

to interpret its boundary as objects of 2Cobext. By numbering the arcs in the tangle diagram

T we have induced an ordering on the components of the resolution. For example, suppose

the source is ordered as follows:
1 2

then the corresponding open-closed cobordism depends on the ordering of the target. Specif-

ically, we have
1s 2s

1t

2t

1s 2s

2t

1t

(4.2.13)
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where the choice of open-closed cobordism is determined by whether flowing along the ori-

entation of the source arc labeled 1s flows into the target arc labeled 1t or 2t. Hence, the

ordering of the components and the orientation scheme used will affect the choice of open-

closed cobordism made later on.

Our convention for orienting the components of the resolutions of the tangle diagram T

is most easily explained by colouring the tangle diagram T . The colouring is determined by

shading the region to the left of the first arc in the tangle T and shading the rest of the regions

in a checkerboard fashion. When there is no first strand we colour the outermost region and

continue in a checkerboard fashion.

(4.2.14)

This shading induces a shading on the resolutions of the tangle diagram T , and we orient the

components of each resolution counter-clockwise around shaded regions. For example, the

resolutions of the tangle in (4.2.7) are oriented as follows:

(4.2.15)

Often we will omit the shading and draw only the induced orientations.

Constructing the commutative cube associated to a tangle diagram

Given a tangle diagram T with n crossings equipped with an enumeration of its arcs and

crossings, define the vertices of the commutative I-cube X̂T by associating to each α ∈ {0, 1}n

the smoothing Sα of T equipped with the ordering and orientation of its components. Each

edge dξ of the commutative cube X̂T can then be thought of as a map between objects

in 2Cobext. Each map dξ : Sα → Sα′ maps a resolution Sα to a resolution Sα′ where α′

has exactly one more 1-smoothing than α. Just as in the Bar-Natan tangle homology, we

construct such a map using the saddle surface (4.2.12) for each transition from a 0-smoothing

to a 1-smoothing; the saddle is translated into an open-closed cobordism using the orientation

and ordering of the components in the resolution as in (4.2.13).

Corresponding to the tangle

(4.2.16)
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with enumeration of the arcs such that the resolutions are ordered

1

2
1 2

(4.2.17)

we associate the map

:
1

2
−→ 1 2 . (4.2.18)

For enumerations of the tangle (4.2.16) inducing the ordering

1

2
2 1

(4.2.19)

we associate the map

:
1

2
−→ 2 1 . (4.2.20)

For the tangle homologies constructed from state sum open-closed TQFTs (see Section 4.3)

only the saddles featured above will be needed. The composition properties of the state sum

tangle homologies ensure that when a saddle is part of diagram like the following:

(4.2.21)

then the associated open-closed cobordism is obtained from one of two saddles above by gluing

identities appropriately. For non state sum TQFTs we can construct tangle homology theories

that do not admit a composition, see Example (4.5.5), by assigning the following maps dξ:

, : → (4.2.22)

, : → (4.2.23)

, : → (4.2.24)

: → (4.2.25)

: → (4.2.26)
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where appropriate. The first three depend on the ordering of the components.

We illustrate the construction of the commutative I-cube X̂T for the tangle diagram given

by (4.2.7) with the first enumeration given in (4.2.8)

1

2

1

2

3

1

3

2 1

<<zzzzzzz

""D
DD

DD
DD

""D
DD

DD
DD

<<zzzzzzz

(4.2.27)

where all open-closed cobordisms are still read from top to bottom, i.e., their source is at

the top and their target at the bottom. It is immediate from the invariants of open-closed

cobordisms given in [29] that the composites are equal since they have the same genus, win-

dow number, and boundary permutation. In fact, Corollary 2.6.7 provides a sequence of

diffeomorphisms which relates the two open-closed cobordisms.

The complex [[T ]] and the independence of the enumeration

The complex [[T ]] associated to a tangle diagram is constructed from the skew commutative

I-cubeXT := X̂T⊗EI where EI is the skew commutative I-cube defined in Section 4.2.1. We

denote the vertex α ∈ {0, 1}n as Xα
T which we identify with the resolution Sα of T equipped

with its ordering and orientation of its components induced by the enumeration and colouring

of T .

We now define the formal complex of open-closed cobordisms that will be shown in The-

orem 4.4.4 to be a tangle invariant in an appropriate quotient of Mat(2Cobext).

Definition 4.2.4. Let T be an oriented tangle diagram equipped with a numbering of its

crossings and arcs. Define the complex [̃[T ]] in the category Mat(2Cobext) by setting [̃[T ]]
r

:=
⊕

α:r=|α|X
α
T . The differential is given, as in Definition 4.2.3, by dr :=

∑
|ξ|=r(−1)ξdξ where

the dξ are the edges of XT determined up to sign by the equations (4.2.22)–(4.2.26). That

is, [̃[T ]] is just the complex defined in Definition 4.2.3 associated to the commutative cube X̂T .
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The formal Khovanov bracket4 is defined from [̃[T ]] as

[[T ]] := [̃[T ]][−n−] (4.2.28)

where n− is the number of negative crossings in the oriented tangle diagram T and where ·[s]

is the operator that shifts complexes s units to the right: [̃[T ]][s]r := [̃[T ]]
r−s

.

After identifying the resolutions Sα with objects in 2Cobext, the complex associate to the

cube in example (4.2.27) is then




 5 1

2 4

3 6




 := (1, 1) (0, 1, 1) ⊕ (1, 1) (1, 1)

0

B

B

B

B

B

�

1

C

C

C

C

C

A

//

0

B

B

B

B

B

�−

1

C

C

C

C

C

A

T

// (4.2.29)

where we have underlined the chain space in degree 0 and T denotes the matrix transpose.

Had we used the second arc numbering in (4.2.8) then we would have got the complex




 5 2

1 4

3 6




 := (1, 1) (1, 0, 1) ⊕ (1, 1) (1, 1)

0

B

B

B

B

B

�

1

C

C

C

C

C

A

//

0

B

B

B

B

B

�−

1

C

C

C

C

C

A

T

// (4.2.30)

but as the following proposition shows, these two complexes are isomorphic.

Proposition 4.2.5. The isomorphism class of the complex [[T ]] associated to a tangle diagram

T does not depend on the numbering of its crossings or on the numbering of its arcs.

Proof. Just as in other presentations of link/tangle homology, permuting the numbering of

the crossings merely permutes the resolutions at a given height which does not affect the

isomorphism class of the resulting complex.

To see that the labeling of the arcs in the tangle diagram T does not effect the chain isomor-

phism type of the complex [[T ]], suppose that a given labeling leads to an ordering of the com-

ponents of the resolution Sα and that σα is the permutation which relates this ordering to an

ordering induced from a different labeling. Then the collection of maps f r :=
⊕

α:r=|α|−n−
σα

(note the degree shift) define a chain isomorphism between the two complexes. That the

4Here we are using the double bracket [[·]] notation in a different manor than in Section 4.1. This is why we

are referring to it as the formal Khovanov bracket. This is the same convention employed by Bar-Natan in the

paper [23].
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collection f r do in fact form a chain map follows from the relations of Proposition 2.5.10 and

the identities

= = . (4.2.31)

Below we exhibit this chain isomorphism between the complexes (4.2.29) and (4.2.30):

(1, 1) (0, 1, 1) ⊕ (1, 1) (1, 1)

(1, 1) (1, 0, 1) ⊕ (1, 1) (1, 1)

0

B

B

B

B

B

�

1

C

C

C

C

C

A

//

0

B

B

B

B

B

�−

1

C

C

C

C

C

A

T

//

0

B

B

B

B

B

�

1

C

C

C

C

C

A

//
0

B

B

B

B

B

�−

1

C

C

C

C

C

A

T
//

0

B

B

B

B

B

�

0

0

1

C

C

C

C

C

A

���� ��

(4.2.32)

At this point we have merely translated Bar-Natan’s ‘picture world’ construction of tangle

homology into the language of open-closed cobordisms. The advantage of this translation only

becomes apparent once the formal complex [[T ]] of open-closed cobordisms is evaluated using

an open-closed TQFT Z : 2Cobext → Vectk. Bar-Natan’s proof can be used to show that the

complex is Reidemeister move invariant, and this already yields a generalization of Khovanov

homology from links to tangles. Whereas Bar-Natan’s surfaces can be glued so as to represent

the composition of tangles, the resulting chain complexes of vector spaces are not necessarily

equipped with an operation representing the composition of tangles. In the next section we

will consider a class of open-closed TQFTs that do admit such a gluing operation for the

corresponding chain complexes of vector spaces.

4.3 State sum tangle homology

The algebraic operation that represents the composition of tangles, is inspired by the state

sum construction of open-closed TQFTs presented in Chapter 3. The mechanism by which

one can subdivide edges in the black boundary of an open-closed cobordism, provides us
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with the blue print for an algebraic operation in order to compose tangles. For example,

triangulate the cobordism µC corresponding to the pair of pants. Then the three circles in its

black boundary are composed from several edges of the triangulation. This composition of

the boundary edges to the circle is our guiding example for defining the composition of arcs.

To make this mechanism work, we impose the additional conditions (see Theorem 3.2.18)

that hold for those open-closed TQFTs that we can construct from a state sum.

Definition 4.3.1. Let Z : 2Cobext → Vectk be an open-closed TQFT and let (A,C, ı, ı∗)

be the associated knowledgeable Frobenius algebra, i.e. A := Z((1)), C := Z((0)). The

open-closed TQFT Z is called a state sum open-closed TQFT if the following conditions are

satisfied:

1. The algebra A is strongly separable.

2. The algebra C = Z(A) is the centre of A.

3. The linear map ı : Z(A)→ A is the canonical inclusion.

If the algebra A is strongly separable, then the window element a = µA ◦∆A ◦ ηA : k → A

associated with the surface

a = Z( ) (4.3.1)

has a convolution inverse a−1 : k → A, i.e. µA ◦ (a ⊗ a−1) = ηA = µA ◦ (a−1 ⊗ a). Both

a and a−1 are central, i.e. for any ϕ : A → A, we have µA ◦ (a ⊗ ϕ) = µA ◦ (ϕ ⊗ a). In a

strongly separable algebra, multiplication with the inverse of the window element can be used

to remove holes (windows). By this, we mean that

µA ◦
(
a−1 ⊗ Z( )

)
= idA = Z( ), (4.3.2)

i.e. multiplication by a−1 on the algebraic side has the same effect as removing a window on

the topological side.

If one wishes to compose tangles, say a crossing (/) with an arc (O) in order to get (P),

one needs to compose the extended cobordisms dξ of (4.2.22)–(4.2.26) in a suitable fashion.

Let Z : 2Cobext → Vectk be an open-closed TQFT. For a single crossing (/), we have the

two smoothings S0 = H and S1 = 1. With such a crossing (/), we associate the 2-term chain
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complex of vector spaces Z(d⋆) : Z(S0)→ Z(S1) whose boundary operation is obtained from

the saddle d⋆ depicted in (4.2.12). This saddle is now viewed as an open-closed cobordism,

and so it gives a map Z(d⋆) : A⊗A→ A⊗A. With the arc O, we associate the vector space

A, viewed as a 1-term chain complex.

The tensor product of the two chain complexes is the following 2-term chain complex

Z(S0)⊗A
Z(d⋆)⊗idA // Z(S1)⊗A (4.3.3)

associated with the open-closed cobordism

. (4.3.4)

This diagram shows a disjoint union of two open-closed cobordisms for which the open-closed

TQFT yields the tensor product of vector spaces and linear maps of (4.3.3).

We would like to glue the two open-cobordisms along their coloured boundaries like this,

(4.3.5)

in order to obtain a cobordism from the 0-smoothing (Q) of (P) to the 1-smoothing (R) of

(P). In general, however, an open-closed TQFT does not have any operation for such a gluing

along coloured boundaries.

The state sum construction of open-closed TQFTs from Chapter 3 suggests the following

solution to this problem. We assume that the open-closed TQFT is a state sum open-closed

TQFT (Definition 4.3.1). We imagine that the composite surface (4.3.5) is triangulated in

such a way that the components of the coloured boundary in (4.3.5) along which we want to

glue, coincide with edges of the triangulation. This implies that the circle in the source of the

open-closed cobordism (4.3.5) is triangulated with two edges and the arc in its target with

three edges. Such a triangulation is displayed here:

. (4.3.6)

We can now employ the state sum construction presented in Chapter 3 in order to compute the



4.3. STATE SUM TANGLE HOMOLOGY 136

linear map A⊗C → A that the open-closed TQFT associates with the open-closed cobordism

. (4.3.7)

In the homology theory for generic tangles described in the previous section, this map A⊗C →

A forms the boundary operation of the 2-term chain complex that relates the two smoothings

(Q) and (R) of the composite tangle diagram (P).

We now present an equivalent way of computing the linear map A⊗C → A which makes

transparent how this linear map can be computed from the constituents of (4.3.4). In an

open-closed TQFT, we cannot compose the two constituents of (4.3.4) by gluing them along

their coloured boundary. The idea is to rather pre- and postcompose (4.3.4) with suitable

open-closed cobordisms by gluing along their black boundary as follows:

a−2 · Z

( )
= a−2 · Z

( )
= Z

( )
. (4.3.8)

The composition is an open-closed cobordism with two windows, but multiplication by the

appropriate power of the inverse window element a−1 removes these windows and results in

the desired composite open-closed cobordism.

The relationship between the two presentations is best understood by recalling the states

sum construction. The state sum construction computes the vector spaces associated to trian-

gulated 1-manifolds by computing the images of a triangulated cylinder over the triangulated

1-manifold. Proposition 3.4.3 implies that this corresponds to the algebraic operation of com-

puting the image of A⊗A under the image of one of the idempotents Pkk, or Qkk defined in

Proposition 3.2.19. It may seem less than straightforward to define a rather natural opera-

tion like gluing manifolds using such a strange procedure involving idempotents, however, the

images of the various idempotents can be characterized by the following universal properties

that may be more familiar to the reader.

Proposition 4.3.2. Let (A,µA, ηA,∆A, εA) be a strongly separable symmetric Frobenius

algebra object in some abelian symmetric monoidal category C.
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1. The co-image coim p : A→ p(A) is the co-equalizer

A⊗A
µA //

µA◦τA,A
// A

coim p
// p(A). (4.3.9)

2. The co-image coim P22 : A⊗A→ P22(A⊗A) is the co-equalizer

(A⊗A)⊗A
µA⊗idA //

(idA⊗µA)◦αA,A,A
// A⊗A

coim P22 // P22(A⊗A). (4.3.10)

This means that coim P22
∼= A⊗A A where A is viewed as an A-left-A-right-bimodule.

The assumption of strong separability is essential here.

Proof. 1. Since coim p = coim p ◦ p, the morphism coim p satisfies coim p ◦ µA = coim p ◦

µA ◦ τA,A. Given any morphism f : A→ B such that f ◦ µA = f ◦ µA ◦ τA,A, there is a

morphism ϕ : p(A)→ B given by ϕ := f ◦ im p such that

ϕ◦coim p = f ◦p = f ◦µA◦τA,A◦∆A◦(a
−1 ·idA) = f ◦µA◦∆A◦(a

−1 ·idA) = f. (4.3.11)

If ψ : p(A) → B also satisfies f = ψ ◦ coim p, then ϕ = f ◦ im p = ψ ◦ idp(A) = ψ, and

so ϕ is unique with that property.

2. Since coim P22 = coim P22 ◦P22, and because of associativity, we have coim P22 ◦ (µA⊗

idA) = coim P22 ◦ (idA ⊗ µA) ◦ αA,A,A. Given any morphism f : A⊗ A → B such that

f ◦(µA⊗idA) = f ◦(idA⊗µA)◦αA,A,A, there is a morphism ϕ := f ◦im P22 : P22(A⊗A)→

B such that ϕ ◦ coim P22 = f . It can be shown to be unique with that property.

This means that the gluing of arcs corresponding to tangle resolutions is simply given

by taking the tensor product A ⊗A A ∼= A over A. The benefit of this rather long winded

description lies in the fact that gluing the two endpoints of a single arc together naturally

leads to the vector space associated to the circle, a property that must be present if our tangle

homology theory is to reduce properly to known link homology theories on links.

How do we find the appropriate maps

ϕ := Z

( )
and ψ := Z

(
(4.3.12)

by which to pre- and post-compose? The linear map Z(d⋆) : A⊗A→ A⊗A associated with

the saddle is a morphism of (A⊗2, A⊗2)-bimodules, and so the 2-term chain complex associ-

ated with the crossing is a chain complex of (A⊗2, A⊗2)-bimodules. Similarly, the algebra A
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associated with the arc forms an (A,A)-bimodule, and so the 1-term chain complex associated

with the arc is a chain complex of (A,A)-bimodules. In general, for each open end of a tangle,

we have one action of A.

The linear map associated with the composite (4.3.7) is the tensor product of these chain

complexes over A, using the appropriate left- and right-actions of A that correspond to the

open ends of the tangle that are glued. The map ψ is the co-equalizer that defines the

tensor product over A, whereas the map ϕ is the unique map obtained from the universal

property of a similar co-equalizer because the boundary map of the chain complex factors

through that co-equalizer. (Compare with the definitions of the isomorphisms Ψk and Φk in

Corollary 3.2.20.)

Gluing the saddle diagram, corresponding to the change of a single crossing, to the appro-

priate identity cobordisms produces the assignments of (4.2.22)–(4.2.26) by construction. The

corresponding algebraic operation corresponds to taking the tensor product over A. Hence, for

state sum TQFTs the homology of an arbitrary tangle can be computed from its elementary

components by taking the tensor product of bimodules.

4.4 Invariance under Reidemeister moves

Denote the category of complexes in the additive category Mat(2Cobext) as Kom
(
Mat(2Cobext)

)
.

The objects of this category are chains of finite length · · · //Ci−1 di−1
//Ci

di //Ci+1 // · · ·

for which di ◦di−1 = 0 for all i. The morphisms of this category are chain maps. We will only

be interested in complexes up to chain homotopy equivalence. Recall that two chain maps

F,G : (Ci, di) → (Di, di) are homotopic if there exists a collection of maps hi : Ci → Di−1

such that F i − Gi = hi+1di + di−1hi for all i. The aim of this section is to show that the

complex [[T ]] is a tangle invariant in the category Kom
(
Mat(2Cobext)

)
quotiented out by

homotopy equivalence and the following three relations:

= 0, (4.4.1)

= 2, (4.4.2)

+ − − = 0. (4.4.3)

We denote the resulting quotient as Kob for simplicity.
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These relations provide sufficient conditions for Reidemeister move invariance. To con-

struct algebraic tangle invariants the knowledgeable Frobenius algebras must preserve these

relations. Examples of such knowledgeable Frobenius algebras are given in Section 4.5.1.

By restricting our attention to state sum TQFTs, we ensure that the corresponding tangle

homology can be computed locally. The gluing operations present in state sum tangle ho-

mologies ensure that no global information is required to compute the complex associated to

a tangle diagram T . We will now adapt Bar-Natan’s picture world proof of Reidemeister in-

variance into the language of open-closed cobordisms. We emphasize that the proof presented

below is due to Bar-Natan. Only our presentation in terms of open-closed cobordisms is new.

We provide this proof to further illustrate how Bar-Natan’s picture world can be translated

into open-closed cobordisms.

Because of the nice gluing properties of of the category of tangles we will only need to

check Reidemeister invariance for the elementary tangles

! ! ! ! (4.4.4)

in the skein theoretic sense, meaning that any of the above tangles can appear anywhere in a

possibly larger diagram. Note that because our convention for orienting the tangle resolutions

involves colouring the tangle, we must take account for both possible colourings of the above

diagrams to account for situations in which the region to the left of the first strand is not

coloured as in the following example:

(4.4.5)

4.4.1 Invariance under Reidemeister move one

We must show that the formal complex [[ ]] =
(
0 −→ (1) −→ 0

)
is homotopy equivalent to

the formal complex

[[
2
1 3

]]
= (1, 0) (1)// (4.4.6)

where we have underlined the degree zero term of each complex. Note that both of these

complex are unchanged by changing the colouring used to orient the resolutions. Hence, we

need only consider the one case.
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Define the chain map F : [[ ]]→ [[ ]] as follows:

F 0 := − , F 1 := 0. (4.4.7)

It can easily be checked using the topological invariants of open-closed cobordisms that dF 0 =

0. Again, a specified sequence of diffeomorphisms relating the two is provided Corollary 2.6.7.

Next define the chain map G : [[ ]]→ [[ ]] by

G0 := , G1 := 0. (4.4.8)

there is nothing to check to see that this is a chain map.

The chain maps F and G define a homotopy equivalence between the complexes [[ ]] and

[[ ]]. To see this, first note that GF = id by (4.4.1) since

G0F 0 = − = 2 − = = id0. (4.4.9)

Define the chain homotopy h : id→ FG whose only nontrivial component is given by

h1 := . (4.4.10)

The equation id0 − F 0G0 = h1d0 is depicted as

− + = . (4.4.11)

After applying appropriate diffeomorphisms and rearranging the terms, this equality follows

from the relation (4.4.3)

+ = + . (4.4.12)

The equation id1 − F 1G1 = d0h1 follows from (2.5.41) and (2.5.37).

The other version of the first Reidemeister move is proven similarly.
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4.4.2 Invariance under Reidemeister move two

We must show that the following complexes





 2 1





 := 0 (1, 1) 0

0 // 0 // (4.4.13)





 5 1

2 4

3 6





 := (1, 1) (0, 1, 1) ⊕ (1, 1) (1, 1)

0

B

B

B

B

B

�

1

C

C

C

C

C

A

//

0

B

B

B

B

B

�−

1

C

C

C

C

C

A

T

//

(4.4.14)

are chain homotopy equivalent. We begin by defining chain maps F :
[[ ]]

→
[[ ]]

and

G :
[[ ]]

→
[[ ]]

whose only nontrivial components are given by the following diagram:

0 (1, 1) 0

(1, 1) (0, 1, 1) ⊕ (1, 1) (1, 1)
0

B

B

B

B

B

�

1

C

C

C

C

C

A

//
0

B

B

B

B

B

�−

1

C

C

C

C

C

A

T
//

0 // 0 //

��

0

OO

��

0

OO

F 0=

0

B

B

B

B

�

1

C

C

C

C

A

��

G0=

0

B

B

B

B

�

−

1

C

C

C

C

A

T

OO

(4.4.15)

One can readily check that these maps define chain maps. The equation dF = 0 uses the fact

that the zipper ı is an algebra homomorphism (preserves the unit) and the left unit axiom for

the algebra A. The equation Gd = 0 follows from (4.2.31).

Note that GF = id by the relation (4.4.1) so the homotopy equivalence is established by

defining a chain homotopy h : id → FG. The nonzero components of this chain homotopy h

are given by

h0 :=




0




T

; h1 :=




0


 . (4.4.16)
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The equation id0 − F 0G0 = h1d0 + d−1h0 is depicted below




0

0



−



−

−




=




−

0 0




+




0

0



.

(4.4.17)

Only the first and third component of this matrix equation are non-trivial. The third com-

ponent from (4.2.31). The first component can be written

+ − − = 0. (4.4.18)

Noting that

= = , (4.4.19)

then (4.4.18) is just (4.4.3) applied to the cobordism

. (4.4.20)

The equalities id−1 − F−1G−1 = h0d−1 and id1 − F 1G1 = h0d−1 + d0h1 follow from the

identities

= and = ,

respectively.

For the opposite colouring of the complexes in (4.4.13) and (4.4.14) only the complex





 5 1

2 4

3 6





 (4.4.21)
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would change. In particular, one can verify that the complex becomes





 5 1

2 4

3 6





 := (1, 1) (0, 1, 1) ⊕ (1, 1) (1, 1)

0

B

B

B

B

B

�

1

C

C

C

C

C

A

//

0

B

B

B

B

B

�−

1

C

C

C

C

C

A

T

// (4.4.22)

where only the saddles have now been switched. Performing a similar saddle switch for the

chain maps F and G produces the required chain homotopy equivalence.

Hence, the complex [[T ]] is invariant under the second Reidemeister move up to chain ho-

motopy equivalence. In fact, the chain map G :
[[ ]]

→
[[ ]]

is actually a strong deformation

retract since hF = 0 by (4.4.1) and we have already shown that GF = I and I−FG = dh+hd.

Following the standard terminology we say that F is the inclusion in a strong deformation

retract.

4.4.3 Invariance under Reidemeister move three

To prove that the complex [[T ]] is invariant up to homotopy under the third Reidemeister move,

we require the following results from homological algebra.

Definition 4.4.1. Let Ψ: (Cr0 , d0) → (Cr1 , d1) be a morphism of chain complexes. The

cone Γ(Ψ) of Ψ is the complex with chain spaces Γr(Ψ) = Cr+1
0 ⊕ Cr1 and the differentials

dr =


 −d

r+1
0 0

Ψr+1 dr1


.

C0a

C1a C1a

C0b

Ψ
��

G0 //

F0

oo

F1 //

G1

oo

Lemma 4.4.2 (Lemma 4.5 [23]). The cone construction is invariant up

to homotopy under compositions with the inclusions in strong deforma-

tion retracts. That is, consider the diagram of morphisms and complexes

on the right. If in that diagram G0 is a strong deformation retract with inclusion F0, then the

cones Γ(Ψ) and Γ(ΨF0) are homotopy equivalent, and if G1 is a strong deformation retract

with inclusion F1, then the cones Γ(Ψ) and Γ(F1Ψ) are homotopy equivalent. Likewise, if F0,1

are strong deformation retracts and G0,1 the corresponding inclusions the above statements

remain true.

We comment here that the proof of the above lemma is constructive, so that one can

explicitly obtain the chain homotopies defining the above homotopy equivalence. In fact,
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Bar-Natan also gives an explicit proof of invariance under Reidemeister move three which we

encourage the reader to translate into the language of open-closed cobordisms. Having such

an explicit description of the chain homotopies will become important if one is interested in

constructing a braided monoidal 2-category from the formal Khovanov bracket [[T ]].

Define the two chain maps S1 and S2 between the 1-term complex (0→ (1, 1)→ 0) whose

only nontrivial components are given by the diagram below:

S1 :=

0 (1, 1) 0

0 (1, 1) 0
0

//
0

//

0 // 0 //

��

S2 :=

0 (1, 1) 0

0 (1, 1) 0
0

//
0

//

0 // 0 //

��

(4.4.23)

Lemma 4.4.3. With S1 and S2 as in (4.4.23) we have that

[[

3 4

1 2 ]]
= Γ(S1)

[[

3 4

1 2 ]]
= Γ(S2)

[[

3 4

1 2 ]]
= Γ(S1)[1]

[[

3 4

1 2 ]]
= Γ(S1)[1]

(4.4.24)

where ·[s] is the operator that shifts complexes s units to the right: C[s]r := Cr−s.

Here we have treated both possible colourings of the elementary tangles so that this

lemma remains true in a skein theoretic sense where each crossing represents just a small disk

neighbourhood inside a possibly larger tangle.

By the discussion above the following complex




 5 1

2 4

3 6

7

8

9

1

2

3




 , (4.4.25)

with the region to the right of the first strand shaded, is homotopy equivalent to the cone

over the chain map

Ψ:









 →









 (4.4.26)
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given by

Ψ :=

(1, 1, 1) (0, 1, 1, 1) ⊕ (1, 1, 1) (1, 1, 1)

(1, 1, 1) (1, 1, 1) ⊕ (1, 1, 1) (1, 1, 1)

0

B

B

B

B

B

�

1

C

C

C

C

C

A

//
0

B

B

B

B

B

�−

1

C

C

C

C

C

A

T
//

0

B

B

B

B

B

B

B

B

B

�

1

C

C

C

C

C

C

C

C

C

A

//

0

B

B

B

B

B

B

B

�−

1

C

C

C

C

C

C

C

A

T

//

�� ��

0

B

B

B

B

B

B

B

B

B

B

B

B

�

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

��

(4.4.27)

but by Lemma 4.4.2 the cone over the chain map Ψ is homotopy equivalent to the cone over

the composite of Ψ with any strong deformation retraction G. Taking G as in (4.4.15) tensored

on the right with the identity on (1) we have that
[[ ]]

is homotopy equivalent to the cone

of the map Ψ′ = GΨ below

Ψ′ :=

[[ ]]
=

[[
2 1 7

]]
= 0 (1, 1, 1) 0

(1, 1, 1) (1, 1, 1) ⊕ (1, 1, 1) (1, 1, 1)

0
//

0
//

0

B

B

B

B

B

B

B

B

B

�

1

C

C

C

C

C

C

C

C

C

A

//

0

B

B

B

B

B

B

B

�−

1

C

C

C

C

C

C

C

A

T

//

0

��

0

��

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

−

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

T

��

(4.4.28)

where we have left the enumeration on the bottom complex for clarity.
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Similarly, by Lemma 4.4.3 the cone over the chain map

Φ:









 →









 (4.4.29)

is homotopy equivalent to the complex




 8 5

4 7

6 1

2

3

9

1

2

3




 (4.4.30)

where Φ is given by

Φ :=

(1, 1, 1) (1, 1, 1) ⊕ (1, 1, 1, 0) (1, 1, 1)

(1, 1, 1) (1, 1, 1) ⊕ (1, 1, 1) (1, 1, 1)

0

B

B

B

B

B

B

B

B

B

�

1

C

C

C

C

C

C

C

C

C

A

//
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�−

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

T
//

0

B

B

B

B

B

B

B

B

B

�

1

C

C

C

C

C

C

C

C

C

A

//

0

B

B

B

B

B

B

B

�−

1

C

C

C

C

C

C

C

A

T

//

�� ��

0

B

B

B

B

B

B

B

�

0

0

1

C

C

C

C

C

C

C

A

��

(4.4.31)

but again by Lemma 4.4.2 the cone Γ(Φ) is equal to the cone Γ(GΦ) where G is a strong

deformation retraction. We take G as in (4.4.15), but with the arcs renumbered appropriately.

This leads to a map G whose only nonzero component G0 is given by

G0 :=




−



T

. (4.4.32)

In order to make the enumeration of the complex
[[ ]]

the same as in (4.4.28), we also

postcompose the composite GΦ with the chain isomorphism f of Proposition 4.2.5 whose
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only nonzero component is given as follows:

f0 := . (4.4.33)

Thus, the complex (4.4.30) is homotopy equivalent to the cone of the composite Φ′ = fGΦ

given by

Φ′ :=

[[
2 1 7

]]
= 0 (1, 1, 1) 0

(1, 1, 1) (1, 1, 1) ⊕ (1, 1, 1) (1, 1, 1)

0
//

0
//

0

B

B

B

B

B

B

B

B

B

�

1

C

C

C

C

C

C

C

C

C

A

//

0

B

B

B

B

B

B

B

�−

1

C

C

C

C

C

C

C

A

T

//

0

��

0

��

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

−

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

T

��

(4.4.34)

As an easy exercise in computing boundary permutations of open-closed cobordisms, one can

see that the chain maps (4.4.28) and (4.4.34) are equal in the category Kob. Hence their

cones Γ(Ψ′) = Γ(Φ′) are equal, making the complexes









 and









 (4.4.35)

homotopy equivalent by Lemma 4.4.2 in the category Kom
(
Mat(2Cobext)

)
, and therefore

equal in Kob.

We leave it to the reader to verify the other possible colouring of the Reidemeister three

move as well as the Reidemeister three move for the other crossing configurations5.

5Bar-Natan’s paper provides the proof for the other version of Reidemeister three not proven here.
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Theorem 4.4.4. The isomorphism class of the complex [[T ]] regarded in Kob is an invariant

of the of the tangle T .

4.5 Applying an open-closed TQFT and obtaining a homology

theory

In this section we bare the fruit of our labours. We have translated Bar-Natan’s tangle

homology into the language of open-closed cobordisms. All that remains is to apply an open-

closed TQFT to the complex [[T ]] associated to a tangle T . Given an open-closed TQFT

Z : 2Cobext → C where C is a symmetric monoidal abelian category, we immediately get

a functor Z : Kom
(
Mat(2Cobext)

)
→ Kom(C). Provided that the TQFT preserves the

relations (4.4.1)–(4.4.3), then applying this functor to the complex [[T ]] results in a complex

Z([[T ]]) in Kom(C) that is an invariant of the tangle up to homotopy equivalence. Hence, the

isomorphism class of the homology groups H
(
Z([[T ]])

)
is an invariant of T .

The remainder of this chapter is devoted to providing examples of open-closed topological

quantum field theories satisfying the relations (4.4.1)–(4.4.3), represented algebraically in the

following:

Definition 4.5.1. A commutative Frobenius algebra C = (C,µC , ηC ,∆C , εC) is said to satisfy

Bar-Natan’s conditions if the following three conditions hold:

(εC ◦ ηC)(1) = 0 (S=‘sphere’), (4.5.1)

(εC ◦ µC ◦∆C ◦ ηC)(1) = 2 (T=‘torus’), (4.5.2)

∆C ◦ ηC ◦ (εC ⊗ εC) + (ηC ⊗ ηC) ◦ εC ◦ µC

−(ηC ◦ εC)⊗ idC − idC ⊗ (ηC ◦ εC) = 0 (4Tu=‘four tubes’). (4.5.3)

In order for the tangle homology theory to possess the nice gluing properties, the knowl-

edgeable Frobenius algebra (A,C, ı, ı∗) defining the TQFT Z : 2Cobext → C must arise from

a state sum construction. Namely, the algebra A must be strongly separable and the other

structure given by Theorem 3.2.18.

4.5.1 Examples

Recall the following:
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Definition 4.5.2. Let k be a field. Khovanov’s [12] commutative Frobenius algebra (CKh, µ, η,∆, ε)

is the algebra CKh = k[x]/(x2) with the Frobenius algebra structure given in the k-basis {1, x}

by µ(1 ⊗ 1) = 1, µ(1 ⊗ x) = x, µ(x ⊗ 1) = x, µ(x⊗ x) = 0, η(1) = 1, ∆(1) = 1 ⊗ x+ x ⊗ 1,

∆(x) = x⊗ x, ε(1) = 0 and ε(x) = 1.

Definition 4.5.3. Let k be a field. Lee’s [22] commutative Frobenius algebra (CLee, µ, η,∆, ε)

is the algebra CLee = k[x]/(x2−1) with the Frobenius algebra structure given by µ(1⊗1) = 1,

µ(1⊗x) = x, µ(x⊗1) = x, µ(x⊗x) = 1, η(1) = 1, ∆(1) = 1⊗x+x⊗1, ∆(x) = x⊗x+1⊗1,

ε(1) = 0 and ε(x) = 1.

Definition 4.5.4. Let k be a field. Bar-Natan’s [23] commutative Frobenius algebra (CBN, µ, η,∆, ε)

is the algebra CBN = k[x]/(x2−x) with the Frobenius algebra structure given by µ(1⊗1) = 1,

µ(1⊗x) = x, µ(x⊗1) = x, µ(x⊗x) = x, η(1) = 1, ∆(1) = 1⊗x+x⊗1−1⊗1, ∆(x) = x⊗x,

ε(1) = 0 and ε(x) = 1.

In the following examples, we denote the algebra of m ×m-matrices over some commu-

tative ring R by Mm(R) and write {epq}1≤p,q≤m for a system of generators for which the

multiplication reads µ(epq ⊗ ers) = δqreps and the unit η(1) =
∑m

p=1 epp. For a direct product

Mm1(R) ⊕ · · · ⊕Mmn(R) of n such matrix algebras, we write {e
(j)
pq }1≤j≤n,1≤p,q≤mj for gen-

erators with µ(e
(j)
pq ⊗ e

(ℓ)
rs ) = δjℓδqre

(j)
ps , and η(1) =

∑n
j=1 I

(j) with I(j) =
∑mj

p=1 e
(j)
pp for the

unit.

Example 4.5.5. Let k be a field and CKh be Khovanov’s commutative Frobenius algebra

over k (Definition 4.5.2). Consider the algebra A := Mm(k) ⊗k CKh which has the k-basis

{epq, ẽpq}1≤p,q≤m where we have written epq for epq ⊗ 1 and ẽpq := epq ⊗ x.

Then (A,µA, ηA,∆A, εA) forms a symmetric Frobenius algebra with ηA(1) =
∑m

p=1 epp,

µA(epq ⊗ ers) = δqreps, µA(epq ⊗ ẽrs) = δqr ẽps, µA(ẽpq ⊗ ers) = δqrẽps, µA(ẽpq ⊗ ẽrs) = 0,

εA(epq) = 0, εA(ẽpq) = δpq, ∆A(epq) =
∑m

r=1(epr⊗ẽrq+ẽpr⊗erq) and ∆A(ẽpq) =
∑m

r=1 ẽpr⊗ẽrq.

Note that this Frobenius algebra is both a tensor product of algebra and a tensor product of

coalgebra structures.

Neither CKh nor A are strongly separable. If char k = 2, then (A,CKh, ı, ı
∗) forms a

knowledgeable Frobenius algebra with ı(1) = ηA(1), ı(x) = 0, ı∗(epq) = 0, and ı∗(ẽpq) = δpqx.

The assumption of char k = 2 was made in order to satisfy the Cardy condition. Its left

hand side is given by (µA ◦ τA,A ◦ ∆A)(epq) = 2δpq
∑m

r=1 ẽrr and (µA ◦ τA,A ◦ ∆A)(ẽpq) = 0

while its right hand side reads (ı ◦ ı∗)(epq) = 0 and (ı ◦ ı∗)(ẽpq) = 0.
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Example 4.5.6. Let k be a field and CKh be Khovanov’s commutative Frobenius algebra over

k. The truncated polynomial algebra A = k[y]/(yp), p ≥ 2, forms a commutative and therefore

symmetric Frobenius algebra (A,µA, ηA,∆A, εA) with ∆A(yℓ) =
∑p−1−ℓ

j=0 yj+ℓ⊗ yp−1−j for all

ℓ ∈ {0, . . . , p − 1}, εA(yp−1) = 1, and εA(yℓ) = 0 for all ℓ ∈ {0, . . . , p − 2}. The window

element is a = pyp−1 which is a zero divisor, and so A is not strongly separable.

If char k = p, then (A,C0,0, ı, ı
∗) forms a knowledgeable Frobenius algebra with ı(1) = 1,

ı(x) = 0, ı∗(yp−1) = 1, and ı∗(yℓ) = 0 for all ℓ ∈ {0, . . . , p− 2}.

For a field k of characteristic char k 6= p, the above example fails to satisfy the Cardy

condition whose left hand side reads (µA ◦ τA,A ◦∆A)(1) = pyp−1 and (µA ◦ τA,A ◦∆A)(yℓ) = 0

for all ℓ ∈ {0, . . . , p− 2} whereas its right hand side is (ı ◦ ı∗)(yℓ) = 0 for all ℓ ∈ {0, . . . , p− 1}.

Example 4.5.7. Let k be a field and p = 2n + 1, n ∈ N. Consider the p-dimensional

vector space A with basis {X−n,X−n+1, . . . ,Xn}. It forms a symmetric Frobenius algebra

(A,µA, ηA,∆A, εA) with µA(X1 ⊗ Xj) = Xj = µA(Xj ⊗ X1), µA(Xj ⊗ X−j) = X−1 for all

−n ≤ j ≤ n, ηA(1) = X1, ∆A(1) =
∑n

ℓ=−nXℓ ⊗ X−ℓ, ∆A(X−1) = X−1 ⊗ X−1, ∆A(Xj) =

X−1⊗Xj +Xj ⊗X−1 for all j /∈ {1,−1}, and εA(X−1) = 1. The operations µA, ηA, ∆A, and

εA are 0 on all other basis vectors. The window element reads a = pX−1. It is a zero divisor,

and so A is not strongly separable.

If char k = p, then there is a knowledgeable Frobenius algebra (A,C0,0, ı, ı
∗) with ı(1) = 1,

ı(x) = 0, ı∗(X−1) = x, and ı∗(Xj) = 0 for all j 6= −1.

Again, for a field k with char k 6= p, the example fails to satisfy the Cardy condition whose

left hand side gives (µA ◦ τA,A ◦∆A)(1) = pX−1 and (µA ◦ τA,A ◦∆A)(Xj) = 0 for all j 6= 1

whereas its right hand side is (ı ◦ ı∗)(Xj) = 0 for all j.

Remark 4.5.8. Examples (4.5.6) and (4.5.7) both supply examples of a knowledgeable Frobe-

nius algebra (A,C, ı, ı∗) whose commutative part is not the centre Z(A), and furthermore, C

is not a trivial enlargement of the centre.

Example 4.5.9. Let k be a field and CLee be Lee’s Frobenius algebra (Definition 4.5.3).

Consider the algebra A := Mm(k)⊗k CLee.

Then (A,µA, ηA,∆A, εA) forms a symmetric Frobenius algebra with ηA(1) =
∑m

p=1 epp,

µA(epq ⊗ ers) = δqreps, µA(epq ⊗ ẽrs) = δqrẽps, µA(ẽpq ⊗ ers) = δqrẽps, µA(ẽpq ⊗ ẽrs) = δqreps,

εA(epq) = 0, ε(ẽpq) = δpq, ∆A(epq) =
∑m

r=1(epr⊗ ẽrq + ẽpr⊗ erq), ∆A(ẽpq) =
∑m

r=1(epr⊗ erq +

ẽpr ⊗ ẽrq). Again, this is a tensor product of Frobenius algebra structures.



4.5. APPLYING AN OPEN-CLOSED TQFT AND OBTAINING A HOMOLOGY
THEORY 151

Both A and CLee are strongly separable if and only if char k 6= 2. If char k = 2, then

(A,CLee, ı, ı
∗) forms a knowledgeable Frobenius algebra with ı(1) = ı(x) = ηA(1), ı∗(epq) = 0,

and ı∗(ẽpq) = δpq(1 + x).

Note that the left hand side of the Cardy condition yields (µA ◦ τA,A ◦ ∆A)(epq) =

2δpq
∑m

r=1 ẽrr and (µA ◦ τA,A ◦ ∆A)(ẽpq) = 2δpq
∑m

r=1 err while its right hand side yields

(ı ◦ ı∗)(epq) = 0 and (ı ◦ ı∗)(ẽpq) = 2δpq
∑m

r=1 err. If char k = 2, the Cardy condition therefore

holds.

Knowledgeable Frobenius algebras (A,C, ı, ı∗) in which C is Lee’s Frobenius algebra (Defi-

nition 4.5.3) for char k 6= 2 or Bar-Natan’s (Definition 4.5.4) in any characteristic, are provided

by the following proposition.

Proposition 4.5.10. Let k be a field and A := Mm1(k)⊕· · ·⊕Mmn(k) be the direct product

of mj ×mj-matrix algebras, 1 ≤ j ≤ n, such that char k does not divide mj for all j. In this

case, (A,µA, ηA) is a strongly separable algebra. The elements zj :=
∑mj

p=1 e
(j)
pp form a k-basis

of the centre Z(A) which is strongly separable, too.

Every symmetric Frobenius algebra structure (A,µA, ηA,∆A, εA) is of the form εA(e
(j)
pq ) =

αjδpq and ∆A(e
(j)
pq ) = α−1

j

∑mj
r=1 e

(j)
pr ⊗ e

(j)
rq for some αj ∈ k\{0}. The window element is given

by a =
∑n

j=1 α
−1
j mjzj .

The knowledgeable Frobenius algebra (A,C, ı, ı∗) of the state sum construction (Chapter 3)

has a commutative Frobenius algebra C that satisfies Bar-Natan’s conditions if and only if

the following two conditions hold:

1. n = 2,

2. α2
2 = −α2

1.

Proof. The knowledgeable Frobenius algebra (A,C, ı, ı∗) of the state sum construction (see

Theorem (3.2.18)) is given by the centre C := Z(A) with the commutative Frobenius algebra

structure (C,µC , ηC ,∆C , εC) with µC(zj⊗zℓ) = δjℓzj , ηC(1) =
∑n

j=1 zj , ∆C(zj) = α−2
j zj⊗zj

and εC(zj) = α2
j with ı(zj) =

∑mj
p=1 e

(j)
pp and ı∗(e(j)pq ) = α−1

j δpqzj .

The value of the torus is (εC ◦ µC ◦ ∆C ◦ ηC)(1) = n, and so the condition (4.5.2) is

equivalent to n = 2. In this case, the value of the sphere is (εC ◦ ηC)(1) = α2
1 + α2

2, and so

the condition (4.5.1) is equivalent to α2
2 = −α2

1. If these first two conditions hold, the third

one (4.5.3) is always satisfied.

Remark 4.5.11.
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1. In Proposition 4.5.10, if char k 6= 2 and if there exist αj ∈ k such that α2
1 = 1/2 and

α2
2 = −1/2, then there is an isomorphism of Frobenius algebras ϕ : CLee → C with Lee’s

Frobenius algebra CLee = k[x]/(x2 − 1) (Definition 4.5.3) given by ϕ(1) = z1 + z2 and

ϕ(x) = z1 − z2.

2. For k of arbitrary characteristic with αj ∈ k such that α2
1 = 1 and α2

2 = −1, there is an

isomorphism of Frobenius algebras ψ : CBN → C with Bar-Natan’s Frobenius algebra

CBN = k[x]/(x2 − x) (Definition 4.5.4) given by ψ(1) = z1 + z2 and ψ(x) = z1.

4.6 Concluding remarks

We have presented in this chapter one approach towards adapting Khovanov homology to a

tangle homology theory that can be naturally translated into a computable algebraic theory.

In Bar-Natan’s picture world construction of tangle homology, he considers his surfaces to be

embedded into R3 whereas we have chosen to consider the surfaces as abstract manifolds. As a

future endeavour one might consider open-closed cobordisms that are embedded into R3. The

corresponding TQFTs have algebraic descriptions implicit in the work of Runkel, Fjelstad,

Fuchs, and Schweigert (see for example [35, 41] and the references therein) on boundary

conformal field theory. Very roughly speaking, such an algebraic theory would correspond to

a version of knowledgeable Frobenius algebras defined in a modular tensor category. However,

one should note that recent work by Gad Naot suggest that the difference between embedded

cobordisms versus abstract cobordisms may not be relevant for link homology [79].

Another possible adaptation of the work described in this chapter would be to consider

unoriented open-closed cobordisms and their corresponding TQFTs. This version of open-

closed topological field theory was treated by Alexeevski and Natanzon where an algebraic

characterization was also supplied [31]. Perhaps, a simpler presentation could be obtained

by not worrying about the orientations of the open-closed cobordisms. The true test lies in

whether or not there exist interesting examples of their algebraic structures that generalize

the Frobenius algebras of Bar-Natan, Lee, or Khovanov.

Finally, it is worth pointing out that although it was not considered in this thesis, S-

coloured knowledgeable Frobenius algebras would provide an algebraic structure well suited

for constructing tangle homology theories for tangles with coloured end points. That is, given

a tangle T whose boundary points are labeled from the set S, an S-coloured knowledgeable

Frobenius algebra can be used to construct algebraic tangle homology theories by following
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the procedure outlined in this chapter for the uncoloured case.



Appendix A

Symmetric monoidal categories

In this appendix, we collect some key definitions for easier reference.

Definition A.0.1. A monoidal category consists of:

• a category C.

• a functor called the tensor product ⊗ : C × C → C, where we write ⊗(X,Y ) = X ⊗ Y

and ⊗(f, g) = f ⊗ g for objects X,Y ∈ |C| and morphisms f, g in C.

• an object called the unit object 1 ∈ |C|.

• natural isomorphisms called the associator:

αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z), (A.0.1)

the left unit constraint:

λX : 1⊗X → X, (A.0.2)

and the right unit constraint:

ρX : X ⊗ 1→ X. (A.0.3)
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such that the following diagrams commute for all objects W,X, Y,Z ∈ |C|:

(W ⊗X)⊗ (Y ⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

W ⊗ ((X ⊗ Y )⊗ Z)(W ⊗ (X ⊗ Y ))⊗ Z

((W ⊗X)⊗ Y )⊗ Z

αW,X,Y⊗Z

''O
OOOOOOOOOOOOOOOOO

idW⊗aX,Y,Z

CC����������aW,X⊗Y,Z
//

aW,X,Y ⊗idZ

��
77

77
77

77
77

aW⊗X,Y,Z

77oooooooooooooooooo

(A.0.4)

(X ⊗ 1)⊗ Y
αX,1,Y

//

ρX⊗idY ''N
NNNNNNNNNN

X ⊗ (1⊗ Y )

idX⊗λYwwppppppppppp

X ⊗ Y

(A.0.5)

Definition A.0.2. A braided monoidal category consists of:

• a monoidal category C.

• a natural isomorphism called the braiding:

τX,Y : X ⊗ Y → Y ⊗X. (A.0.6)

such that these two diagrams commute, called the hexagon equations:

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

τX,Y⊗Z
//

αY,Z,X

%%L
LLLLLLαX,Y,Z

99rrrrrrr

τX,Y ⊗idZ %%L
LLLLLL

αY,X,Z
//

idY ⊗τX,Z

99rrrrrrr

(A.0.7)

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

τX⊗Y,Z
//

α−1
Z,X,Y

%%L
LLLLLLα−1

X,Y,Z
99rrrrrrr

idX⊗τY,Z %%L
LLLLLL

α−1
X,Z,Y

//
τX,Z⊗idY

99rrrrrrr

(A.0.8)

Definition A.0.3. A symmetric monoidal category is a braided monoidal category C for

which the braiding satisfies τY,X ◦ τX,Y = idX⊗Y for all objects X and Y .

Definition A.0.4. Let (C,⊗,1, α, λ, ρ) and (C′,⊗,1′, α′, λ′, ρ′) be monoidal categories. A

monoidal functor ψ : C → C′ is a triple ψ = (ψ,ψ2, ψ0) consisting of,
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• a functor ψ : C → C ′,

• a natural isomorphism ψ2 : ψ(X) ⊗ ψ(Y ) → ψ(X ⊗ Y ), where for brevity we suppress

the subscripts indicating the dependence of this isomorphism on X and Y , and

• an isomorphism ψ0 : 1′ → ψ(1),

such that the following diagrams commute for all objects X,Y,Z ∈ C:

(ψ(X) ⊗ ψ(Y ))⊗ ψ(Z)
ψ2⊗idψ(Z)

//

aψ(X),ψ(Y ),ψ(Z)

��

ψ(X ⊗ Y )⊗ ψ(Z)
ψ2 // ψ((X ⊗ Y )⊗ Z)

ψ(αX,Y,Z )

��

ψ(X)⊗ (ψ(Y )⊗ ψ(Z))
idψ(X)⊗ψ2

// ψ(X) ⊗ ψ(Y ⊗ Z)
ψ2 // ψ(X ⊗ (Y ⊗ Z))

(A.0.9)

1

′ ⊗ ψ(X)
λ′
ψ(X)

//

ψ0⊗idψ(X)

��

ψ(X)

ψ(1)⊗ ψ(X)
ψ2 // ψ(1⊗X)

ψ(λX )

OO

(A.0.10)

ψ(X)⊗ 1′
ρ′
ψ(X)

//

idψ(X)⊗ψ0

��

ψ(X)

ψ(X)⊗ ψ(1)
ψ2 // ψ(X ⊗ 1)

ψ(ρX )

OO

(A.0.11)

The monoidal functor is called strict if ψ2 and ψ0 are identities.

Definition A.0.5. Let (C,⊗,1, α, λ, ρ, τ) and (C′,⊗,1′, α′, λ′, ρ′, τ ′) be symmetric monoidal

categories. A symmetric monoidal functor ψ : C → C′ is a monoidal functor for which the

following additional diagram commutes for all X,Y ∈ C:

ψ(X) ⊗ ψ(Y )
τ ′X,Y

//

ψ2

��

ψ(Y )⊗ ψ(X)

ψ2

��

ψ(X ⊗ Y )
ψ(τ)

// ψ(Y ⊗X)

(A.0.12)

Definition A.0.6. Let (C,⊗,1, α, λ, ρ) and (C′,⊗,1′, α′, λ′, ρ′) be monoidal categories and

ψ : C → C′ and ψ′ : C → C′ be monoidal functors. A monoidal natural transformation ϕ : ψ ⇒

ψ′ is a natural transformation such that for all objects X,Y of C, the following diagrams

commute,

ψ(X) ⊗ ψ(Y )
ϕX⊗ϕY //

ψ2

��

ψ′(X)⊗ ψ′(Y )

ψ′
2

��

ψ(X ⊗ Y )
ϕX⊗Y

// ψ′(X ⊗ Y )

and

1

′

ψ0

��

ψ′
0

##G
GGG

GGGGG

ψ(1)
ϕ(1)

// ψ′(1)

(A.0.13)
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Definition A.0.7. Let C be a small symmetric monoidal category and let C′ be an arbitrary

symmetric monoidal category. We denote by Symm-Mon(C, C′) the category of symmetric

monoidal functors C → C′ and monoidal natural transformations between them. It is clear

that the tensor product of symmetric monoidal functors and monoidal natural transformations

defines a symmetric monoidal structure on the category Symm-Mon(C, C′).

Definition A.0.8. Let C and C′ be monoidal categories. We say that C and C′ are equivalent as

monoidal categories if there is an equivalence of categories C ≃ C′ given by functors F : C → C′

and G : C′ → C and natural isomorphisms η : 1C ⇒ GF and ε : FG ⇒ 1C′ such that both F

and G are monoidal functors and η and ε are monoidal natural transformations.

If C and C′ are symmetric monoidal categories, we say that they are equivalent as sym-

metric monoidal categories if in addition F and G are symmetric monoidal functors.



Appendix B

Abelian categories

In this appendix we review the basics of Abelian categories. For more details see [70].

Definition B.0.9. A zero object in a category C is an object 0 that is both initial and

terminal. A morphism f : X → Y is called the zero morphism when it factors through the

zero object 0.

Recall that there is exactly one zero morphism between each object X and Y of C and the

composite of a zero morphism with any other morphism is again the zero morphism.

Definition B.0.10. Let f : X → Y in the category C. Then when they exist, the kernel of f

is the equalizer of f and the zero morphism 0 : X → Y and the cokernel of f is defined dually

as the coequalizer of f and the zero morphism. The kernel and cokernel of f are denoted as

ker f and coker f , respectively.

Definition B.0.11. An Ab-category C, or pre-additive category, is a category enriched in

abelian groups. This means that each Hom set C(X,Y ) is an abelian group and composition

is bilinear relative to this addition.

Definition B.0.12. Given objects X and Y in the Ab-category C a biproduct of X and Y

is an object X ⊕ Y together with morphisms

X
sX //

X ⊕ Y
pX

oo
pY //

B
sY

oo , (B.0.1)

such that

pX ◦ sX = 1X , pY ◦ sY = 1Y , pX ◦ sY = 0, pY ◦ sX = 0, sX ◦ pX + sY ◦ pY = 1X⊕Y .

(B.0.2)
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Definition B.0.13. An additive category C is an Ab-category that is equipped with a zero

object and a biproduct for every pair of objects.

Definition B.0.14. An abelian category C is an Ab-category satisfying the following condi-

tions:

i) C has a zero object,

ii) C has binary biproducts,

iii) Every morphism in C has a kernel and cokernel,

iv) Every monic morphism is a kernel, and every epi a cokernel.

Conditions (i) and (ii) ensure that C is an additive category.

Proposition B.0.15. In an abelian category C, every morphism f can be factored uniquely

(up to isomorphism) as f = im f ◦ coim f , with coim f a monomorphism and im f an

epimorphism. In particular, im f = ker(coker f) and coim f = coker (ker f).
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