
Chapter II
The Category of Simplicial Complexes

II.1 Euclidean Simplicial Complexes

Let us recall that a subset C ⊂Rn is convex if x,y∈C, t ∈ [0,1] =⇒ tx+(1−t)y∈C.
The convex hull of a subset X ⊂ Rn is the smallest convex subset of Rn, which
contains X . We say that d + 1 points x0,x1, . . . ,xd belonging to the Euclidean space
Rn are linearly independent (from the affine point of view) if the vectors x1 − x0,
x2 − x0, . . . , xd − x0 are linearly independent. A vector x− x0 of the vector space
generated by these vectors can be written as a sum x− x0 = ∑d

i=1 ri(xi − x0) with
real coefficients ri; notice that if we write x as x = ∑d

i=0 αixi, then ∑d
i=0 αi = 1.

If {x0, . . . ,xd} ∈ X are affinely independent, the convex hull of X is said to be an
(Euclidean) simplex of dimension d contained in Rn; its points x can be written in a
unique fashion as linear combinations

x =
d

∑
i=1

λixi,

with real coefficients λi. The coefficients λi are called barycentric coordinates of x;
they are nonnegative real numbers and satisfy the equality ∑d

i=0 λi = 1. The points
xi are the vertices of the simplex. The standard n-simplex is the simplex obtained by
taking the convex hull of the n+1 points of the standard basis of Rn+1 (see Figs. II.1
and II.2 for dimensions n = 1 and n = 2, respectively).

The faces of a simplex s ⊂ Rn are the convex hulls of the subsets of its ver-
tices; the faces which do not coincide with s are the proper faces. We can define
the interior of a simplex s as the set of all points of s with positive barycentric
coordinates λi > 0. We indicate the interior of s with s̊. If the dimension of s
is at least 1, s̊ coincides with the topological interior. At any rate, it is not hard
to prove that we obtain the interior of a simplex by removing all of its proper
faces.

An Euclidean simplicial complex is a finite family of simplexes of an Euclidean
space Rn, which satisfies the following properties:
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Fig. II.2

S1 If s ∈ K, then every face of s is in K.
S2 If s1 and s2 are simplexes of K with nondisjoint interiors s̊1 ∩ s̊2 �= /0, then
s1 = s2.

The dimension of K is the maximal dimension of its simplexes.1 Figure II.3 repre-

Fig. II.3

sents a two-dimensional simplicial complex of R2; Fig. II.4 is a set of simplexes,
which is not a simplicial complex.

1 It is possible to define Euclidean complexes with infinitely many simplexes, provided we add the
local finiteness property that is to say, we ask that each point of a simplex has a neighborhood,
which intersects only finitely many simplexes of K. We do this so that the topology of the (infinite)
Euclidean complex K coincides with the topology of the geometric realization |̂K| (we are referring
to the topology defined by Remark (II.2.13)) of the abstract simplicial complex |̂K| associated in a
natural fashion to K (we shall give the definition of abstract simplicial complex in a short while).
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Fig. II.4

(II.1.1) Example (Euclidean polyhedra). 1. Every simplex of Rn together with
all its faces is a simplicial complex.

2. The set of all proper faces of a d-dimensional simplex in Rn is a (d − 1)-
dimensional simplicial complex.

3. The set of all closed intervals [1/n,1/(n + 1)], with n ∈N, is a simplicial com-
plex (with infinitely many simplexes) of R.

4. Let Pm be the regular polygonal line contained in C∼=R2, whose vertices are the
mth-roots of the unity {z ∈ C | zm = 1}. The corresponding simplicial complex
is homeomorphic to the circle S1 and is depicted in Fig. II.5.

Fig. II.5

5. The Platonic solids can be subdivided by triangles; they give rise to simplicial
complexes of R3. An example is given by the icosahedron of Fig. II.6.

Fig. II.6
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II.2 Abstract Simplicial Complexes

In this section, we shall give the definition of the category Csim of simplicial
complexes and simplicial maps; furthermore, we shall define two important func-
tors with domain Csim, namely, the geometric realization functor and the homology
functor.

An (abstract) simplicial complex is a pair K = (X ,Φ) given by a finite set X and
a set of nonempty subsets of X such that:

K1 (∀x ∈ X) , {x} ∈ Φ ,
K2 (∀σ ∈ Φ)(∀σ ′ ⊂ σ , σ ′ �= /0) , σ ′ ∈ Φ .

The elements of X are the vertices of K. The elements of Φ are the simplexes of K.
If σ is a simplex of K, every non-empty σ ′ ⊂ σ is a face of σ . According to
condition K2, we can say that all faces of a simplex are simplexes. A simplex σ
with n + 1 elements (n ≥ 0) is an n-simplex (we also say that σ is a simplex of
dimension n); we adopt the notation dimσ = n. It follows that the 0-simplexes are
vertices. The dimension of K is the maximal dimension of its simplexes; if the
dimensions of all simplexes of K have a maximum n, we say that K has dimension
n or that K is n-dimensional.

(II.2.1) Remark. We explicitly observe that in this book all simplicial complexes
have a finite number of vertices.

Before we present some examples and constructions with simplicial complexes,
we give a definition: a simplicial complex L = (Y,Ψ ) is a subcomplex of K = (X ,Φ)
if Y ⊂ X and Ψ ⊂ Φ .

(II.2.2) Remark. Let K0 = (X0,Φ0) and K1 = (X1,Φ1) be subcomplexes of a sim-
plicial complex K; we observe that the union K0 ∪K1 = (X0 ∪X1,Φ0 ∪Φ1) and the
intersection K0∩K1 = (X0∩X1,Φ0∩Φ1) (with X0∩X1 �= /0) are subcomplexes of K.
In particular, the union of two disjoint simplicial complexes K0 and K1 (that is to
say, such that X0 ∩X1 = /0) is a simplicial complex.

Let us now give some examples.

1. Let X be a finite set and let ℘(X) = 2X be the set of all subsets of X ; clearly,
the pair K = (X ,℘(X)� /0) is a simplicial complex.

2. The set of all simplexes of an Euclidean simplicial complex is an abstract sim-
plicial complex if we forget the fact that its vertices are points of Rn. The
set X is the set of all vertices, while Φ is the set of simplexes. Thus, the ex-
amples of Euclidean polyhedra on p. 45 are examples of abstract simplicial
complexes.

3. Let Γ be a graph (that is to say, a set of vertices X and a symmetric subset Φ
of X ×X , called set of edges). It is not hard to prove that (X ,Φ) is a simplicial
complex if we assume that σ ∈ Φ ⊂ 2X whenever σ is a set with just one
element or is the set of the two vertices at the ends of an edge.
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(II.2.3) Definition (generated complex). Let K = (X ,Φ) be a simplicial complex;
for every simplex σ ∈ Φ , the pair

σ = (σ ,℘(σ)� /0)

is a simplicial complex; σ is the simplicial complex generated by σ (sometimes
also called closure of σ ). More generally, let B be a set of simplexes of K, that is to
say, B ⊂ Φ; then

B =
⋃

σ∈B

σ

is the simplicial complex generated by all the simplexes of the set B. Observe that
B is a subcomplex of K.

(II.2.4) Definition (boundary of a simplex). For every simplex σ of a simplicial
complex,

•σ = (σ ,℘(σ)�{ /0,σ})
is a simplicial complex, called boundary of σ . By an abuse of notation, we write

σ = •σ ∪σ .

(II.2.5) Definition (join and suspension). Given two simplicial complexes K =
(X ,Φ) and L = (Y,Ψ ), the join of K and L is the simplicial complex K ∗L whose
vertices are all the elements of the set X ∪Y , and whose simplexes are the elements
of the sets Φ , Ψ and of the set

Φ ∗Ψ = {{x0, . . . ,xn,y0, . . . ,ym} | {x0, . . . ,xn} ∈ Φ ,{y0, . . . ,ym} ∈Ψ}.

In other words, a nonempty subset {x0, . . . ,xn,y0, . . . ,ym} of X ∪Y is a simplex of
K ∗L if and only if {x0, . . . ,xn} ∈ Φ ∪{ /0} and {y0, . . . ,ym} ∈Ψ ∪{ /0}. In particular,
if L = (Y,Ψ) is the simplicial complex defined by a unique point y, K ∗y = Ky is the
cone (sometimes called abstract cone) of K with vertex y (of course, we can also
define the cone yK). An n-simplex with n ≥ 1 can be interpreted as the cone of any
of its faces (of dimension n−1).

If L is the simplicial complex determined by exactly two points x and y, that is
to say,

L = (Y,Ψ ) with Y = {x,y} , Ψ = {{x},{y}} ,

the join K ∗L = ΣK is called suspension of K. Observe that ΣK can be viewed as
the union of the cones K ∗ x and K ∗ y.

The category Csim of simplicial complexes is the category whose objects are all
simplicial complexes, and whose morphisms f : K = (X ,Φ) → L = (Y,Ψ) are the
functions (between sets) f : X → Y such that

(∀σ = {x0,x1, . . . ,xn} ∈ Φ) , f (σ) = { f (x0), f (x1), . . . , f (xn)} ∈Ψ .

A morphism f ∈ Csim(K,L) is a simplicial function from K to L.
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II.2.1 The Geometric Realization Functor

For a given simplicial complex K = (X ,Φ), let V (K) be the set of all functions
p : X → R≥0 (nonnegative real numbers); we define the support of an arbitrary
p ∈V (K) to be the finite set

s(p) = {x ∈ X | p(x) > 0}.

Let |K| be the set defined as follows:

|K| = {p ∈V (K) | s(p) ∈ Φ and ∑
x∈s(p)

p(x) = 1}.

We now define the function

d : |K|× |K| −→R≥0

which takes any pair (p,q) ∈ |K|× |K| into the real number

d(p,q) =
√

∑
x∈X

(p(x)−q(x))2.

This function is a metric on K (verify the conditions defining a metric given in
Sect. I.1.5); hence, it defines a (metric) topology on |K|. The metric space |K| is the
geometric realization of K. Observe that |K| is a bounded space, in the sense that
(∀p,q ∈ |K|), d(p,q) ≤√

2. Moreover, |K| is a Hausdorff space.
We can write the elements of K as finite linear combinations. In fact, for each

vertex x of K, with a slight abuse of language, let us denote with x the function
of V (K), with value 1 at the vertex x and 0 at any other vertex; in a more formal
fashion,

(∀y ∈ X) x(y) =
{

0 if y �= x
1 if y = x

(in other words, we identify the vertex x with the corresponding real function of
V (K), whose support coincides with the set {x}). Hence if s(p) = {x0,x1, . . . ,xn} is
the support of p∈ |K|, and assuming that p(xi)= αi, i = 0,1, . . . ,n, we can write p as

p =
n

∑
i=0

αixi.

The real numbers αi , i = 0, . . . ,n, are the barycentric coordinates of p (in agreement
with the barycentric coordinates defined by n+1 independent points of an Euclidean
space).

(II.2.6) Remark. Because K has a finite number of vertices, say n, we can embed
the set of vertices X in the Euclidean space Rn, so that the images of the elements of
X coincide with the vectors of the standard basis. Then we can take the convex hulls
in Rn of the vectors corresponding to the simplexes of K, to obtain an Euclidean
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simplicial complex K′ ⊂ Rn associated with K. We shall see in a short while that
K′ is isomorphic to the geometric realization |K| (actually, there exists an isometry
between these two metric spaces; furthermore, the set of all functions X → R≥0

coincides with the positive quadrant of Rn).

The following statement holds true: two points p,q ∈ |K| coincide if and only if
they have the same barycentric coordinates.

The geometric realization functor

| | : Csim −→ Top

is defined over an object K ∈ Csim as the geometric realization |K|, and over a
morphism f ∈ Csim(K,L) as

| f | : |K| → |L| , | f |(∑αixi) = ∑αi f (xi) .

To prove that | | is indeed a functor, we need the following result.

(II.2.7) Theorem. The function | f | induced from a simplicial function f : K → L is
continuous.

Proof. It is enough to prove that, for every p ∈ |K|, there exists a constant c(p) > 0
which depends on p and such that, for every q∈ |K|, d(| f |(p), | f |(q))≤ c(p)d(p,q).

Assume that

s(p) = {x0, . . . ,xn} and s(q) = {y0, . . . ,ym}

and also that p(xi) = αi for i = 0, . . . ,n, and q(y j) = β j for j = 0, . . . ,m. We consider
three cases.
Case 1: s(p)∩ s(q) = /0 - In this situation

d(p,q) =

√

n

∑
i=0

α2
i +

m

∑
j=0

β 2
j ≥

√

n

∑
i=0

α2
i ;

because ∑n
i=0 αi = 1, ∑n

i=0 α2
i has its minimum value only when αi = 1/(n+1), for

every i = 0, . . . ,n. It follows that d(p,q) ≥ 1/
√

n + 1 and

d(| f |(p), | f |(q))
d(p,q)

≤
√

2

1/
√

n + 1

(recall that d(| f |(p), | f |(q)) ≤√
2); so,

d(| f |(p), | f |(q)) ≤
√

2(n + 1)d(p,q);

thus, we define c(p) =
√

2(n + 1).
Case 2: s(p)∩ s(q) �= /0, but s(p) �⊂ s(q) and s(q) �⊂ s(p) –
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Let us rewrite the indices of the elements of s(p) and s(q) to have the following
common elements:

xr = y0,xr+1 = y1, . . . ,xn = yn−r.

Notice that the set s(p)∪s(q) has exactly m+r+1 common elements. Now consider
the elements

zi =

⎧

⎨

⎩

xi, 0 ≤ i ≤ r−1
xi = yi−r, r ≤ i ≤ n
yi−r, n + 1 ≤ i ≤ m+ r

together with the real numbers

γi =

⎧

⎨

⎩

−αi, 0 ≤ i ≤ r−1
−αi + βi−r, r ≤ i ≤ n
βi−r, n + 1 ≤ i ≤ m+ r .

Notice that γi < 0 for i = 0, . . . ,r − 1 and γi > 0 for i = n + 1, . . . ,m + r, because
αi > 0 for every i = 0,1, . . . ,n and βi > 0 for i = 1, . . . ,m. Let us order the numbers
γi in such a way that γ0 ≤ γ1 ≤ . . . ≤ γm+r (if necessary, we make a permutation of
the indices). Let l be the largest index for which γl < 0 (because of the assumptions
we made, such a set of indices cannot be empty - thus l exists - nor can it be the set of
all indices - thus r ≤ l ≤ n); moreover, the vertices (viewed as functions) z0,z1, . . . ,zl

are summands of p (the numbers γi are negative), while the vertices zl+1, . . . ,zm+r

are part of q (the corresponding numbers γi are non-negative). At this point, take
λ = ∑l

i=0 γi < 0 and the two finite successions of real positive numbers

{ γ0

λ
, . . . ,

γl

λ
} and { γl+1

−λ
, . . . ,

γm+r

−λ
}.

The elements

p′ =
l

∑
i=0

γi

λ
zi and q′ =

m+r

∑
i=l+1

γi

−λ
zi

are in |K| because
l

∑
i=0

γi

λ
=

m+r

∑
i=l+1

γi

−λ
= 1;

from what we proved above, it follows that s(p′) ⊂ s(p) and s(q′) ⊂ s(q). But
s(p′)∩ s(q′) = /0 and so, by Case 1,

d(| f |(p′), | f |(q′)) ≤
√

2(l + 1)d(p′,q′).

The equalities

d(p′,q′) =
1
−λ

d(p,q),

d(| f |(p′), | f |(q′)) =
1
−λ

d(| f |(p), | f |(q)),

and the fact that
√

2(l + 1)≤√2(n + 1) allow us to conclude that
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d(| f |(p), | f |(q)) ≤
√

2(n + 1)d(p,q).

Case 3: Let us assume that s(p) ⊂ s(q). Rewrite the indices of the elements of s(p)
and s(q) in such a way that, xi = yi for every i = 0, . . . ,n. Similar to the previous
case, we consider the elements

zi =
{

xi = yi, 0 ≤ i ≤ n
y j, n + 1 ≤ j ≤ m

and the real numbers

γi =
{−αi + βi, 0 ≤ i ≤ n

β j, n + 1 ≤ j ≤ m.

If −αi +βi ≥ 0 for every i = 0, . . . ,n, then s(p) = s(q) and p = q, because ∑n
i=0 αi =

1. Hence, there exists a number 0 ≤ i ≤ n such that −αi + βi < 0. At this point, we
argue as in the previous case. If s(q) ⊂ s(p), we use an analogous procedure. �

In particular, the following result holds true:

(II.2.8) Theorem. Any piecewise linear function (the simplicial realization of a
simplicial function)

F : |K| → |L| , F

(

n

∑
i=0

αixi

)

=
n

∑
i=0

αiF(xi)

is continuous.

Hence | | is a functor.
We now investigate some of the properties of the geometric realization of a sim-

plicial complex. Recall that it is possible to characterize a convex set X of an
Euclidean space as follows: for every p,q ∈ X , the segment [p,q], with end-points p
and q, is contained in X . As we are going to see in the next theorem, this convexity
property is valid for the geometric realization of the complex σ (called geometric
simplex), for every simplex σ of a simplicial complex K.

(II.2.9) Theorem. Let K = (X ,Φ) be a simplicial complex. The following results
hold true:

(i) The geometric realization σ of any simplex σ ∈ Φ is convex.
(ii) For every two simplexes σ ,τ ∈ Φ we have

|σ | ∩ |τ| = |σ ∩ τ|.

(iii) For every σ ∈ Φ , σ is compact .

Proof. (i) Assume that σ = {x0, . . . ,xn} and let p,q be arbitrary points of |σ |; sup-
pose that p = ∑n

i=0 αixi and q = ∑n
i=0 βixi. The segment [p,q] is the set of all points

r = t p +(1− t)q, for every t ∈ [0,1]. Then
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r = t p +(1− t)q =
n

∑
i=0

(tαi +(1− t)βi)xi

with ∑n
i=0(tαi +(1− t)βi) = 1 and so, r ∈ |σ |.

(ii) Let us first observe that if p ∈ |σ |, then s(p) ⊂ σ . Now if p ∈ |σ |⋂ |τ|, s(p) ⊂
σ ∩τ , and thus p ∈ |s(p)| ⊂ |σ ∩ τ|. Conversely, if p ∈ |σ ∩ τ| then p ∈ |s(p)| ⊂ |σ |,
p ∈ |s(p)| ⊂ |τ|, and therefore p ∈ |σ |⋂ |τ|.
(iii) Take the standard n-simplex

Δ n = {(z0, . . . ,zn) ∈Rn+1|0 ≤ zi ≤ 1,∑
i

zi = 1}

endowed with a system of barycentric coordinates with respect to the vertices

e0 = (1,0, . . . ,0), . . .en = (0,0, . . . ,1);

we can write the elements of Δ n as linear combinations with nonnegative real coeffi-
cients ∑n

i=0 αiei where ∑n
i=0 αi = 1. Furthermore, we observe that Δ n is compact as a

bounded and closed subset of Rn+1 (see Theorem (I.1.36)). Let f : Δ n → |σ | be the
function taking any p = ∑n

i=0 αiei ∈ Δ n to the point f (p) = ∑n
i=0 αixi. This function

is bijective, continuous, and takes a compact space to a Hausdorff space; hence, f
is a homeomorphism (see Theorem (I.1.27)). It follows that |σ | is compact. �

As we have observed before, the geometric realization |K| can be viewed as a
subspace of Rn, where n is the number of vertices of K. Thus, it is possible to con-
sider an affine structure on the ambient space Rn, and again analyze the convexity
of the various parts of K and the linear combinations of elements with barycentric
coordinates. For every p ∈ |K|, let B(p) be the set of all σ ∈ Φ such that p ∈ |σ |;
now take the space

D(p) =
⋃

σ∈B(p)

|σ | .

The boundary S(p) of D(p) is the union of the geometric realizations of the com-
plexes generated by the faces τ ⊂ σ , with σ ∈ B(p) and p /∈ |τ |. Intuitively, D(p)
is the “disk” defined by all geometric simplexes, which contain p and S(p) is its
bounding “sphere”. Observe that D(p) and S(p) are closed subsets of |K|; finally,
leaving out the geometric realization, D(p) and S(p) are subcomplexes of K.

(II.2.10) Theorem. Let K be a simplicial complex; the following properties are
valid.

(i) For every p ∈ |K|, D(p) is compact.
(ii) For every q ∈ D(p)�{p} and every t ∈ I, the point r = (1− t)p + tq belongs

to D(p).
(iii) Every ray in D(p) with origin p intersects S(p) at a unique point.

Proof. (i): The compactness of D(p) follows from Theorem (II.2.9), (iii).
(ii): Because q ∈ D(p)�{p}, there exists a simplex σ ∈ B(p) such that q ∈ |σ |, a
convex space; it follows that the segment [p,q] is entirely contained in |σ | ⊂ D(p).
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(iii): Let � be a ray with origin p, and let q be the point of � determined by the
condition

d(p,q) = sup{d(p,q′) | q′ ∈ �∩D(p)}.
Then, |s(q)| ∈ S(p); otherwise, we could extend � in D(p) beyond q and thus we
would have q∈ S(p). On the other hand, because s(q) is a face of a simplex contain-
ing p, the vertices of s(p) and s(q) define a simplex of which s(p) is a face (in fact,
s(p)∪ s(q) is a simplex of the simplicial complex D(p)). The points of � beyond q
cannot be in S(p) and the open segment (p,q) is contained in D(p)� S(p). Hence,
� intersects S(p) in one point only. �

Notice that D(p) is not necessarily convex; at any rate, as we have seen in part
(ii) of the previous theorem, D(p) is endowed with a certain kind of convexity in
the sense that, for every q ∈ D(p), the segment [p,q] is entirely contained in D(p).
We say that D(p) is p-convex (star convex). Theorem (II.2.10) allows us to define
a map

πp : D(p)�{p}→ S(p) , q �→ �p,q ∩S(p)

where �p,q is the ray with origin p and containing q; the function πp is the radial
projection with center p from D(p) onto S(p). Let i : S(p) → D(p) � {p} be the
inclusion map; then πpi = 1S(p), and iπp is homotopic to the identity map of D(p)�

{p} onto itself with homotopy given by the map

H : (D(p)�{p})× I → D(p)�{p} , (q, t) �→ (1− t)q + tπp(q).

Hence, S(p) is a deformation retract of D(p) � {p} (see Exercise 2, Sect. I.2).
This shows another similarity between the spaces D(p), S(p) and, respectively, the
n-dimensional Euclidean disk and its boundary.

The next result (cf. [24]) will be used only when studying triangulable manifolds
(Sect. V.1); the reader could thus leave it for later on.

(II.2.11) Theorem. Let f : |K|→ |L| be a homeomorphism. Then, for every p∈ |K|,
S(p) and S( f (p)) are of the same homotopy type.

Proof. Assume that s( f (p)) = {y0, . . . ,yn} and let U = |s( f (p))|� | •
s( f (p))| be the

interior of |s( f (p))|, that is to say, the set of all q ∈ |L| such that q(yi) > 0, for
every i = 0, . . . ,n. Notice that U is an open set of D( f (p)); moreover, f−1(U) is
an open set of |K| containing p. The bounded, compact set D(p) can be shrunk at
will: in fact, for any real number 0 < λ ≤ 1 we define the compression λ D(p) as
the set of all points r = (1− λ )p + λ q, for every q ∈ D(p); observe that λ D(p)
is a closed subset of |K|, and is homeomorphic to D(p). Let λ ∈ (0,1] be such
that

p ∈ λ D(p) ⊂ f−1(U);

then
f (p) ∈ f (λ D(p)) ⊂U ⊂ D( f (p)).
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In a similar fashion, we can find two other real numbers μ ,ν ∈ (0,1] such that

f (p) ∈ f (νD(p)) ⊂ μD( f (p)) ⊂ f (λ D(p)) ⊂ D( f (p)).

Because f (νD(p)) ⊂ μD( f (p)), we can define the radial projection with cen-
ter f (p)

ψ : f (νS(p)) → μS( f (p)) , f (q) �→ π f (p)( f (q))

for every q ∈ νS(p). We also define the map

φ : μS( f (p)) → f (νS(p)) , q �→ f (ν(πp( f−1(q)))

where πp is the radial function with center p in λ D(p) (notice that f−1(q) �= p, for
every q ∈ μS( f (p)) and moreover, f−1(μD( f (p)) ⊂ λ D(p)).

Since the spaces f (νS(p)) and μS( f (p)) are contained in D( f (p)) and this last
space is f (p)-convex, we can define the homotopy

H1 : μS( f (p))× I −→ D( f (p))

H1(q,t) =
{

(1−2t)ψφ(q)+ 2t f (p) , 0 ≤ t ≤ 1
2

(2−2t) f (p)+ (2t−1)φ(q) , 1
2 ≤ t ≤ 1

for every q ∈ μS( f (p)). Strictly speaking, H1 is a homotopy between φ composed
with the inclusion map f (νS(p) ⊂ D( f (p)) and ψφ composed with μS( f (p)) ⊂
D( f (p)). We now take the maps

f−1φ : μS( f (p)) → νD(p) and f−1 : μS( f (p)) → λ D(p).

Because D(p) is p-convex, we can construct the homotopy

H2(q,t) =
{

(1−2t) f−1φ(q)+ 2t p , 0 ≤ t ≤ 1
2

(2−2t)p +(2t−1) f−1(q) , 1
2 ≤ t ≤ 1 .

which, when composed with the homeomorphism f , gives rise to a homotopy

f H2 : μS( f (p))× I → D( f (p));

finally, we consider the homotopy

F : μS( f (p)× I → D( f (p))

defined by the formula

F(q,t) =
{

H1(q,2t) , 0 ≤ t ≤ 1
2

f H2(q,2t −1) , 1
2 ≤ t ≤ 1 .
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The map F is a homotopy between ψφ and the identity map of μS( f (p)). Similarly,
we prove that φψ is homotopic to the corresponding identity map. Thus, μS( f (p))
and f (νS(p)) are of the same homotopy type. On the other hand, μS( f (p)) and
f (νS(p)) are homeomorphic, respectively, to S( f (p)) and S(p); hence, S( f (p))
and S(p) are of the same homotopy type. �

The geometric realization |K| of a simplicial complex K is called polyhedron.2

The next theorem gives a better understanding of the topology of |K| = (X ,Φ).

(II.2.12) Theorem. A set F ⊂ |K| is closed in |K| if and only if, for every σ ∈ Φ ,
the subset F ∩|σ | is closed in |σ |.
Proof. Because |σ | is a compact subset of a Hausdorff space |K|, |σ | is closed in
|K| (see Theorem (I.1.25)); thus, if F is closed in |K|, F ∩ |σ | is closed in |K| and
therefore, F is closed in |σ |.

Conversely, if F ∩|σ | is closed in |σ | for every |σ | ⊂ |K|, then F =
⋃

|σ |(F ∩|σ |)
is closed in |K| as a finite union of closed sets. �

A topological space X is said to be triangulable if there exists a polyhedron K,
which is homeomorphic to X ; the simplicial complex K is a triangulation of X .
A triangulable space can have more than one triangulation. For example, it is easy
to understand that S1 has a triangulation given by a simplicial complex whose ge-
ometric realization is homeomorphic to the boundary of an equilateral triangle; but
it can also be triangulated by a complex whose geometric realization is a regular
polygon with vertices in S1 (the homeomorphisms are given by a projection from
the center of S1). More generally, a disk Dn and its boundary Sn−1 are examples of
triangulable spaces; these spaces also have several possible triangulations. Next, we
describe the standard triangulation of Sn.

Let Σn be the set of all points (x1,x2, . . . ,xn+1) ∈ Rn+1 such that ∑i |xi| = 1.

Let X be the set of all vertices of Σn, that is to say, of the points ai = (0, . . . ,
i
1

, . . . ,0) and a′i = (0, . . . ,
i−1, . . . ,0) in Rn+1, i = 1, . . . ,n + 1. Now, let Φ be the

set of all nonempty subsets of X of the type {xi0 , . . . ,xir} with 1 ≤ i0 < i1 < .. . <
ir ≤ n + 1 and xis equal to either ais or a′is . Since any set of vertices of this type is
linearly independent, Kn = (X ,Φ) is a simplicial complex. Its geometric realization
is homeomorphic to Σn; on the other hand, Σn and Sn are homeomorphic by a radial
projection from the center and therefore, Kn is a triangulation of Sn. The simplicial
complex Kn is the so-called standard triangulation of Sn.

(II.2.13) Remark. As we have already notice, in this book we work exclusively
with finite simplicial complexes. However, it is possible to give a more extended
definition of simplicial complexes, which includes the infinite case. With this in
mind, we define a simplicial complex as a pair K = (X ,Φ) in which X is a set

2 In some textbooks, polyhedra are the geometric realizations of two-dimensional complexes; for
the more general case, they use the word polytopes.
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(not necessarily finite) and Φ is a set of nonempty, finite subsets of X satisfying the
following properties:

1. (∀x ∈ X) , {x} ∈ Φ ,
2. (∀σ ∈ Φ)(∀σ ′ ⊂ σ , σ ′ �= /0) , σ ′ ∈ Φ .

The price we must pay is a strengthening of the topology of K. We keep the metric

d : |K|× |K| −→R≥0

(∀p,q ∈ |K|) d(p,q) =

{

∑
x∈X

(p(x)−q(x))2

} 1
2

which defines a topology on K. While the necessary condition of Theorem (II.2.12)
is still valid, the sufficient condition does not hold because, to prove it, we need
the assumption that X is finite. However, it is precisely the topology of Theo-
rem (II.2.12) that we impose on |K|; in other words, we must exchange the metric
topology of K with a finer topology. We say that

F ⊂ |K| is closed ⇐⇒ (∀σ ∈ Φ) F ∩|σ | is closed in σ .

This topology is normally called “weak topology”; this is somehow a strange
name, considering the fact that the weak topology for K is finer (that is to say, has
more open sets) than the metric topology.

II.2.2 Simplicial Complexes and Immersions

We have proved, aided by the geometric realization functor, that every abstract finite
simplicial complex K can be immersed in an Euclidean space and hence can be
viewed as an Euclidean simplicial complex. The dimension of the Euclidean space
in question is equal to the number of vertices, say m, of the complex. At this point,
we ask ourselves whether it is possible to immerse K in an Euclidean space of
dimension lower than m. The next theorem answers that question. Before stating the
theorem, we define Euclidean simplicial complexes in a different (but equivalent)
fashion. Let K ⊂ Rn be a union of finitely many Euclidean simplexes of Rn such
that

1. If σ ⊂ K, every face of σ is in K.
2. The intersection of any two Euclidean simplexes of K is a face of both.

It is not difficult to prove that a set of simplexes of Rn verifying the previous
conditions is an Euclidean simplicial complex as defined in Sect. II.1. We also no-
tice that if F ⊂K is closed, the intersection F ∩σ is closed in σ for every Euclidean
simplex σ of K; conversely, if F is a subset of K such that, for every Euclidean
simplex σ of K, F ∩σ is closed in σ , then F is closed in K because F is the fi-
nite union of the closed sets F ∩ σ . Clearly, an Euclidean complex K of Rn is
compact and closed in Rn. We now state the immersion theorem for simplicial
complexes.
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(II.2.14) Theorem. Every n-dimensional polyhedron |K| is homeomorphic to an
Euclidean simplicial complex.

Proof. Let N be the set of all points Pi = (i, i2, . . . , i2n+1) ∈ R2n+1, for every
i ≥ 0. We claim that the set N has the following property: every 2n + 2 points
Pi0 , . . . ,Pi2n+1 are linearly independent. In fact, a linear combination

2n+1

∑
j=1

α j(Pij −Pi0) = 0

gives rise to the equations

2n+1

∑
j=1

α j = 0,

2n+1

∑
j=1

α ji
1
j = 0,

. . .

2n+1

∑
j=1

α ji
2n+1
j = 0;

because the determinant of the system of linear homogeneous equations defined by
the 2n + 2 equations written above is equal to ∏k> j(ik − i j) �= 0, the only solution
for the system is the trivial one, α1 = α2 = . . . = α2n+1 = 0.

Assume that K = (X ,Φ) with X = {a0, . . . ,as} and s ≤ n. To each vertex
ai, we associate the point Pi = (i1, i2, . . . , i2n+1) ∈ R2n+1, and to each simplex
{a j0 ,a j1 , . . . ,a jp} ∈ Φ we associate the Euclidean simplex {P j0 ,P j1 , . . . ,P jp} (ob-
serve that the points P ji with j = 0, . . . , p are linearly independent because p ≤
n < 2n + 1). Let K be the set of vertices and Euclidean simplexes obtained in
this way.

We begin by observing that K clearly satisfies condition 1 of the definition of
Euclidean simplicial complexes. Let us prove that condition 2 is also valid. Let σp

and σq be two Euclidean simplexes of K with r common vertices; altogether σp and
σq have p + q− r+ 2 vertices. Because p + q− r + 2 ≤ 2n + 2, these vertices form
an Euclidean simplex of R2n+1 having σp and σq as faces; hence, σp ∩σq is either
empty (if r = 0) or a common face of σp and σq.

Therefore, K is an Euclidean simplicial complex homeomorphic to |K|. �

The reader could ask whether Theorem (II.2.14) is the best possible result or else,
whether it is possible to realize all n-dimensional simplicial complexes in Euclidean
spaces of dimension less than 2n + 1. Clearly, a complex of dimension n must be
immersed in a space of dimension at least n. We shall now give two examples of one-
dimensional simplicial complexes (that is to say, graphs) that cannot be immersed
in R2.



58 II Simplicial Complexes

Let K3,3 be the complete bipartite graph over two sets of 3 vertices, also known
as utility graph: K3,3 = (X ,Φ) with X = {1,2,3,a,b,c} and

Φ = {{1},{2},{3},{a},{b},{c},{1,a},{1,b},{1,c},{2,a},{2,b},
{2,c},{3,a},{3,b},{3,c}}.

Figure II.7 shows its graphic representation (which however is not a geometric real-

a

1b

2

c 3 Fig. II.7

ization of K3,3 because its distinct 1-simplexes have empty intersections). Another
way to represent K(3,3) is given in Fig. II.8. To ask whether or not K(3,3) can be

a 1

b 2

c 3

Fig. II.8

represented as a planar graph is a classical query; the answer would be affirmative
if one could determine an immersion of K(3,3) in R2 (but planarity is a weaker
property: It is enough to show that |K3,3| is homeomorphic to a subspace of R2).
Another example of a simplicial complex with an analogous property is given by
the complete graph over 5 vertices K5: X = {1,2,3,4,5} and Φ is the set of all
nonempty subsets of X with at most 2 elements. Figure II.9 is a standard graphic
representation of this graph. It is not difficult to prove that both K3,3 and K5 cannot
be immersed in R2.
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Fig. II.9

II.2.3 The Homology Functor

We now define the homology functor

H∗(−;Z) : Csim → AbZ,

another important functor with domain Csim.
Let K = (X ,Φ) be an arbitrary simplicial complex. We begin our work by giving

an orientation to the simplexes of K. Let σn = {x0,x1, . . . ,xn} be an n-simplex
of K; the elements of σn can be ordered in (n + 1)! different ways. We say that
two orderings of the elements of σn are equivalent whenever they differ by an even
permutation; an orientation of σn is an equivalence class of orderings of the vertices
of σn, provided that n > 0. An n-simplex σn = {x0,x1, . . . ,xn} has two orientations.
A 0-simplex has clearly only one ordering; its orientation is given by ±1.

If σn = {x0,x1, . . . ,xn} is oriented, the simplex {x1,x0, . . . ,xn} for example, is
denoted with −σ . If n≥ 1, a given orientation of σn = {x0,x1, . . . ,xn} automatically
defines an orientation in all of its (n−1)-faces: For example, if σ2 = {x0,x1,x2} is
oriented by the ordering x0 < x1 < x2, its oriented 1-faces are

{x1,x2} , {x2,x0} = −{x0,x2} and {x0,x1}.

More generally, if σn = {x0,x1, . . . ,xn} is oriented by the natural ordering of the
indices of its vertices, its (n−1)-face

σn−1,i = {x0,x1, . . . , x̂i, . . . ,xn} = {x0,x1, . . . ,xi−1,xi+1, . . . ,xn}

(opposite to the vertex xi with i = 0, . . . ,n) has an orientation given by (−1)iσn−1,i;
we say that σn−1,i is oriented coherently to σn if i is even, and is oriented coherently
to −σn if i is odd. We observe explicitly that the symbol ̂ over the vertex xi means
that such vertex has been eliminated.

We are now ready to order a simplicial complex K = (X ,Φ). We recall that the
technique used to give an orientation to a simplex was first to order its vertices in
all possible ways, and then choose an ordering class (there are two possible classes:
the class in which the orderings differ by an even permutation, and that in which the
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orderings differ by an odd permutation). Now let us move to K. Begin by taking a
partial ordering of the set X in such a way that the set of vertices of each simplex
σ ∈ Φ is totally ordered; in this way, we obtain an ordering class – that is to say,
an orientation – for each simplex. A simplicial complex whose simplexes are all
oriented is said to be oriented.

Let K = (X ,Φ) be an oriented simplicial complex. For every n ∈Z, with n ≥ 0,
let Cn(K) be the free Abelian group defined by all linear combinations with coef-
ficients in Z of the oriented n-simplexes of K; in other words, if {σ i

n} is the fi-
nite set of all oriented n-simplexes of K, then Cn(K) is the set of all formal sums
∑i miσ i

n , mi ∈Z (called n-chains), together with the addition law

∑
i

piσ i
n +∑

i
qiσ i

n := ∑
i
(pi + qi)σ i

n.

If n < 0, we set Cn(K) = 0. Now, for every n ∈ Z, we define a homomorphism
∂n = ∂ K

n : Cn(K) −→Cn−1(K) as follows: if n ≤ 0, ∂n is the constant homomor-
phism 0; if n ≥ 1, we first define ∂n over an oriented n-simplex {x0,x1, . . . ,xn}
(viewed as an n-chain) as

∂n({x0,x1, . . . ,xn}) =
n

∑
i=0

(−1)i {x0, . . . , x̂i, . . . ,xn} ;

finally, we extend this definition by linearity over an arbitrary n-chain of oriented
n-simplexes. The homomorphisms of degree −1, that we have just defined, are
called boundary homomorphisms.

(II.2.15) Lemma. For every n ∈Z, the composition ∂n−1∂n = 0.

Proof. The result is obvious if n = 1. Let {x0,x1, . . . ,xn} be an arbitrary oriented
n-simplex with n ≥ 2. Then

∂n−1∂n({x0,x1, . . . ,xn}) = ∂n−1

n

∑
i=0

(−1)i{x0, . . . , x̂i, . . . ,xn}

= ∑
j<i

(−1)i(−1) j{x0, . . . , x̂ j, . . . , x̂i, . . . ,xn}

+ ∑
j>i

(−1)i(−1) j−1{x0, . . . , x̂i, . . . , x̂ j, . . . ,xn}.

This summation is 0 because its addendum {x0, . . . , x̂ j, . . . , x̂i, . . . ,xn} appears twice,
once with the sign (−1)i(−1) j and once with the sign (−1)i(−1) j−1. �

This important property of the boundary homomorphisms implies that, for every
n∈Z, the image of ∂n+1 is contained in the kernel of ∂n; using the notation Zn(K) =
ker∂n and Bn(K) = im∂n+1, we conclude that Bn(K)⊂ Zn(K) for every n∈Z. Thus,
to each integer n ≥ 0, we can associate the quotient group

Hn(K;Z) = Zn(K)/Bn(K);

to each n < 0, we associate Hn(K;Z) = 0.
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(II.2.16) Definition. An n-chain cn ∈ Cn(K) is an n-cycle (or simply cycle) if
∂n(cn) = 0; thus Zn(K) is the set of all n-cycles. An n-chain cn, for which we can
find an (n+1)-chain cn+1 such that cn = ∂n+1(cn+1), is an n-boundary; thus, Bn(K)
is the set of all n-boundaries. Two n-chains cn and c′n are said to be homologous if
cn − c′n ∈ Bn(K).

What we have just described is a method to associate a graded Abelian group

H∗(K;Z) = {Hn(K;Z) |n ∈Z}

to any oriented simplicial complex K ∈ Csim. To define a functor on Csim we must
see what happens to the morphisms; we proceed as follows. Let f : K = (X ,Φ) →
L = (Y,Ψ ) be a simplicial function (K and L have a fixed orientation). We first
define

Cn( f ) : Cn(K) −→Cn(L)

on the simplexes by

Cn( f )({x0, . . . ,xn}) =
{ { f (x0), . . . , f (xn)}, (∀i �= j) f (xi) �= f (x j)

0, otherwise

and then extend Cn( f ) linearly over the whole Abelian group Cn(K). It is easy to
prove that ∂ L

n Cn( f ) = Cn−1( f )∂ K
n , for every n ∈ Z (one can verify this on a single

n-simplex). We now define

Hn( f ) : Hn(K;Z) −→ Hn(L;Z)
z+ Bn(K) �→Cn( f )(z)+ Bn(L)

for every n ≥ 0. We begin by observing that Cn( f )(z) is a cycle in Cn(L): in fact,
since z is a cycle,

∂ L
n Cn( f )(z) = Cn−1( f )∂ K

n (z) = 0 .

On the other hand, we note that Hn( f ) is well defined: let us assume that z− z′ =
∂ K

n+1(w); then

Cn( f )(z− z′) = Cn( f )∂ K
n+1(w) = ∂ L

n+1Cn+1( f )(w)

and thus Cn( f )(z − z′) ∈ Bn(L); from this, we conclude that Hn( f )((z − z′) +
Bn(K)) = 0.

If n < 0, we set Hn( f ) = 0; in this way, we obtain a homomorphism Hn( f )
between Abelian groups, for every n ∈Z. The reader is invited to prove that

Hn(1K) = 1Hn(K) e Hn(g f ) = Hn(g)Hn( f )

for every n ∈Z.

(II.2.17) Remark. The construction of the homology groups Hn(K;Z) is indepen-
dent from the orientation of K, up to isomorphism. In fact, suppose that O and O′
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are two distinct orientations of K and denote by KO and KO′
the complex K together

with the orientations O and O′, respectively.
The simplexes of KO are denoted by σ , and those of KO′

, by σ ′. Now define
φn : Cn(KO) → Cn(KO′

) as the function taking a simplex σn into the simplex σ ′
n

if O and O′ give the same orientation to σn, and taking σn into −σ ′
n if O and O′

give opposite orientations to σn; next, extend φn by linearity over the whole group
Cn(KO). It is easy to prove that φn is a group isomorphism. Moreover, for every
n ∈ Z, ∂nφn = φn−1∂n. For a given n-simplex σn of KO, we have two cases to
consider:
Case 1: O and O′ give the same orientation to σn; then

∂nφn(σn) = ∂n(σ ′
n) =

n

∑
i=0

(−1)iσ ′
n−1,i

φn−1∂n(σn) = φn−1(
n

∑
i=0

(−1)iσn−1,i) =
n

∑
i=0

(−1)iσ ′
n−1,i;

Case 2: O and O′ give different orientations to σn; then

∂nφn(σn) = ∂n(−σ ′
n) =

n

∑
i=0

(−1)i+1σ ′
n−1,i

φn−1∂n(σn) = φn−1(
n

∑
i=0

(−1)i+1σn−1,i) =
n

∑
i=0

(−1)i+1σ ′
n−1,i.

Similar to what we did to define the homomorphism Hn( f ), we can prove that φn

induces a homomorphism

Hn(φn) : Hn(KO;Z) −→ Hn(KO′
;Z)

which is actually an isomorphism.

Therefore, up to isomorphism, the orientation given to a simplicial complex has
no influence on the definition of the group Hn(K;Z); thus, we forget the orientation
(however, we note that in certain questions it cannot be ignored). With this, we
define the covariant functor

H∗(−;Z) : Csim −→ AbZ

by setting

H∗(K;Z) = {Hn(K;Z) | n ∈Z} and H∗( f ) = {Hn( f ) | n ∈Z}

on objects and morphisms, respectively. The graduate Abelian group H∗(K;Z) is
the (simplicial) homology of K with coefficients in Z.

We are going to compute the homology groups of the simplicial complex T 2

depicted in Fig. II.10 and whose geometric realization is the two-dimensional torus.
We begin by orienting T 2 so that we go clockwise around the boundary of each
2-simplex. To simplify the notation, let us write Ci(T 2) as Ci (the same for the
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0 1 2 0

4 7 8 4

3 5 6 3

0 1 2 0

Fig. II.10 A triangulation
of the torus with oriented
simplexes

groups of boundaries and cycles). We notice that C2
∼=Z18, C1

∼= Z27, C0
∼=Z9. We

represent the boundary homomorphisms in the next diagram

0 �� C2
∂2 �� C1

∂1 �� C0 �� 0 .

Clearly, each vertex (and hence, each 0-chain) is a cycle; hence, Z0 = C0. The
elements {0}, {1}−{0}, . . .{8}− {0} form a basis of Z0. Any two vertices can
be connected by a sequence of 1-simplexes and so the 0-cycles {1}− {0}, . . . ,
{8}−{0} are 0-boundaries. Since the boundary of a generic 1-simplex {i, j} can
be written as

∂1 ({i, j}) = { j}−{i}= { j}−{0}− ({i}−{0}),

we have that B0 ⊂ Z0 is generated by {1}−{0}, . . . , {8}−{0} and thus,

H0(T 2;Z) ∼= Z .

The homology class of any vertex is a generator of this group.
Next, we compute H1(T 2;Z). The two 1-chains

z1
1 = {0,3}+{3,4}+{4,0} and z2

1 = {0,1}+{1,2}+{2,0}

are cycles and generate (in Z1) a free Abelian group of rank 2 which we denote by
S ∼= Z⊕Z. Let z ∈ Z1 be a 1-cycle z = ∑i kiσ i

1, in which σ i
1 are the 1-simplexes

and ki ∈ Z. By adding suitable multiples of 2-simplexes, it is possible to find a
1-boundary b such that the 1-cycle z − b does not contain the terms, which cor-
respond to the diagonal 1-simplexes {0,5}, {1,6}, . . . , {7,2}, {8,0}. Similarly,
adding suitable pairs of adjacent 2-simplexes (those forming squares with a common
diagonal) it is possible to find a 1-boundary b′ such that the cycle z−b−b′ contains
only the terms corresponding to the 1-simplexes {0,3}, {3,4}, {4,0},{0,1}, {1,2},
and {2,0} (we leave the details to the reader, as an exercise). Because z−b−b′ is a
1-cycle, it follows that z−b−b′ ∈ S. This argument shows that B1 +S = Z1. Let us
now suppose that B1 ∩S �= 0; then there exists a linear combination of 2-simplexes
∑ j h jσ j

2 such that ∑ j h j∂σ j
2 ∈ S. If two 2-simplexes σ i

2 and σ j
2 have a common
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1-simplex “internal” to the square of Fig. II.10, then they must have equal coeffi-
cients hi = h j. This implies that there exists h ∈ Z such that h j = h for each j,
that is to say, ∑ j h jσ j

2 = hz2 where z2 is the 2-chain ∑ j σ j
2 . It is easy to see that

∂ z2 = ∑ j ∂σ j
2 = 0 and so B1 ∩S = 0, implying that H1(T 2;Z) ∼= S ∼= Z2, with free

generators z1
1 and z2

1.
Finally, similar arguments show that any 2-cycle of C2 is a multiple of the 2-chain

z2 defined above (given by the sum of all oriented 2-simplexes of T 2) and therefore,
H2(T 2;Z) ∼= Z.

Exercises

1. Let U = {Ux|x ∈ X} be a finite open covering of a topological space B, and take
the set

Φ = {σ ⊂ X |
⋂

x∈σ
Ux �= /0}.

Prove that N(U ) = (X ,Φ) is a simplicial complex. This is the so-called nerve of U .

2. Let K = (X ,Φ) be a simplicial complex. For a given x ∈ X , let St(x) be the
complement in |K| of the union of all |σ | such that x �∈ σ , σ ∈ Φ . St(x) is called
star of x in |K|. Prove that S = {St(x) | x ∈ X} is an open covering of |K|, and
N(S ) = K.

3. Let X be a compact metric space and let ε be a positive real number. Take the set
Φ of all finite subsets of X with diameter less than ε . Prove that K = (X ,Φ) is a
simplicial complex (infinite).

4. Exhibit a triangulation of the following spaces:

a) Cylinder C – recall that the cylinder C is obtained from a rectangle by identifica-
tion of two opposite sides;

b) Möbius band M obtained from a rectangle by identification of the “inverse”
points of two opposite sides; more precisely, let S be the rectangle with vertices
(0,0), (0,1), (2,0), and (2,1) of R2; then

M = S/{(0,t)≡ (2,1− t)} , 0 ≤ t ≤ 1;

c) Klein bottle K obtained by identifying the “inverse” points of the boundary of the
cylinder C;

d) real projective plane RP2 obtained by the identification of the antipodal points
of the boundary ∂D2 ∼= S1 of the unit disk D2 ⊂R2;

e) G2 obtained by attaching two handles to the sphere S2; prove that G2 is homeo-
morphic to the space obtained from an octagon with the suitable identifications
of the edges of its border a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 .
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II.3 Introduction to Homological Algebra

In the previous section, we have seen that we can associate a graded Abelian
group C(K) = {Cn(K)} with any simplicial complex K and a homomorphism
∂n : Cn(K) → Cn−1(K), such that ∂n−1∂n = 0, to each integer n; these homomor-
phisms define a graded Abelian group H∗(K;Z) = {Hn(K;Z)}. All this can be
viewed in the framework of a more general and more useful context.

A chain complex (C,∂ ) is a graded Abelian group C = {Cn} together with
an endomorphism ∂ = {∂n} of degree −1, called boundary homomorphism3 ∂ =
{∂n : Cn → Cn−1}, such that ∂ 2 = 0; this means that, for every n ∈ Z, ∂n∂n+1 = 0.
Hence

Bn = im∂n+1 ⊂ Zn = ker∂n

and so we can define the graded Abelian group

H∗(C) = {Hn(C) = Zn/Bn | n ∈Z};

this is the homology of C.
A chain homomorphism between two chain complexes (C,∂ ) and (C′,∂ ′) is a

graded group homomorphism f = { fn : Cn → C′
n} of degree 0 commuting with the

boundary homomorphism, that is to say, for every n ∈Z, fn−1∂n = ∂ ′
n fn.

Chain complexes and chain homomorphisms form a category C, the category of
chain complexes.

It is costumary to visualize chain complexes as diagrams

· · · �� Cn+1
∂n+1

�� Cn
∂n �� Cn−1 �� · · ·

and their morphisms as commutative diagrams

· · · �� Cn+1
∂n+1

��

fn+1

��

Cn
∂n ��

fn

��

Cn−1 ��

fn−1

��

· · ·

· · · �� C′
n+1

∂ ′
n+1

�� C′
n

∂ ′
n �� C′

n−1
�� · · ·

The previous definitions are clearly inspired by what we did to define the homol-
ogy groups of a simplicial complex; indeed, we emphasize the fact that, for every
simplicial complex X , the graded Abelian group {Cn(K)|n ∈ Z} together with its
boundary homomorphism ∂ K = {∂ K

n |n ∈ Z} is a chain complex (C(K),∂ K). The
chain complex C(K) is said to be positive because its terms of negative index are 0.
In particular, for every simplicial function f : K → M, the homomorphism

C( f ) : C(K) →C(M)

is a chain homomorphism.

3 In some textbooks, it is called differential operator.



66 II Simplicial Complexes

An infinite sequence of Abelian groups

· · · �� Gn+1
fn+1

�� Gn
fn

�� Gn−1 �� · · ·

is said to be exact if and only if, for every n ∈Z, im fn+1 = ker fn.
The exact sequences with only three consecutive nontrivial groups

. . . �� 0 �� Gn+1
fn+1

�� Gn
fn

�� Gn−1 �� 0 �� . . .

are particularly important; in that case, fn+1 is injective and fn is surjective. These
sequences are called short exact sequences. The previous short exact sequence is
also written up in the form

Gn+1 ��
fn+1

�� Gn
fn

�� �� Gn−1.

The concept of short exact sequence of groups can be easily exported to the
category C of chain complexes: a sequence of chain complexes

(C,∂ ) ��
f

�� (C′,∂ ′)
g

�� �� (C′′,∂ ′′)

is exact if every horizontal line of its representative diagram

...

∂n+2

��

...

∂ ′
n+2

��

...

∂ ′′
n+2

��

Cn+1 ��
fn+1

��

∂n+1

��

C′
n+1

gn+1
�� ��

∂ ′
n+1

��

C′′
n+1

∂ ′′
n+1

��

Cn ��
fn

��

∂n

��

C′
n

gn
�� ��

∂ ′
n

��

C′′
n

∂ ′′
n

��

Cn−1 ��
fn−1

��

∂n−1

��

C′
n−1

gn−1
�� ��

∂ ′
n−1

��

C′′
n−1

∂ ′′
n−1

��

...
...

...
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is exact and each square is commutative.
The next result is very important; it is the so-called Long Exact Sequence

Theorem.

(II.3.1) Theorem. Let

(C,∂ ) ��
f

�� (C′,∂ ′)
g

�� �� (C′′,∂ ′′)

be a short exact sequence of chain complexes. For every n ∈ Z, there exists a ho-
momorphism

λn : Hn(C′′) → Hn−1(C)

(called connecting homomorphism) making exact the following sequence of homol-
ogy groups

. . . �� Hn(C)
Hn( f )

�� Hn(C′)
Hn(g)

�� Hn(C′′)
λn �� Hn−1(C) �� . . . .

Proof. The proof of this theorem is not difficult. However, it is very long; we shall
divide it into several steps, leaving some of the proofs to the reader, as exercises.

1. Definition of λn. Take the following portion of the short exact sequence of chain
complexes:

Cn
��

fn
��

∂n

��

C′
n

gn
�� ��

∂ ′
n

��

C′′
n

∂ ′′
n

��

Cn−1 ��

fn−1

�� C′
n−1 gn−1

�� �� C′′
n−1

Let z be a cycle of C′′
n ; since gn is surjective, there exists a chain z̃ ∈ C′

n such
that gn(z̃) = z. Because the diagram is commutative,

gn−1∂ ′
n(z̃) = ∂ ′′

n gn(z̃) = ∂ ′′
n (z) = 0

and thus, ∂ ′
n(z̃)∈ kergn−1 = im fn−1; hence, there exists a unique chain c∈Cn−1

such that
fn−1(c) = ∂ ′

n(z̃).

Actually, c is a cycle because

fn−2∂n−1(c) = ∂ ′
n−1 fn−1(c) = ∂ ′

n−1∂ ′
n(z̃) = 0

and fn−2 is a monomorphism. It follows that we can define

λn : Hn(C′′) → Hn−1(C)

by setting λn[z] := [c].
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2. λn is well defined. We must verify that λn is independent from both the choice
of the cycle z representing the homology class and the chain z̃ mapped into z.
Let z′ ∈C′′ be a cycle such that [z] = [z′], and let z̃′ ∈C′

n be such that gn(z̃′) = z′;
moreover, take a cycle c′ in C′

n−1 satisfying the property fn−1(c′) = ∂ ′
n(z̃

′). The
definition of homology classes implies that there exists a chain b ∈ C′′

n+1 such
that ∂ ′′

n+1(b) = z− z′. Since gn+1 is an epimorphism, we can find a b̃ ∈ C′
n+1

such that gn+1(b̃) = b. Hence,

gn(z̃− z̃′ − ∂ ′
n+1(b̃)) = z− z′ − ∂ ′′

n+1(b) = 0

and thus, there exists a ∈Cn such that

fn(a) = z̃− z̃′ − ∂ ′
n+1(b̃).

At this point, we have that

fn−1(∂n(a)) = ∂ ′
n(z̃− z̃′ − ∂ ′

n+1(b̃)) = fn−1(c− c′)

and because fn−1 is injective, we conclude that c− c′ = ∂n(a). Therefore, c and
c′ represent the same homology class in Hn(C).

(II.3.2) Remark. The previous items 1. and 2. are typical examples of the
so-called “diagram chasing” technique. We suggest the reader to draw the
diagrams indicating the maps without their indices which, although necessary
for precision, are sometimes difficult to read; all this will help in following up
the arguments.

3. The sequence is exact. To prove the exactness of the sequence of homology
groups, we must show the following:

a. imHn( f ) = kerHn(g);
b. imHn(g) = kerλn;
c. imλn = kerHn−1( f ).

We shall only prove (b), leaving the proof of the other cases to the reader. We
pick a class [z] ∈ Hn(C′′) and compute λnHn(g)([z]) = λn[gn(z)]. Since we can
take any (!) element of C′

n which is projected onto gn(z), we choose z itself;
given that ∂ ′′

n (z) = 0, we conclude that λn[gn(z)] = 0, that is to say, imHn(g) ⊆
kerλn. Conversely, let [z] be a homology class of Hn(C′′) such that λn[z] = 0;
the definition of λn implies that there exist z̃ ∈C′

n and a cycle c ∈Cn−1 such that

gn(z̃) = z and Cn−1( f )(c) = ∂ ′
n(z̃).

Because λn[z] = 0, there exists c̃ ∈Cn such that c = ∂n(c̃). Notice that

∂ ′
n(Cn( f )(c̃)− z̃) = 0

and moreover, Hn(g)(Cn(g)(c̃)− z̃) = z; hence, kerλn ⊆ imHn(g).

�
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The connecting homomorphisms λn are natural in the following sense:

(II.3.3) Theorem. Let

(C,∂ ) ��
f

��

h

��

(C′,∂ ′)
g

�� ��

k

��

(C′′,∂ ′′)

�

��

(C̄, d̄) ��

f̄
�� (C̄′, d̄′) ḡ

�� �� (C̄′′, d̄′′)

be a commutative diagram of chain complexes in which the horizontal lines are
short exact sequences. Then, for every n ∈Z, the next diagram commutes.

Hn(C′′)
λn ��

Hn(�)
��

Hn−1(C)

Hn−1(h)

��

Hn(C̄′′)
λ̄n

�� Hn−1(C̄)

The proof of this theorem is easy and is left to the reader.
Let f ,g : (C,∂ ) → (C′,∂ ′) be chain complex morphisms. We say that f and g

are chain homotopic if there is a graded group morphism of degree + 1, s : C →C′
such that f −g = d′s+ sd; more precisely

(∀n ∈Z) fn −gn = ∂ ′
n+1sn + sn−1∂n .

The morphism s : C → C′ is a chain homotopy between f and g (or from f to g).
Notice that the chain homotopy relation just defined is an equivalence relation in
the set

C((C,∂ ),(C′,∂ ′)) .

In particular, a morphism f ∈ C((C,∂ ),(C′,∂ ′)) is chain null-homotopic if there
exists a chain homotopy s such that f = d′s + sd (it follows that f and g are chain
homotopic if and only if f −g is chain null-homotopic).

(II.3.4) Proposition. If f ,g ∈ C((C,∂ ),(C′,∂ ′)) are chain homotopic, then

(∀n) Hn( f ) = Hn(g) : HnC → HnC′.

Proof. For any cycle z ∈ ZnC, we have that

Hn f [z] = [ fn(z)] = [gn(z)]+ [∂ ′
n+1sn(z)]+ [sn−1∂n(z)] = Hng[z];

we now notice that ∂nz = 0 and that ∂ ′
n+1sn(z) is a boundary and thus, homologous

to zero. �
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Please notice that if f is chain null-homotopic, then Hn( f ) = 0 for every n.
A chain complex (C,∂ ) is free if all of its groups are free Abelian; it is positive

if Cn = 0 for every n < 0. A positive chain complex (C,∂ ) is augmented (to Z) if
there exists an epimorphism

ε : C0 → Z

such that ε∂1 = 0. The homomorphism ε is the augmentation (homomorphism).

(II.3.5) Remark. The chain complex C(K) associated with a simplicial complex K
is free and positive. Moreover, the function

ε : C0(K) →Z, Σn
i=1ai{xi} �→ Σn

i=1ai

is an augmentation.

A chain complex (C,∂ ) is acyclic if, for every n ∈Z, ker∂n = im∂n+1, that is to
say, if the sequence

· · · �� Cn+1
∂n+1

�� Cn
∂n �� Cn−1 �� · · ·

is exact. A positive chain complex (C,∂ ) with augmentation is acyclic if the
sequence

· · · �� Cn
∂n �� · · · ∂1 �� C0

ε �� �� Z

is exact.
Let (C,∂ ) and (C′,∂ ′) be two positive augmented chain complexes. A morphism

f ∈ C((C,∂ ),(C′,∂ ′)) is an extension of a homomorphism f̄ : Z→ Z if the next
diagram commutes.

· · · �� C1
∂1 ��

f1

��

C0
ε �� ��

f0

��

Z

f̄

��· · · �� C′
1

∂ ′
1 �� C′

0
ε ′ �� �� Z

(II.3.6) Theorem. Let (C,∂ ) and (C′,∂ ′) be positive augmented chain com-
plexes; assume that (C,∂ ) is free and (C′,∂ ′) is acyclic. Then any homomor-
phism f̄ : Z → Z admits an extension f : (C,∂ ) → (C′,∂ ′), unique up to chain
homotopy.

Proof. Since the augmentation ε ′ : C′
0 →Z is surjective, for every basis element x0

of C0, we choose an element of C′
0 which is taken onto f̄ ε(x0) by ε ′; in this way, we

obtain a homomorphism f0 : C0 →C′
0 such that f̄ ε = ε ′ f0. We now take an arbitrary

basis element x1 of C1; because
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ε ′ f0∂1(x1) = f ε∂1(x1) = 0

and im∂ ′
1 = kerε ′, there exists y′1 ∈ C′

1 such that ∂ ′
1(y

′
1) = f0∂1(x1). This defines a

homomorphism f1 : C1 →C′
1 such that f0∂1 = ∂ ′

1 f1.
Assume that we have inductively constructed the homomorphisms fi : Ci → C′

i
commuting with the boundary homomorphisms for i≤ n; now, take the commutative
diagram

· · · �� Cn+1
∂n+1

�� Cn

fn

��

∂n �� Cn−1 ��

fn−1

��

· · ·

· · · �� C′
n+1

∂ ′
n+1

�� C′
n

∂ ′
n �� C′

n−1
�� · · ·

For every basis element xn+1 of Cn+1

∂ ′
n fn∂n+1(xn+1) = fn−1∂n∂n+1(xn+1) = 0

that is to say, fn∂n+1(xn+1) ∈ ker∂ ′
n. It follows that fn∂n+1(xn+1) is an n-cycle

of (C′,∂ ′); but this chain complex is acyclic and so there exists yn+1 ∈ C′
n+1

such that ∂ ′(yn+1) = fn∂ (xn+1). By extending linearly xn+1 �→ yn+1, we obtain a
homomorphism

fn+1 : Cn+1 →C′
n+1 , d′ fn+1 = fnd.

This concludes the inductive construction.
Suppose that g : (C,∂ ) → (C′,∂ ′) is another extension of f̄ . Then, for any arbi-

trary generator x0 of C0,
ε ′( f0 −g0)(x0) = 0;

since kerε ′ = im∂ ′
1, there exists an element y1 ∈C′

1 such that ∂ ′
1(y) = ( f0 −g0)(x0).

We define s0 : C0 → C′
1 by s0(x0) = y1 on the generators and extend this function

linearly over the entire group C0; in this way, we obtain a homomorphism s0 : C0 →
C′

1 such that ∂ ′
1s1 = f0 − g0. Let us assume that, for every i = 1, · · · ,n, we have

defined the homomorphisms si : Ci →C′
i+1 satisfying the condition

∂ ′
i+1si + si−1∂i = fi −gi.

For any generator xn+1 of Cn+1

∂ ′
n+1( fn+1 −gn+1 − sn∂n+1)(xn+1) = 0

(because ∂ ′
n+1sn + sn−1∂n = fn −gn); thus, there exists yn+2 ∈C′

n+2 such that

( fn+1 −gn+1− sn∂n+1)(xn+1) = ∂ ′
n+2(yn+2).

In this fashion, we construct a homomorphism sn+1 : Cn+1 → C′
n+2 and, in the end,

we obtain a chain homotopy from f to g. �
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(II.3.7) Corollary. Let (C,∂ ) and (C′,∂ ′) be two positive augmented chain com-
plexes; assume (C,∂ ) to be free and (C′,∂ ′) to be acyclic. If f : (C,∂ ) → (C′,∂ ′) is
an extension of the trivial homomorphism 0 :Z→Z, then f is chain null-homotopic.

The next result gives a good criterion to check if a positive, free, augmented
chain complex is acyclic.

(II.3.8) Lemma. Let (C,∂ ) be a positive, free, augmented chain complex with aug-
mentation homomorphism

ε : C0 −→ Z.

Then, (C,∂ ) is acyclic if and only if the following conditions hold true:

I. There exists a function η : Z→C0 such that εη = 1.
II. There exists a chain homotopy s : C →C such that

1. ∂1s0 = 1−ηε ,
2. (∀n ≥ 1) ∂n+1sn + sn−1∂n = 1.

Proof. Suppose that C is acyclic. Since ε : C0 → Z is a surjection, there exists
x ∈C0 such that ε(x) = 1. Define

η : Z→C0 , n �→ nx.

Clearly εη = 1.
The homomorphisms 1: Z→ Z and 0: Z→ Z can be extended trivially to the

chain homomorphisms 1,0: (C,∂ ) → (C,∂ ); because of Theorem (II.3.6), there
exists a chain homotopy s : C →C satisfying conditions 1 and 2.

Conversely, assume that there exists a chain homotopy s : C → C′, and a
homomrophism η with properties 1. and 2.; because of Noether’s Homomorphism
Theorem,

C0/kerε ∼= Z;

since ε∂1 = 0, we have that im∂1 ⊂ kerε and, from ∂1s0 = 1−ηε , we conclude that
every x ∈C0 can be written as

x = ∂1s0(x)+ ηε(x).

Hence for every x ∈ kerε , we have that x = ∂1s0(x), that is to say, kerε ⊂ im∂1, and
therefore

H0(C) ∼= Z.

Finally, because
∂n+1sn + sn−1∂n = 1

in all positive dimensions, it follows that Hn(C) = 0 for every n > 0. Thus, (C,∂ ) is
acyclic. �

Theorem (II.3.6) and Corollary (II.3.7) require (C′,∂ ′) to be acyclic; this require-
ment can be replaced by a more interesting condition within the framework of the so-
called acyclic carriers. The following definition is needed: given (C,∂ ),(C′,∂ ′)∈ C,
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we say that (C′,∂ ′) is a (chain) subcomplex of (C,∂ ) if, for every n ∈ Z, C′
n is a

subgroup of Cn and ∂ ′
n = ∂n|C′

n; we use the notation (C′,∂ ′) ≤ (C,∂ ) to indicate
that (C′,∂ ′) is a subcomplex of (C,∂ ). Let (C,∂ ) be a free chain complex; for

each n ∈ Z, let {x(n)
λ | λ ∈ Λn} be a basis of Cn. Now, let (C′,∂ ′) be an arbitrary

chain complex. A chain carrier from (C,∂ ) to (C′,∂ ′) (relative to the choice of

basis) is a function S, which associates with each basis element x(n)
λ a subcomplex

(S(x(n)
λ ),∂S) ≤ (C′,∂ ′) satisfying the following properties:

1. (S(x(n)
λ ),∂S) is an acyclic chain complex.

2. If x is a basis element of Cn such that ∂x = ∑aλ x(n−1)
λ and aλ �= 0, then

(S(x(n−1)
λ ),∂S) ≤ (S(x),∂S).

We say that a morphism f ∈ C((C,∂ ),(C′,∂ ′)) has an acyclic carrier S if f (x(n)
λ ) ∈

S(x(n)
λ ) for every index λ and every n ∈ Z. In this case, if x is a basis element, then

f (∂ (x)) ∈ S(x). The next result is the Acyclic Carrier Theorem.

(II.3.9) Theorem. Let (C,∂ ),(C′,∂ ′) ∈ C be positive augmented chain complexes;
suppose that (C,∂ ) is free and let S be an acyclic carrier from (C,∂ ) to (C′,∂ ′).
Then, any homomorphism f̄ : Z → Z has an extension f : (C,∂ ) → (C′,∂ ′) with
chain carrier S. The chain homomorphism f is uniquely defined, up to chain
homotopy.

Proof. Take any generator x0 of C0; let S(x0) ≤ (C′,∂ ′) be the acyclic subcomplex
defined by S. Notice that the restriction of ε ′ to S(x0)0 is an augmentation homo-
morphism for S(x0). Since such a restriction is a surjection, there exists y0 ∈ S(x0)0

such that ε ′(y0) = f̄ ε(x0); the usual argument determines f0 with carrier S.
We continue the proof using an induction procedure as in Theorem (II.3.6). As-

sume that, for every i ≤ n, we have constructed the homomorphisms fi : Ci → C′
i

that commute with the boundary homomorphisms. Notice that if xn+1 is an arbi-
trary generator of Cn+1

∂ ′
n fn∂n+1(xn+1) = fn−1∂n∂n+1(xn+1) = 0;

on the other hand, fn∂n+1(xn+1) belongs to the acyclic subcomplex

S(xn+1) ≤ (C′,∂ ′)

and thus there exists yn+1 ∈ C′
n+1 ∩ S(xn+1) such that d′(yn+1) = fnd(xn+1). The

function xn+1 �→ yn+1 can be linearly extended to the homomorphism

fn+1 : Cn+1 →C′
n+1

such that d′ fn+1 = fnd.
Also the proof of the second part follows the steps of the proof given in

Theorem (II.3.6). �
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(II.3.10) Corollary. Let (C,∂ ) and (C′,∂ ′) be given positive augmented chain com-
plexes and let (C,∂ ) be free. Then any chain homomorphism f : (C,∂ ) → (C′,∂ ′),
extending the trivial homomorphism 0: Z→ Z and having an acyclic carrier S, is
null-homotopic.

We prove now an important result known as Five Lemma.

(II.3.11) Lemma. Let the diagram of Abelian groups and homomorphisms

A
f

��

α
��

B
g

��

β
��

C
h ��

γ
��

D
k ��

δ
��

E

ε
��

A′ f ′
�� B′ g′

�� C′ h′ �� D′ k′ �� E ′

be commutative and with exact lines. If the homomorphisms α , β , δ , and ε are
isomorphisms, so is γ .

Proof. Let c ∈ C be such that γ(c) = 0; then δh(c) = h′γ(c) = 0 and because δ
is an isomorphism, h(c) = 0. In view of the exactness condition, there is a b ∈ B
with g(b) = c and g′β (b) = γg(b) = 0; thus, there exists a′ ∈ A′ such that f ′(a′) =
β (b). But

c = g(b) = gβ−1 f ′(a′) = g f α−1(a′) = 0

and so γ is injective. For an arbitrary c′ ∈C′,

kδ−1h′(c′) = ε−1k′h′(c′) = 0

and, hence, there exists c ∈C such that h(c) = δ−1h′(c′). Moreover,

h′(c′ − γ(c)) = h′(c′)− δδ−1h′(c′) = 0

and hence, there exists b′ ∈ B′ such that g′(b′) = c′ − γ(c). It follows that

γ(c + gβ−1(b′)) = γ(c)+ g′β β−1(b′) = c′

and so γ is also surjective. �

Exercises

1. A short exact sequence of Abelian groups

Gn+1 ��
fn+1

�� Gn
fn

�� �� Gn−1
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splits (or is split) if there exists a homomorphism hn−1 : Gn−1 → Gn such that
fnhn−1 = 1Gn−1 (or if there exists a homomorphism kn : Gn → Gn+1 such that
kn fn+1 = 1Gn+1 ). Prove that if the short exact sequence

Gn+1 ��
fn+1

�� Gn
fn

�� �� Gn−1

splits, then
Gn

∼= Gn+1 ⊕Gn−1.

2. Prove Theorem (II.3.3).

II.4 Simplicial Homology

In this section, we give some results which allow us to study more in depth the
homology of a simplicial complex. We begin with some important remarks on the
homology of a simplicial complex K. The groups Cn(K) of the n-chains are free,
with rank equal to the (finite) number of n-simplexes of K; hence, also the subgroups
Zn(K) and Bn(K) of Cn(K) are free, with a finite number of generators. Finally,
the homology groups Hn(K) are Abelian and finitely generated; therefore, by the
decomposition theorem for finitely generated Abelian groups, they are isomorphic
to direct sums

Zβ (n)⊕Zn(1)⊕ . . .⊕Zn(k)

where Zn(i) is cyclic of order n(i). The number β (n) – equal to the rank of the
Abelian group Hn(K) – is the nth-Betti number of the complex K.

Let p be the dimension of the simplicial complex K; for each 0 ≤ n ≤ p, let s(n)
be the number of n-simplexes of K (remember that K is finite). Hence, the rank
of the free Abelian group Cn(K) is s(n). We indicate with z(n) and b(n) the ranks of
the groups Zn(K) and Bn(K), respectively, where n = 0, . . . , p. Since the boundary
homomorphism ∂n : Cn(K)→Cn−1(K) is a surjection on Bn−1(K), by Nöther’s Ho-
momorphism Theorem, for each n ≥ 1

(1) s(n)− z(n) = b(n−1);

if n = 0, we have s(0) = z(0) because C0(K) = Z0(K) and B−1(K) = 0; on the other
hand, Hn(K,Z) = Zn(K)/Bn(K) and so

(2) β (n) = z(n)−b(n)

for n ≥ 0. Subtracting (2) from (1) (when n ≥ 1) it follows that

(3) s(n)−β (n) = b(n)−b(n−1).
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If we do the alternate sum of the equalities (3) together with s(0)−β (0) = b(0), we
obtain

p

∑
n=0

(−1)n(s(n)−β (n)) = ±β (p);

since Cp+1(K) = 0, we have that β (p) = 0 and so the equality

p

∑
n=0

(−1)ns(n) =
p

∑
n=0

(−1)nβ (n)

holds true. The number

χ(K) =
p

∑
n=0

(−1)nβ (n)

is the Euler-Poincaré characteristic of K; this may be useful in determining the
homology of some finite simplicial complexes.

Let L be a simplicial subcomplex of a simplicial complex K; we now ask whether
it is possible to compare the homology of a subcomplex L ⊂K with the homology of
K. The (positive) answer lies with the exact homology sequence of the pair (K,L).
Let us see how we may find this exact sequence. For every n ≥ 0, consider the
quotient of the chain groups Cn(K)/Cn(L) and define

∂ K,L
n : Cn(K)/Cn(L) →Cn−1(K)/Cn−1(L)

by
∂ K,L

n (c +Cn(L)) = (∂ K
n (c))+Cn−1(L).

This is a well-defined formula because, if c′ is another representative of c +Cn(L),
then, c− c′ ∈Cn(L) and

∂ K
n (c− c′) = ∂ L

n (c− c′) ∈Cn−1(L) ;

hence, ∂ K,L
n (c +Cn(L)) = ∂ K,L

n (c′ +Cn(L)). The reader can easily verify that the
homomorphisms ∂ K,L

n are boundary homomorphisms and so that

C(K,L) = {Cn(K)/Cn(L),∂ K,L
n }

is a chain complex whose homology groups Hn(K,L;Z) are the so-called relative
homology groups of the pair (K,L). We point out that

Hn(K,L;Z) = Zn(K,L)/Bn(K,L)

where
Zn(K,L) = ker∂ K,L

n and Bn(K,L) = im∂ K,L
n+1.

Let CCsim be the category whose objects are pairs (K,L), where K is a simplicial
complex, L is one of its subcomplexes, and whose morphisms are pairs of simplicial
functions

(k, �) : (K,L) −→ (K′,L′)
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such that k : K → K′ and � : L → L′ is the restriction of k to L. The reader can easily
verify that the relative homology determines a covariant functor

H(−,−;Z) : CCsim −→ AbZ.

The next result, which is an immediate application of the Long Exact Sequence
Theorem (II.3.1), is called Long Exact Homology Sequence Theorem; it relates
the homology groups of L, K, and (K,L) to each other.

(II.4.1) Theorem. Let (K,L) be a pair of simplicial complexes. For every n > 0,
there is a homomorphism

λn : Hn(K,L;Z) → Hn−1(L;Z)

(connecting homomorphism) that causes the following sequence of homology
groups

. . . → Hn(L;Z)
Hn(i)−→ Hn(K;Z)

q∗(n)−→ Hn(K,L;Z) λn−→ Hn−1(L;Z) → . . . ,

to be exact; here, Hn(i) is the homomorphism induced by the inclusion i : L→K and
q∗(n) is the homomorphism induced by the quotient homomorphism qn : Cn(K) →
Cn(K)/Cn(L).

Proof. For every n > 0, let

qn : Cn(K) →Cn(K)/Cn(L)

be the quotient homomorphism. With the given definitions, it is easily proved that

(∀n ≥ 0) ∂ K,L
n qn = qn−1∂ K

n

and therefore,
q = {qn} : C(K) →C(K,L)

is a homomorphism of chain complexes. We note furthermore that for each n ≥ 0,
the sequence of Abelian groups

Cn(L) ��
Cn(i)

�� Cn(K)
qn

�� �� Cn(K)/Cn(L)

is a short exact sequence and therefore, we have a short exact sequence of chain
complexes

C(L) ��
C(i)

�� C(K)
q

�� �� C(K,L);

the result follows from Theorem (II.3.1). �

The exact sequence of homology groups described in the statement of Theorem
(II.4.1) is the exact homology sequence of the pair (K,L).
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In the context of the categories Csim and CCsim, the naturality of the connecting
homomorphism

λn : Hn(K,L;Z) → Hn−1(L;Z)

can be explained as follows. We start with a result whose proof is easily obtained
from the given definitions and is left to the reader.

(II.4.2) Theorem. Let (k, �) : (K,L) → (K′,L′) be a given simplicial function.
Then, for every n ≥ 1, the following diagram commutes.

Hn(K,L;Z)
λn ��

Hn(k, �)

��

Hn−1(L;Z)

Hn−1(�)

��

Hn(K′,L′;Z)
λn

�� Hn−1(L′;Z)

Let
pr2 : CCsim → Csim

be the functor defined by

(∀(K,L) ∈ CCsim) pr2(K,L) = L

and
(∀(k, �) ∈ CCsim((K,L),(K′,L′))) pr2(k, �) = � .

For each n ≥ 0, take the covariant functors

Hn(−,−) : CCsim → Gr

and
Hn−1(−)◦ pr2 : CCsim → Gr .

Theorem (II.3.3) states that

λn : Hn(−,−;Z) → Hn−1(−;Z)◦ pr2

is a natural transformation (see the definition of natural transformation of functors
in Sect. I.2).

Computing the homology of a complex K can be made easier by the exact ho-
mology sequence, provided that we can compute the homology of L and the relative
homology of (K,L). Another very useful technique for computing the homology of
a simplicial complex is using the Mayer–Vietoris sequence. Consider two simpli-
cial complexes K1 = (X1,Φ1) and K2 = (X2,Φ2) such that K1 ∩K2 and K1 ∪K2 are
simplicial complexes; in addition, K1 ∩K2 must be a subcomplex of both K1 and K2.
The inclusions

Φ1 ∩Φ2 ↪→ Φα , Φα ↪→ Φ1 ∪Φ2 , α = 1,2
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define simplicial functions

iα : K1 ∩K2 −→ Kα , jα : Kα −→ K1 ∪K2 , α = 1,2

which, in turn, define the homomorphisms

ı̃(n) : Cn(K1 ∩K2) →Cn(K1)⊕Cn(K2)
c �→ (Cn(i1)(c),Cn(i2)(c)) ,

j̃(n) : Cn(K1)⊕Cn(K2) →Cn(K1 ∪K2)
(c,c′) �→Cn( j1)(c)−Cn( j2)(c′).

These homomorphisms have the following properties:

1. ı̃(n) is injective;
2. j̃(n) is surjective;
3. im ı̃(n) = ker j̃(n);
4. (∂ K1

n ⊕ ∂ K2
n )ı̃(n) = ı̃(n−1)∂ K1∩K2

n ;
5. j̃(n−1)(∂ K1

n ⊕ ∂ K2
n ) = ∂ K1∪K2

n j̃(n).

In this way, the chain complex sequence

0 →C(K1 ∩K2)
ı̃−→C(K1)⊕C(K2)

j̃−→C(K1 ∪K2) → 0

is short exact.
Theorem (II.3.1) enables us to state the next theorem, known as Mayer–Vietoris

Theorem:

(II.4.3) Theorem. For every n ∈Z, there is a homomorphism

λn : Hn(K1 ∪K2;Z) −→ Hn−1(K1 ∩K2;Z)

such that the infinite sequence of homology groups

. . . → Hn(K1 ∩K2;Z)
Hn(ı̃)−→ Hn(K1;Z)⊕Hn(K2;Z)

Hn(j̃)−→ Hn(K1 ∪K2;Z) λn−→ Hn−1(K1 ∩K2;Z) → . . .

is exact.

We now give some results on the homology of certain simplicial complexes.
Given a simplicial complex K = (X ,Φ), we say that two vertices x,y ∈ X are con-
nected if there is a sequence of 1-simplexes

{{xi
0,x

i
1} ∈ Φ, i = 0, . . . ,n}

where x0
0 = x,xn

1 = y, and xi
1 = xi+1

0 ; we then have an equivalence relation on the set
X , braking it down into a union of disjoint subsets X = X1 �X2 � . . .�Xk. The sets
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Φi = {σ ∈ Φ|(∃x ∈ Xi|x ∈ σ)} , i = 1, . . . ,k

are disjoint; moreover, the pairs Ki = (Xi,Φi), i = 1, . . . ,k, called connected compo-
nents of K, are simplicial subcomplexes of K. Hence, the relation of connectedness
subdivides the complex K into a union of disjoint simplicial subcomplexes of K.
From this point of view, a complex K is connected if and only if it has a unique
connected component.

(II.4.4) Lemma. A simplicial complex K is connected if and only if |K| is connected.

Proof. Suppose K to be connected and let p and q be any two points of |K|. Join
p to a vertex x of its carrier s(p) by means of the segment with end points p and x;
this segment is contained in |s(p)| and is therefore a segment of |K|; similarly, join
q to a vertex y of its carrier s(q). However, the vertices x and y are also vertices of K
and since K is connected, there is a path of 1-simplexes of K which links x to y. In
this manner, we obtain a path of |K| that links p to q; hence, |K| is path-connected
and so, |K| is connected (see Theorem (I.1.21)).

Conversely, suppose |K| to be connected and let Ki be a connected component
of K; since Ki and K � Ki are subcomplexes of K, we have that |Ki| is open and
closed in |K|; since |K| is connected, |Ki| = |K|, that is to say, Ki = K and so, K is
connected. �

The reader is encouraged to review the results on connectedness and path-
connectedness in Sect. I.1; note that these two concepts are equivalent for polyhedra.

(II.4.5) Lemma. The following properties regarding a simplicial complex K =
(X ,Φ) are equivalent:

1. K is connected;
2. H0(K;Z) �Z;
3. the kernel of the augmentation homomorphism

ε : C0(K) → Z ,
n

∑
i=1

gi{xi} �→
n

∑
i=1

gi

coincides with the group B0(K).

Proof. 1 ⇒ 3: We first notice that the inclusion

B0(K) ⊂ ker ε

is always true: indeed,

ε

(

∂1

(

k

∑
i=0

gi{xi
0,x

i
1}
))

=
k

∑
i=0

gi −
k

∑
i=0

gi = 0.

Let x be a fixed vertex of K. The connectedness of K means that, for every ver-
tex y of K, the 0-cycles {x} and {y} are homological and so, for every 0-chain
c0 = ∑k

i=0 gi{xi}, there exists a 1-chain c1 such that
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k

∑
i=0

gi{xi}−
(

k

∑
i=0

gi

)

{x} = ∂1(c1).

Therefore, it is clear that c0 ∈ ker ε implies c0 ∈ B0(K).
3 ⇒ 2: Given two homological 0-cycles z0 and z′0, it follows from the property

z0 − z′0 ∈ B0(K) that ε(z0) = ε(z′0) and so we may define the homomorphism

θ : H0(K;Z) → Z , z0 + B0(K) �→ ε(z0)

which is easily seen (by hypothesis 3) to be injective. The surjectivity of θ follows
immediately; in fact, for every g ∈ Z, we have θ (g{x}+ B0(K)) = g, where x ∈ X
is a fixed vertex.

2 ⇒ 1: Let K = K1 �K2 � . . .�Kk be the decomposition of K into its connected
components. We obtain

H0(K;Z) �
k

∑
i=1

H0(Ki;Z) �
k

∑
i=1

Z

from the given definitions and from what we have proved so far; however, since
H0(K;Z) �Z, we must have k = 1, which means that K is connected. �

The next three examples are examples of abstract simplicial complexes called
acyclic because they induce chain complexes which are acyclic (see Sect. II.3).

Homology of σ – Let σ be the simplicial complex generated by a simplex σ =
{x0,x1, . . . ,xn}. Since σ is connected, Lemma (II.4.5) ensures that H0(σ ,Z) = Z.
We wish to prove that Hi(σ ,Z) = 0 for every i > 0. With this in mind, we begin to
order the set of vertices, assuming that x0 is the first element. Then, for any integer
0 < j < n and any ordered simplex {xi0 , . . . ,xi j}, we define

k j({xi0 , . . . ,xi j} =
{ {x0,xi0 , . . . ,xi j} for i0 > 0

0 for i0 = 0

and linearly extend it to all j-chain of σ and therefore, to a homomorphism

k j : Cj(σ ) −→Cj+1(σ).

A simple computation (on the simplexes of σ ) shows that for every chain c ∈Cj(σ)

∂ j+1k j(c)+ k j−1∂ j(c) = c

and so any z j ∈ Zj(σ) is a boundary, that is to say, Hj(σ ,Z) ∼= 0. Regarding
Hn(σ ,Z), we note that σ , being the only n-simplex of σ , cannot be a cycle; conse-
quently, Zn(σ) ∼= 0.

Homology of a simplicial cone – Since σ = {x0,x1, . . . ,xn+1}, we call the sim-
plicial complex

C(σ) = •σ �{x1, . . . ,xn+1},
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obtained by removing the n-face opposite to the vertex x0 from the simplicial com-
plex

•σ , n-simplicial cone with vertex {x0} . Clearly

H0(C(σ),Z) ∼= Z

because C(σ) is connected. A similar proof to the one used for σ shows that
Hj(C(σ),Z) ∼= 0 for every 0 < j < n. We note that, when j = n, the vertex x0

belongs to every n-simplex of C(σ) and so

(∀c ∈Cn(C(σ)))c = kn−1∂n(c),

allowing us to conclude that the trivial cycle 0 is the only n-cycle of C(σ); in other
words, Hn(C(σ);Z) ∼= 0.

In the next example we refer to the construction of an acyclic carrier.
Homology of the (abstract) cone – Let vK = v ∗ K be the join of a simpli-

cial complex K = (X ,Φ) and of a simplicial complex with a single vertex (and
simplex) v.

(II.4.6) Lemma. The cones vK are acyclic simplicial complexes.

Proof. Let v be the simplicial complex with the single vertex v and no other sim-
plex; it is clear that v (considered as a simplicial complex) is an acyclic simplicial
complex. The chain complex C(v) is a subcomplex of C(vK); let ι : C(v) →C(vK)
be the inclusion. Consider the simplicial function

c : vK → v , y ∈ vΦ �→ {v} .

It is readily seen that the chain morphism

C(c)ι : C(v) −→C(v)

coincides with the identity homomorphism of C(v); then, for every n ∈Z, the com-
posite Hn(c)Hn(ι) equals the identity. Let us prove that ιC(c) and the identity ho-
momorphism 1C(vK) of C(vK) are homotopic. We define

sn : Cn(vK) →Cn+1(vK)

on the oriented n-simplexes σ ∈ vΦ (understood as a chain) by the formula

sn(σ) =
{

0 if v ∈ σ ,
vσ if v �∈ σ ;

sn may be linearly extended to a homomorphism of Cn(vK). Let us take a look into
the properties of these functions.
Case 1: n = 0 – Let x be any vertex of vK.

(1C0(vK) − ιC0(c))(x) =
{

x− v if x �= v,
0 if x = v.
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∂1s0(x) =
{

x− v if x �= v,
0 if x = v.

Case 2: n > 0 – Let σ be any oriented n-simplex of vK. We first observe that
ιCn(c)(σ) = 0; moreover, if v is not a vertex of σ , we have

∂n+1(vσ) = σ − v∂n(σ).

Consequently, v �∈ σ implies

sn−1∂n(σ)+ ∂n+1sn(σ) = v∂n(σ)+ ∂n+1(vσ) = σ .

We now suppose that v ∈ σ . Then,

sn−1∂n(σ)+ ∂n+1sn(σ) = sn−1∂n(σ) = σ .

It follows from these remarks that ιC(c) and the identity homomorphism 1C(vK)
are homotopic and we conclude from Proposition (II.3.4) that, for every n ∈ Z,
Hn(ι)Hn(c) coincides with the identity homomorphism. �

We now seek a better understanding of the relative homology H∗(K,L;Z) of a
pair of simplicial complexes (K,L). As usual, K = (X ,Φ) and L = (Y,Ψ ) with
Y ⊂ X and Ψ ⊂ Φ . Let v be a point which is not in the set of vertices of ei-
ther K or L. Let CL be the abstract cone vL. It follows from the definitions that
K ∩CL = L.

(II.4.7) Theorem. The homology groups Hn(K,L;Z) and Hn(K ∪CL;Z) are iso-
morphic for each n ≥ 1.

Proof. The central idea in this proof is to compare the exact homology sequence of
the pair (K,L) and the exact sequence of Mayer–Vietoris of K and CL, before using
the Five Lemma; the notation is the one already adopted for the Mayer–Vietoris
Theorem.

Let us consider the simplicial function f : K →CL defined on the vertices by

f (x) =
{

x if x ∈ Y
v if x ∈ X �Y.

For each nonnegative integer n, we now define the homomorphisms

k̃n : Cn(K) →Cn(K)⊕Cn(CL) , c �→ (c,Cn( f )(c))

and

h̃n : Cn(K)/Cn(L) −→Cn(K ∪CL),
c +Cn(L) �→Cn( j1)(c)−Cn( j2)Cn( f )(c)
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(that is to say, h̃n(c+Cn(L)) = j̃nk̃n(c)). The function h̃n is well defined; in fact, had
c′ ∈Cn(K) been such that c−c′ ∈Cn(L), we would have c−c′ ∈Cn(K∩CL) and so

j̃nk̃n(c− c′) = j̃n ı̃n(c− c′) = 0.

The homomorphism sequences h̃ = {h̃n|n ≥ 0} and k̃ = {k̃n|n ≥ 0} are homomor-
phisms of chain complexes giving rise to a commutative diagram

C(L) ��
C(i)

��

1

��

C(K)
q̃

�� ��

k̃
��

C(K,L)

h̃
��

C(K ∩CL) �� ı̃ �� C(K)⊕C(CL)
j̃

�� �� C(K ∪CL)

Since CL is an acyclic simplicial complex, we obtain, for every n ≥ 2, the com-
mutative diagram of Abelian groups

Hn(L;Z)

1
��

�� Hn(K;Z) ��

∼=
��

Hn(K,L;Z) ��

γ
��

Hn−1(L;Z)

1
��

�� Hn−1(K;Z)

∼=
��

Hn(L;Z) �� Hn(K;Z) �� Hn(K ∪CL;Z) �� Hn−1(L;Z) �� Hn−1(K;Z)

and by the Five Lemma, we conclude that γ is an isomorphism; when n = 1, the last
vertical arrow is an injective homomorphism

H0(K;Z) −→ H0(K;Z)⊕Z

and again with an argument similar to the Five Lemma, we conclude that γ is an
isomorphism. �

(II.4.8) Remark. We recall that we have defined the relative homology groups
of a pair of simplicial complexes (K,L) through the chain complex C(K,L) =
{Cn(K)/Cn(L),∂ K,L

n }; we now construct the relative groups Hn(K,L;Z), n≥ 0, from
a slightly different point of view which turns out to be very useful for computing
homology groups.

For any n ≥ 0, let Cn(K,L) be the Abelian group of formal linear combinations,
with coefficients in Z, of all n-simplexes of K which are not in L; in other words, if
K = (X ,Φ), L = (Y,Ψ ) with Y ⊂ X and Ψ ⊂ Φ ,

Cn(K,L;Z) = {∑
i

miσ i
n|σ i

n ∈ Φ �Ψ}.

The inclusion i : L → K induces an injective homomorphism Cn(i) : Cn(L) →
Cn(K) for each n ≥ 0; we now take, for every n ≥ 0, the following linear
homomorphisms:

βn : Cn(K) →Cn(L)
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defined on the n-simplexes of K by the conditions

βn(σn) =
{

0 if σn ∈ Φ �Ψ
σn if σn ∈Ψ

αn : Cn(K,L) →Cn(K) , σn ∈ Φ �Ψ �→ σn

μn : Cn(K) →Cn(K,L)

such that

μn(σn) =
{

σn if σn ∈ Φ �Ψ
0 if σn ∈Ψ .

It is easy to check that βnCn(i) = 1, μnαn = 1, μnCn(i) = 0, and Cn(i)βn +αnμn = 1
for each n ≥ 0. Hence, for every n ≥ 0, we have a short exact sequence

Cn(L) ��
Cn(i)

�� Cn(K)
μn

�� �� Cn(K,L).

We now consider the boundary homomorphism ∂n : Cn(K) →Cn−1(K) and define

∂ n : Cn(K,L) →Cn−1(K,L)

as the composite homomorphism ∂ n = μn−1∂nαn. We note that

∂ n−1∂ n = (μn−2∂n−1αn−1)(μn−1∂nαn)
= (μn−2∂n−1)(1−Cn−1(i)βn−1)∂nαn

= μn−2∂n−1∂nαn − μn−2∂n−1Cn−1βn−1 = 0

since the factor ∂n−1∂n = 0 appears in the first term and also because the second term
is null on all (n−1)-simplex of K. The graded Abelian group {Cn(K,L) | n ∈ Z},
where Cn(K,L) = 0 for every n < 0, has a boundary homomorphism {∂ n | n ∈ Z}
with ∂ n = 0 for n ≤ 0; let

H∗(K,L;Z) = {Hn(K,L;Z)}

be its homology. Let θn : Cn(K,L) → Cn(K) be the linear homomorphism defined
on an n-simplex σn ∈ Φ �Ψ by θn(σn) = σn +Cn(L) (if n < 0, we define θn = 0).
We note that θn commutes with the boundary homomorphisms; it is sufficient to
verify this statement for an n-simplex σn ∈ Φ �Ψ :

∂ K,L
n θn(σn) = ∂n(σn)+Cn−1(L) = ∑

σn−1,i∈Φ�Φ
(−1)iσn−1,i +Cn(L);

θn−1∂ n(σn) = θn−1(μn−1 ∑
i
(−1)iσn−1,i) = ∑

σi,n−1∈Φ�Φ
(−1)iσn−1,i +Cn(L).
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Therefore, the set {θn | n ∈Z} induces a homomorphism

Hn(θn) : Hn(K,L;Z) → Hn(K,L;Z) .

On the other hand, θn is an isomorphism for each n ≥ 0 (it is injective by definition
and surjective because θnμn = qn). Therefore, the two types of homology groups
are isomorphic.

Let
{Ki = (Xi,Φi) |i = 1, . . . , p}

be a finite set of simplicial complexes; we choose a base vertex xi
0 ∈ Xi for each Ki

and construct the wedge sum of all Ki as the simplicial complex

∨p
i=1Ki : =

n
⋃

i=1

({x1
0}× . . .×Ki × . . .×{xp

0})

that is to say
∨p

i=1Ki = (∨p
i=1Xi,∨p

i=1Φi) .

The next theorem shows that the homology of the wedge sum of simplicial com-
plexes acts in a special way.

(II.4.9) Theorem. For every q ≥ 1,

Hq(∨p
i=1Ki;Z) ∼= ⊕p

i=1Hq(Ki;Z).

Proof. It is enough to prove this result for p = 2. The short exact sequence of chain
complexes

C(K1) �� i �� C(K1 ∨K2)
k �� �� C(K1 ∨K2,K1;Z)

induces a long exact sequence of homology groups

. . . → Hn(K1;Z)
Hn(i)−→ Hn(K1 ∨K2;Z)

q∗(n)−→ Hn(K2;Z) λn−→ Hn−1(K1;Z) → . . .

(see Remark (II.4.8)). Let us now examine how the homomorphisms of chain
complexes

C(K1)
i ��C(K1 ∨K2)

C(K1 ∨K2)
k ��C(K1 ∨K2,K1;Z) ∼= C(K2)

are defined on simplexes (in other words, the generators of the free groups that
concern us):

(∀σ1
n ∈ Φ1) in(σn) = σ1

n ×{x2
0}

(∀σ1
n ×{x2

0} ∈ Φ1 ×{x2
0}) kn(σ1

n ×{x2
0} = 0

(∀{x1
0}×σ2

n ∈ {x1
0}×Φ2) kn({x1

0}×σ2
n ) = σ2

n .
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We now define the homomorphisms

j : C(K1 ∨K2) →C(K1) and h : C(K1 ∨K2,K1;Z) →C(K1 ∨K2)

as follows:

(∀σ1
n ×{x2

0} ∈ Φ1 ×{x2
0}) jn(σ1

n ×{x2
0}) = σ1

n

(∀{x1
0}×σ2

n ∈ {x1
0}×Φ2) jn({x1

0}×σ2
n ) = 0

(∀σ2
n ∈ Φ2) hn(σ2

n ) = {x1
0}×σ2

n .

Morphisms i,k, j, and h are induced by simplicial functions and so they commute
with boundary operators. Moreover, ji = 1C(K1) and kh = 1C(K2), a property
that extends to the respective homomorphisms regarding homology groups.
Hence, for each q ≥ 1, we have a splitting short exact sequence of homology
groups

Hq(K1;Z) ��
Hq(i)

�� Hq(K1 ∨K2;Z)
Hq(k)

�� �� Hq(K2;Z). �

II.4.1 Reduced Homology

It is sometimes an advantage to introduce a little change to the simplicial homology,
named reduced homology; the only difference between the two homologies lies on
the group H0(−;Z). To obtain the reduced homology ˜H∗(K;Z) of a simplicial
complex K, we consider the chain complex

˜C(K,Z) = {˜Cn(K), ˜dn}
where

˜Cn(K) =

⎧

⎨

⎩

Cn(K) , n ≥ 0
Z , n = −1
0 , n ≤−2

and define the boundary homomorphism

˜dn =

⎧

⎨

⎩

∂n , n ≥ 1
ε : C0(K) → Z , n = 0
0 , n ≤−1

where ε is the augmentation homomorphism (see Lemma (II.4.5)). We only need to
verify that ˜d0

˜d1 = 0; but this follows directly from the definition of ε .
We leave to the reader, as an exercise, to prove that if K is a connected simplicial

complex, then
(∀n �= 0) ˜Hn(K;Z) ∼= Hn(K;Z)

and
˜H0(K;Z) ∼= 0.
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Exercises

1. The simplicial n-sphere is the simplicial complex

•σn+1 = (σn+1,Φ)

where σn+1 = {x0,x1, . . . ,xn+1} and Φ =℘(X)\{ /0,σn+1}. Prove that

Hp(
•σn+1) =

{

Z , p = 0,n
0 , p �= 0,n.

2. Prove that a subgroup of a free Abelian group is free (if this proves to be very
difficult, refer to [17], Theorem 5.3.1f).

3. Compute the homology groups of the triangulations associated with the following
spaces (see Exercise 4 on p. 64).

a) cylinder C = S1 × I;
b) Möbius band M;
c) Klein bottle K;
d) real projective plane RP2;
e) G2, obtained by adding two handles to the sphere S2.

4. Compute the Betti numbers and the Euler–Poincaré characteristic for the surfaces
of the previous exercise.

5. Let K be a given connected simplicial complex and ΣK = K ∗ {x,y} be the sus-
pension of K (see examples of simplicial complexes given in Sect. II.2). Prove that

(∀n ≥ 0) ˜Hn(ΣK) ∼= ˜Hn−1(K)

by means of the Mayer–Vietoris sequence.

6. Let K be a one-dimensional connected simplicial complex (namely, a graph), and
C(K) = 1− χ(K) its cyclomatic number (also called the circuit rank). Prove that
C(K) ≥ 0 and that the equality holds if and only if |K| is contractible (that is to say,
K is a tree).

II.5 Homology with Coefficients

In Sect. II.4, we have studied the homology of oriented simplicial complexes K
determined by the chain complex

(C(K),∂ ) = {Cn(K),∂ K
n |n ∈Z},
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Cn(K) being the free Abelian groups of formal linear combinations with coefficients
in Z of the n-simplexes of K. We now wish to generalize our homology with co-
efficients in the Abelian group Z to a homology with coefficients drawn from any
Abelian group G.

We begin by reviewing the construction of the tensor product of two Abelian
groups A, B: by definition, A ⊗ B is the Abelian group generated by the set of
elements

{a⊗b|a∈ A , b ∈ B}
where (∀a,a′ ∈ A , b,b′ ∈ B)

1. (a + a′)⊗b = a⊗b + a′⊗b ,
2. a⊗ (b + b′) = a⊗b + a⊗b′ .

We notice that the function

A⊗Z→ A , a⊗n �→ na

is a group isomorphism, that is to say, A⊗Z∼= A (similarly, Z⊗A ∼= A). The reader
may easily prove that

(A⊕B)⊗C ∼= (A⊗C)⊕ (B⊗C)

for any three Abelian groups A, B, and C. Finally, given two group homomorphisms
φ : A → A′ and ψ : B → B′, the function φ ⊗ψ : A⊗B → A′ ⊗B′ defined by φ ⊗
ψ(a⊗b) = φ(a)⊗ψ(b) is a homomorphism of Abelian groups.

In this way, by fixing an Abelian group G we are able to construct a covariant
functor

−⊗G : Ab → Ab

that transforms a group A into A⊗G and a morphism φ : A → B into the morphism
φ ⊗1G.

We extend this functor to chain complexes. We transform a given chain complex
(C,∂ ) ∈ C in (C⊗G,∂ ⊗1G), by setting

(C⊗G)n := Cn ⊗G

for every n ∈Z, and by defining the homomorphisms

(∂ ⊗1G)n := ∂n ⊗1G : Cn ⊗G →Cn−1 ⊗G .

Since

(∂ ⊗1G)n−1(∂ ⊗1G)n = (∂n−1 ⊗1G)(∂n ⊗1G) = ∂n−1∂n ⊗1G = 0 ,

we conclude that (C⊗G,∂ ⊗ 1G) is a chain complex whose homology groups are
the homology groups of (C,∂ ) with coefficients in G. The nth-homology group of
(C,∂ ) with coefficients in G is defined by the quotient group
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Hn(C;G) = ker(∂n ⊗1G)/ im(∂n+1 ⊗1G);

the graded Abelian group H∗(C;G) is the graded homology group of C with coef-
ficients in G. In particular, if (C,∂ ) = (C(K),∂ ), the chain complex of the oriented
complex K, then H∗(C(K);G) – simply denoted by H∗(K;G) – is the homology of
K with coefficients in G.

We recall that the chain complex (C(K),∂ ) is positive, free, and has an augmen-
tation homomorphism ε : C0(K) → Z. To continue with our work, we only need
one of these properties, namely, that (C,∂ ) be free.

For every free chain complex (C,∂ ) and for each n ∈ Z, we have a short exact
sequence of free Abelian groups

Zn(C) �� �� Cn
∂n �� �� Bn−1(C) .

The main point is that, by taking the tensor product of each component of this exact
sequence with G, we obtain again a short exact sequence.

(II.5.1) Lemma. If

A ��
f

�� B
g

�� �� C

is a short exact sequence of free Abelian groups and G is an Abelian group, then
also the sequence

A⊗G ��
f ⊗1G

�� B⊗G
g⊗1G

�� �� C⊗G

is exact.

Proof. We begin by noting that the group C is free; therefore, we may define a map
s : C → B simply by choosing for each element of a basis of C an element of its anti-
image under g, and by extending this operation linearly; through this procedure, we
obtain a homomorphism of Abelian groups

s : C −→ B

such that gs = 1C, the identity homomorphism of C onto itself. It follows that g(1B−
sg) = g− (gs)g = 0, in other words, the image of 1B− sg is contained in the kerg =
im f ; for this reason, we may define the map r := f−1(1B − sg) : B → A that also
satisfies r f = f−1(1B − sg) f = 1A. We thus obtain the relations

r f = 1A , gs = 1C , and f r + sg = 1B.

We know that the tensor product by G is a functor and that it transforms sums of ho-
momorphisms into sums of transformed homomorphisms; consequently, tensoriza-
tion gives us the relations
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(r⊗1G)( f ⊗1G) = 1A⊗G (g⊗1G)(s⊗1G) = 1C⊗G

and
( f ⊗1G)(r⊗1G)+ (s⊗1G)(g⊗1G) = 1B⊗G.

The first of these relations tells us that ( f ⊗1G) is injective; the second, that (g⊗1G)
is surjective, and the third, that im( f ⊗ 1G) = ker(g⊗ 1G) because, if we take x ∈
B⊗G such that (g⊗1G)(x) = 0, then

x = ( f ⊗1G)(r⊗1G)(x)+ (s⊗1G)(g⊗1G)(x)
= ( f ⊗1G)((r⊗1G)(x)) ∈ im( f ⊗1G).

�

Returning to our free chain complex (C,∂ ), we notice that for each integer n, the
sequence

Zn(C)⊗G �� �� Cn ⊗G
∂n ⊗1G �� �� Bn−1(C)⊗G

is short exact. In addition, we observe that the graded Abelian groups Z(C) =
{Zn(C)|n ∈Z} and B(C) = {Bn(C)|n ∈Z} may be viewed as chain complexes with
trivial boundary operator 0; we then construct the chain complexes

1. (Z(C)⊗G,0⊗1G);
2. (C⊗G,∂ ⊗1G);
3. (˜B(C)⊗G,0⊗1G), where ˜B(C)n = Bn−1(C)

and observe that in view of the preceding short exact sequence of Abelian groups,
we have a short exact sequence of chain complexes

(Z(C)⊗G,0⊗1G) �� �� (C⊗G,∂ ⊗1G) �� �� (˜B(C)⊗G,0⊗1G).

By the Long Exact Sequence Theorem (II.3.1), we obtain the long exact sequence
of homology groups

· · · �� Hn(Z(C)⊗G) �� Hn(C⊗G) ��

Hn(˜B(C)⊗G) �� Hn−1(Z(C)⊗G) �� · · ·
in other words, by considering the format of the boundary operators, we have the
following exact sequence of Abelian groups:

· · · �� Bn(C)⊗G
in ⊗1G �� Zn(C)⊗G

jn
��

Hn(C;G)
hn �� Bn−1(C)⊗G

in−1 ⊗1G
�� Zn−1(C)⊗G �� · · ·

Note that in is the inclusion of Bn(C) in Zn(C) and jn is the induced homomorphism
by the inclusion of Zn(C) in Cn; the reader is also asked to notice that the connecting
homomorphism λn+1 in Theorem (II.3.1) coincides with in ⊗1G.
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Since im jn = kerhn, we conclude that, for every n ≥ 0, the sequence

im jn �� �� Hn(C;G)
hn �� �� imhn

is short exact.

(II.5.2) Lemma. If the group G is free, the short exact sequence

im jn �� �� Hn(C;G)
hn �� �� imhn

splits,4 and so
Hn(C;G) ∼= im jn ⊕ imhn

(however, one should note that this isomorphism is not canonic).

Proof. Let us take the homomorphism of Abelian groups

hn : Hn(C;G) → Bn−1(C)⊗G.

As a subgroup of the free Abelian group Cn−1, Bn−1(C) is free and by hypothesis
G is also free; then Bn−1(C)⊗G is free and it follows that imhn is free. We now
choose, for every generator x ∈ imhn, an element y ∈ Hn(C;G) such that hn(y) = x;
by linearity, we obtain a homomorphism

s : imhn −→ Hn(C;G)

such that hns = 1imhn . Exercise 1 in Sect. II.3 completes the proof.
The homomorphism s depends on the choice of the elements y for the generators

x; therefore, s is not canonically determined. �

We now give another interpretation of the groups im jn and imhn. Note that

im jn ∼= Zn(C)⊗G/ker jn = Zn(C)⊗G/ im(in ⊗1G);

the quotient group

Zn(C)⊗G/ im(in ⊗1G) := coker(in ⊗1G)

is called cokernel of in ⊗1G. Since imhn = ker(in−1 ⊗1G), the exact sequence

im jn �� �� Hn(C;G)
hn �� �� imhn

is written as

coker(in ⊗1G) �� �� Hn(C;G) �� �� ker(in−1 ⊗1G)

4 The definition of splitting short exact sequence can be found in Exercise 1, Sect. II.3.
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where the first and the third terms may be viewed in another way; we begin with
coker(in ⊗1G).

(II.5.3) Lemma. coker(in ⊗1G) ∼= Hn(C)⊗G.

Proof. Since by definition coker(in ⊗ 1G) = Zn(C)⊗G/ im(in ⊗ 1G), there exists a
homomorphism

φ : coker(in ⊗1G) → Hn(C)⊗G

defined on the generators by φ [z ⊗ g] := p(z)⊗ g (where p : Zn(K) → Hn(C) is
the natural projection). On the other hand for each y ∈ Hn(C), we may choose an
x ∈ p−1(y) ⊆ Zn(C) and define

ψ : Hn(C)⊗G → coker(in ⊗1G)

on the generators, with ψ(y⊗ g) := [x⊗ g]. The homomorphism ψ is well defined
because, in view of the exactness of the long exact sequence, we have for each x′
such that p(x′) = y

x⊗g− x′⊗g = (x− x′)⊗g ∈ ker jn ∼= im(in ⊗1G),

that is to say, [x⊗g] = [x′ ⊗g]. The homomorphisms φ and ψ are clearly the inverse
of each other and so coker(in ⊗1G) ∼= Hn(C)⊗G. �

The preceding lemma shows that coker in ⊗1G depends neither on Bn(C)⊗G nor
on Zn(C)⊗G, but only on Hn(C) (the cokernel of the monomorphism in : Bn(C) →
Zn(C)) and on G. This fact suggests that the same may be true for ker(in ⊗1G) and
indeed it is so.

(II.5.4) Theorem. Let H be the cokernel of the the monomorphism i : B → Z be-
tween free Abelian groups and let G be any fixed Abelian group. Then, both the
kernel and the cokernel of the homomorphism i⊗1G depend entirely on H and G.

Moreover, coker(i⊗1G)∼= H⊗G, while ker(i⊗1G) gives rise to a new covariant
functor

Tor(−,G) : Ab −→ Ab

called torsion product.

Proof. Due to the fact that H is the cokernel of the monomorphism i : B → Z, the
bases of Z and B represent H with generators and relations; we then have a free
presentation of H

B �� i �� Z
q

�� �� H.

Suppose that we had another free presentation of H

R ��
j

�� F
q′

�� �� H
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and consider the following free chain complexes with augmentation to the Abelian
group H (viewed as a Z-module):5

1. (C,∂ ), with C1 = B, C0 = Z, ∂1 = i, ε = q, Ci = 0 for all i �= 0,1 and ∂i = 0 for
all i ≥ 2;

2. (C′,∂ ′), with C′
1 = R, C′

0 = F , ∂ ′
1 = j, ε ′ = q′, C′

i = 0 for all i �= 0,1 and ∂ ′
i = 0

for all i ≥ 2.

These chain complexes are free and acyclic; by Theorem (II.3.6), we obtain chain
morphisms f : C → C′ and g : C′ → C whose composites f g and g f are chain ho-
motopic to the respective identities. The tensor product with G is a functor that
preserves compositions of morphisms; therefore, their tensor products by G pro-
duce the chain morphisms

f ⊗1G : C⊗G →C′ ⊗G

g⊗1G : C′ ⊗G →C⊗G

and besides,
( f ⊗1G)(g⊗1G) and (g⊗1G)( f ⊗1G)

are still chain homotopic to their respective identities. This means that the induced
morphisms in homology

ker(i⊗1G)

H1( f ⊗1G)
��

ker( j⊗1G)

H1(g⊗1G)

��

are the inverse of each other and likewise for

coker(i⊗1G)

H0( f ⊗1G)
��

coker( j⊗1G)

H0(g⊗1G)

��

This implies that neither ker(i⊗ 1G) nor coker(i⊗ 1G) depends on the chosen pre-
sentation of H.

Hence, by following the argument in Lemma (II.5.3),

coker(i⊗1G) ∼= H ⊗G

regardless of which free presentation of H we take.

5 Chain complexes can be constructed over Λ -modules, with Λ a commutative ring with unit
element.
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We now focus our attention on functor Tor(−,G). For any H ∈ Ab, we define
the group Tor(H,G) as follows. Let F(H) be the free group generated by all the
elements of H; the function

q : F(H) → H , h �→ h

is an epimorphism of F(H) onto H. Let i : kerq → F(H) be the inclusion homo-
morphism; we then have a representation of H by free groups

kerq �� i �� F(H)
q

�� �� H.

We define
Tor(H,G) := coker(i⊗1G).

By the first part of the theorem, Tor(H,G) does not depend on the presentation
of H. As for the morphisms, for any f̄ ∈ Ab(H,H ′), we choose the presentations
R � F � H and R′ � F ′ � H ′; by Theorem (II.3.6), we obtain a chain morphism f
between the complexes C and C′ (determined by R � F and R′ � F ′, respectively)
that extends f̄ and is unique up to chain homotopy. By taking their tensor product
by G and computing the homology groups, we obtain

H1( f ⊗1G) : Tor(H,G) → Tor(H ′,G)

which is, by definition, the result of applying the torsion product on f̄ . �

When (C,∂ ) is the chain complex (C(K),∂ ) of an oriented simplicial complex
K, the previous results prove the Universal Coefficients Theorem in Homology:

(II.5.5) Theorem. The homology of a simplicial complex K with coefficients in an
Abelian group G is determined by the following short exact sequences:

Hn(K;Z)⊗G �� �� Hn(K;G) �� �� Tor(Hn−1(K;Z),G).

What is more, if G is free,

Hn(K;G) ∼= Hn(K;Z)⊗G⊕Tor(Hn−1(K;Z),G).

Let us now see what happens when G = Q, the additive group of rational num-
bers. This group is not free, but it is locally free: we say that an Abelian group G is
locally free if every finitely generated subgroup of G is free; in particular, due to the
Finitely Generated Abelian Groups Decomposition Theorem (see p. 75), a finitely
generated Abelian group is locally free if and only if it is torsion free. We now state
the following

(II.5.6) Lemma. If i : A → A′ is a monomorphism and G is locally free, then

i⊗1G : A⊗G −→ A′ ⊗G

is a monomorphism.
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In particular, the monomorphism

in−1 : Bn−1(K) −→ Zn−1(K)

determines the monomorphism

in−1 ⊗1Q : Bn−1(K)⊗Q−→ Zn−1(K)⊗Q

and so
Tor(Hn−1(K;Z),Q) = ker(in−1 ⊗1Q) = 0 .

Theorem (II.5.5) allows us to afirm that

Hn(K;Q) ∼= Hn(K;Z)⊗Q

and so, helped once more by the Finitely Generated Abelian Groups Decomposition
Theorem, we say that Hn(K;Q) is a rational vector space of dimension equal to the
rank of Hn(K;Z) (the nth- Betti number of K).

Exercises

1. Prove that, if A and B are free Abelian groups, then, A⊗B is a free Abelian group.

2. Let K be any simplicial complex. Prove that for every prime number p the short
exact sequence

0 �� Z
p ·−

�� Z
mod p

�� Zp �� 0

creates an exact sequence of homology groups

· · · �� Hn(K;Z)
p ·−

�� Hn(K;Z)
mod p

��

mod p
�� Hn(K;Zp)

βp
�� Hn−1(K;Z) �� · · ·

called Bockstein long exact sequence. The homomorphism of Abelian groups

Hn(K;Zp)
βp

�� Hn−1(K;Z)

is called Bockstein operator.

3. (Snake Lemma) Consider the following commutative diagram, whose rows are
exact sequences of Abelian groups:
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A ��

f

��

B ��

g

��

C

h

��

�� 0

0 �� A′ �� B′ �� C′

Prove that there exists a homomorphism d that turns the sequence

ker f �� kerg �� kerh
d �� coker f �� cokerg �� cokerh

into an exact sequence; also, by using this Lemma, give an alternative proof to
Theorem (II.3.1).

4. (General form of the Five Lemma) Let

A
f

��

α
��

B
g

��

β
��

C
h ��

γ
��

D
k ��

δ
��

E

ε
��

A′ f ′
�� B′ g′

�� C′ h′ �� D′ k′ �� E ′

be a commutative diagram of Abelian groups with exact rows. Prove that:

• If α is surjective and β , δ are injective, then γ is injective;
• If ε is injective and β , δ are surjective, then γ is surjective.

It follows directly from these results that, if α , β , δ , and ε are isomorphisms, then
also γ is an isomorphism.
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