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Abstrat

We review the de�nition of a general planar algebra V = [V

k

. We

show how to assoiate a general planar algebra with a bipartite graph

by reating a spei� model using statistial mehanial sums de�ned

by a labelled tangle. It supports a partition funtion for a losed tangle

whih is spherially invariant and de�nes a positive de�nite inner prod-

ut on eah V

k

. We then desribe how any planar algebra is naturally

a yli module in the sense of Connes and do some omputations.

1 Introdution

The onept of planar algebra was introdued in [10℄ for many reasons, the

most important of whih was to help in the alulation of subfators. As

observed in [10℄, it is hardly surprising that suh a natural onept arises

in many other situations - notably in [1, 16, 14℄. Our axioms for a planar

algebra are in this respet rather speial and ould be ritiised for being

somewhat narrow beause of the restritions imposed by the shadings, but

we would argue that our struture is to the more general ones as a group

is to a semigroup. Indeed this ould be made preise in the C�-tensor at-

egory ontext, but the justi�ation with the most ontent is that provided

by the results of Popa. In a series of papers, [18, 19, 20℄ he ame quite

independently aross axioms (shown in [10℄ to be equivalent to planar alge-

bras with positivity) whih guarantee the existene of a subfator of a II

1

fator whose assoiated invariant is the �-lattie or planar algebra one be-

gan with! The most reent paper in the series is a universal onstrution

whih should allow one to ontrol the isomorphism lasses of the II

1

fators

in question. Popa's results should be viewed as a o-ordinatizaion theorem

analogous to the fundamental theorem of projetive geometry, in whih the

II

1

fators give the (non-ommutative) o-ordinate ring assoiated to the

ombinatorial- geometrial struture de�ned by the planar algebra. In fat
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suh a o-ordinatization will exist, and be muh easier to prove, over an arbi-

trary �eld. It is the ompleteness properties assoiated with the II

1

fators

that make Popa's results so ompelling.

The planar algebra of a subfator was approahed in [10℄ in a somewhat

abstrat way as invariant vetors in the tensor powers of a bimodule. It

would have also been possible to do it via an expliit model in a way similar

in spirit to Oneanu's paragroup approah. The �rst step in suh a program

would have been to onstrut a rather general kind of planar algebra using

statistial mehanial sums on the prinipal graph of the subfator. Then

the atual planar algebra would be obtained as a planar subalgebra formed

by ertain "�at" elements. This approah was deliberately avoided as being

long, lumsy and inelegant. However in more reent work the idea of on-

struting interesting planar algebras from the rather general ones based on

graphs has turned out to be extremely useful and we �nd it neessary to give

these general models. We will present suh an appliation in a forthoming

paper. These general planar algebras may not turn out to be of muh in-

terest for their own sake as they an be formed from very general bipartite

graphs. Their detailed onstrution does bring to light several interesting

points however, suh as the role of the hoie of an eigenvetor of the ad-

jaeny matrix of the graph in the statistial mehanial sums. In fat an

arbitrary hoie of weights would give a planar algebra but it would not in

general have the property that a losed irle in a diagram ontributes a

simple multipliative onstant. We have presented the onstrution here for

arbitrary weights-what we will all the "spin vetor" later on.

One feature of these general planar algebras is that there are no obstru-

tions to obtaining graphs as "prinipal graphs" or at least onneted om-

ponents thereof. It is known ([8℄) that graphs ouring as prinipal graphs

of subfators are quite rare so the role of the fator/onnetedness ondition

beomes lear. This suggests the study of planar algebras intermediate be-

tween the rather simple kind onstruted here and the restrited subfator

kind with onneted prinipal graphs. We will present further results on this

question, inulding an ABCDEFGHI lassi�ation for modulus less than 2,

in a forthoming paper.

We notied some time ago that Connes' yli ategory appears in the

annular or "a�ne" Temperley Lieb ategory. (Composition of morphisms

in the Temperley Lieb ategory in general leads to losed irles, but they

do not our if one restrits to the annular tangles of Connes' ategory.)

This means that any planar algebra is in fat a yli module in the sense

of Connes. In fat the natural adjoint map in the Temperley Lieb ategory

de�nes a seond opy of the yli ategory. Together with the �rst, they

generate the Temperley Lieb ategory. If the planar algebra has the property
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that isolated irles in a tangle ontribute a non-zero salar multipliative

fator, the fae maps of the seond ategory provide homotopy ontrations

of the �rst so that the yli homology of suh a planar algebra will always

be zero. There are however many interesting planar algebras that do not

have this property. We simply present these observations in this paper as we

do not yet know how to use yli homology in planar algebras.

2 De�nition of a general planar algebra.

A k�tangle for k � 0 is the unit dis D with 2k marked and numbered (lok-

wise) points on its boundary, ontaining a �nite number of internal diss eah

with an even (possibly zero) number of marked and numbered points on their

boundaries. All the marked points of all the diss are onneted by smooth

disjoint urves alled the strings of the tangle. The strings lie between the

internal diss and D. The strings must onnet even-numbered boundary

points to even-numbered ones and odd to odd. There may also be a �nite

number of losed strings (not onneting any diss) in the subset I of the

large dis between the internal diss and the external one. The onneted

omponents of I minus the strings are alled the regions of the tangle and

may be shaded blak and white in a unique way with the onvention that

the region whose losure ontains the interval on the boundary of D between

the �rst and seond marked points is shaded blak. If neessary the strings

of the tangle will be oriented so that blak regions are on the left as one

moves along strings. To indiate the �rst point on the boundary of a dis

in a piture we will selet the unshaded region immediately preeding the

�rst point(in lokwise order) and plae a * in that region near the relevant

boundary omponent.

Tangles are onsidered up to smooth isotopy. An example of a 4-tangle,with
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7 internal diss is given in �gure 1.1 below:
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fig: 1:1

Tangles with the appropriate number of boundary points an be glued

into the internal diss of another tangle making the set of all tangles into

a oloured operad, the olour of an element being the number of boundary

points (and the olour of the region near the boundary for 0-tangles). To per-

form the gluing operation, the tangle T to be glued to an internal dis(with

the same olour as T ) of another tangle S is �rst isotoped so that its bound-

ary oinides with the boundary of the hosen internal dis D, the marked

points on eah boundary dis being also made oinident by the isotpy. Some

smoothing may need to be done near the marked points so that the strings

of T and S meet smoothly. Finally the ommon boundary is removed. The

result of the gluing is another tangle T Æ

D

S with the same number of external

marked points as S and having n

T

+ n

S

� 1 internal diss, n

T

and n

S

being

the numbers of internal diss of T and S respetively. It is lear that the

isotopy lass of T Æ

D

S depends only on the isotopy lasses of S and T and
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the hoie of D. An example of the gluing operation is depited in �gure 1.2:
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fig: 1:2

See [17℄ for the de�nition of an operad. Slight modi�ations need to be

made to handle the olours.

De�nition 2.1 The planar operad P is the set of isotopy lasses of planar

tangles with olours and ompositions de�ned above.

One may onstrut another oloured operad with the same olours as P from

vetor spaes. Operad elements are then multilinear maps from "input"

vetor spaes, eah vetor spae having a olour as in P to an "output"

vetor spae. Composition is only permitted when the appropriate vetor

spaes have the same olour. One obtains another oloured operad V et.

See [17℄ for a preiese de�nition(without olours).

De�nition 2.2 A planar algebra is an operad homomorphism from P to

V et.

What this means in more onrete terms is this: a planar algebra is a

graded vetor spae V

k

for k > 0 and two vetor spaes V

+

and V

�

so that

every element T of P determines a multilinear map from vetor spaes, one

for eah internal dis of T to the vetor spae of the boundary of T , vetor

spaes being required to have the same olour as the diss they are assigned
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to. Composition in P and V et orrespond in the following sense (S (an r-

tangle) and T as above): by singling out an internal k�disD, S determines a

linear map from V

k

to Hom(W;V

r

), W being the tensor produt of the vetor

spaes orresponding to the internal diss of S other than D. Composing this

map with the multilinearmap determined by T one obtains a multilinearmap

from the vetor spaes of all the internal tangles of T Æ

D

S. This multilinear

map must be the same as the one the planar algebra struture assigns to

T Æ

D

S.

Here are three good exerises to help understand this homomorphism

property of a planar algebra.

(i) Show that V

+

and V

�

are both ommutative assoiative algebras.

(ii) Show that eah V

k

beomes an assoiative algebra with multipliation

being the bilinear map de�ned by the tangle below:

D

1

D

2

�

�

�

fig: 1:3 multipliation

(iii) Show that the V

k

's for k > 0 and V

+

for V

0

beome an assoiative

graded algebra over V

0

with multipliation being the bilinear map de�ned by

tangle below: (we will not show the shading any more-it is determined as

soon as we know a region with a *, and given near the boundary if k = 0.)
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*

*  *

fig: 1:4 graded multipliation

Tangles without internal diss are required to give linear maps from the

�eld into the output vetor spae. Thus the image of 1 under the 0-tangle

with nothing inside is thus the identity for the algebras V

0

. And in general

the vetor spae spanned by k-tangles with no internal diss is a subalgebra

of V

k

.

The above de�nition of a planar algebra is quite general and one might be

espeially interested in many speial ases. The following is rather ommonly

satis�ed:

De�nition 2.3 The planar algebra will be said to have modulus Æ if inserting

a ontratible irle inside a tangle auses its multilinear map to be multiplied

by Æ.

There are maps from �

k

: V

k

! V

k+1

de�ned by the "inlusion" tangle

below:

Proposition 2.4 If V is a planar algebra with modulus Æ 6= 0, the �

k

are

injetive.
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Proof. Conneting the middle two boundary points and dividing by Æ

gives an inverse to �

k

. �.

There may be examples of planar algebras where the �

k

are not injetions

but we have not looked in that diretion. We will think of the V

k

as being

embedded one in the next via the �

k

.

Planar tangles possess the following involution: all the region preeeding

the �rst boundary point of any dis the �rst region. Now re�et the tangle

in the a diameter passing through the �rst region on the boundary. Number

all boundary points of all diss of the re�eted tangle ounting lokwise so

that the image under the re�etion of the �rst region beomes again the �rst

region. The involution applied to the original tangle is the one obtained by

this proess.

If the �eld K possesses a onjugation and eah V

k

has a onjugate linear

involution "�" we will say that V is a planar *-algebra if the involution on

tangles and the involution on V ommute in the obvious sense. If K = R or

C , V will be alled a C*-planar algebra if it is a planar *-algebra and eah

V

k

beomes a C*-algebra under its involution.

Planar algebras V and W are isomorphi if ther are vetor spae isomor-

phisms �

k

: V

k

! W

k

intertwining the ations of the planar operad. The

isomorphism are required to be *-isomorphisms in the planar *-algebra ase.

There is a "duality" automorphism of the planar operad de�ned on a

tangle by moving the �rst boundary point by one in a lokwise diretion on

every dis in the tangle and reversing the shading. Call this map� : P ! P.

It is lear that � preserves the omposition of tangles. If V has modulus Æ,

so does

~

V .

De�nition 2.5 The dual

^

V of the planar algebra V will be the planar algebra

whose underlying vetor spaes for k > 0 are those of V ,

^

V

�

0

= V

�

0

, but for

whih the multilinear linear map orresponding to the tangle T is that of

�(T ).

In general V is not isomorphi to

~

V . One may hek for instane that

the algbebra struture indued on V

2

indued by multipliation in

~

V

2

is that

de�ned by the tangle below:
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*

*

*

Comultipliation

We have somewhat abusively alled this seond multipliation "omulti-

pliation" in [2℄. For the planar algebra of a �nite groups as in [10℄, multi-

pliation is that of the group algebra and omultipliation that of funtions

on the group.

On the other hand

~

~

V is isomorphi to V via the linear maps de�ned by

the " rotation" tangles below:

�

�

The rotation tangle �:

3 The planar algebra of a bipartite graph.

Let � be a loally �nite onneted bipartite graph (possibly with multiple

edges) with edge set E, vertex set U = U

+

[ U

�

, ℄(U

+

) =n

1

and ℄(U

�

) =n

2

,
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n

1

+ n

2

= n = ℄(U). No edges onnet U

1

to itself nor U

2

to itself. The

adjaeny matrix of � is of the form

�

0 �

�

t

0

�

where there are �

v

+

;v

�
edges

onneting v

+

to v

�

.

The other piee of data we suppose given is a funtion � : U !K, a! �

a

whereK is the underlying �eld and �

a

is required to be di�erent from zero for

all a. In the ases of most interest so far (�

2

a

) has been an eigenvetor for the

adjaeny matrix of � but that is only needed to guarantee that ontratible

irles inside pitures ount as salars.

The funtion � will be alled the vetor and its value at a will be alled

the spin of a.

For eah k > 0 let V

k

be the vetor spae whose basis onsists of loops

of length 2k on � starting and ending at a point in U

+

. Suh a loop will be

represented by the pair (�; �) of funtions from f0; 1; 2; :::; 2k � 1g to � [ E

where the i-th. step in the loop goes from �

i

to �(i� 1) along the edge �(i)

(the i's being ounted modulo 2k). Reording the verties � of a path is

redundant sine the edges ontain that information but in many examples of

most interest � will have no multiple edges in whih ase we would suppress

the funtion �. For k = 0 a loop of length 0 is just an element of U , so we

de�ne V

0

+

(resp. V

0

�

) to be the vetor spae with basis U

+

(resp. U

�

).

We will make the V 's into a general planar algebra in the sense of [10℄.

One may do this for diss and arbitrary smooth isotopies in the plane as in

setion 1 but onsideration must be given to the angles at whih the strings

meet the boundaries of the diss. We prefer to use the equivalent piture

where the diss are replaed by retangles or "boxes" as in the seond setion

of [10℄. If we use the V 's as a labelling set what we have to do is, given a

k

0

-tangle T in the sense of setion 2 of [10℄, with an element of V

k

assigned

to eah internal k�box of T , onstrut an �output� element Z(T ) in V

k

0

,

in suh a way as to respet the ompostion of tangles, be independent of

isotopy and be multilinear in the �input� V elements. Many ingredients of

the onstrution below were present in [13℄.

De�nition of Z(T ). A state of the (unlabelled) tangle T will be a funtion

�: (regions of T )[ (strings of T ) ! U [ E suh that

(1) �({shaded regions}) � U

+

and �({unshaded regions}) � U

�

.

(2) �({strings}) � E.

(3) If the losure of the regions r

1

and r

2

both ontain the string t then

�(t) is an edge joining �(r

1

) and �(r

2

).

Now suppose T is labelled. Let {b} be the set of internal boxes of T and

let v

b

be the vetor in V

k

be the vetor assigned to the internal k-box b by
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the labelling.

To de�ne the vetor Z(T ) in V

k

0

we must give the oe�ient of a loop

(�; �) of length 2k

0

. Say that the state � of T is ompatible with (�; �) in

the following way. Consider the ith boundary segment of the external box

of T (the one between the ith and (i+1)th boundary points aording to the

numbering onvention of [10℄). Then this segment is part of the boundary

of a region r of T . The ompatibility requirement of (�; �) with � is that

�

i

= �(r) , �

i

= �(s), �

i+1

= �(s

0

) where s and s

0

are the strings of T meeting

the boundary at the ith and (i + 1)th points respetively. Compatibility of

a state with a loop at an internal box of T is de�ned in the same way (with

inside replaed by outside) so that every state assigns a loop (�

b

; �

b

) to an

internal box b of T as the only loop ompatible with the state at b.

In the ase k = 0 the whole boundary is a single segment and the loop

is just a single vertex of U . A state is ompatible with the loop a on the

boundary if it assigns a to the region near the boundary.

Now rotate the internal boxes of T so that they are all horizontal with the

�rst boundary point at the top left. Isotope the strings if neessary so that

any singularities of the y-oordinate funtion are loal maxima or minima.

We de�ne the vetor Z(T ) in V

k

0

by its oe�ient of the basis element

(�; �) whih is:

(Z(T ))

(�;�)

=

X

f� ompatible with(�;�)g

Y

b

(v

b

)

(�

b

;�

b

)

Y

fsingularities� of y on stringsg

�

�

where (i) (v)

(�

b

;�)

denotes the oe�ient of the vetor v in the basis

f(�; �)g. ii The spin fator � is the ratio

�

x

�

y

where the state � assigns x

to the onave region near � and y to the region on the other side of the

urve (regardless of the shading) as below:

spin in this region occurs

DENOMINATOR

 in
Spin in this region occurs in

   NUMERATOR

This ends the de�nition of Z(T ). Note that the sum is �nite even though �

may be in�nite beause we only onsider states ompatible with the boundary

state.

Note that the spin term

Y

fsingularities� of y on stringsg

�

�
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an be replaed by

R

�(�)d(�) where � denotes the loally onstant funtion

on the strings de�ned by � and the spin vetor whose value on a string

segment is determined by the ratio of the spin values to the left and right of

that string. This would allow one to de�ne the "singularity" fator without

onsidering singularities or arranging the tangle so that the boxes are all

horizontal. See [12℄ for this in a simpler knot-theoretial ontext.

Theorem 3.1 The above de�nition of Z(T ) for any planar tangle T makes

the vetor spaes of linear ombinations of loops on � into a planar algebra

with dim(V

+

0

) = n

1

and dim(V

�

0

) = n

2

. This planar algebra will have mod-

ulus Æ if (�

2

a

) is an eigenvetor of the adjaeny matrix with eigenvalue Æ. It

will be a planar *-algebra if K has a onjugation, the spin values are �xed by

onjugation, and eah V

k

is equipped with the involution de�ned on the basis

by reading loops bakwards, and a C*-planar algebra if, as well, K = R or

C .

Proof. The �rst thing to show is that Z(T ) does not hange if the labelled

tangle is hanged by isotopy of the dis. As in setion 4 of [10℄ this follows

from the fat that isotopy is generated by simple moves. Isotopies that do not

hange the maxima and minima are irrelevant. The �rst move is a up-ap

simpli�ation as below whih leaves eah term in the sum invariant by the

de�nition of the spin term. The seond move required to generate isotopy

is a 360

Æ

rotation of an internal box, sine two ways of making the boxes

horizontal with the �rst boundary point at the top left must di�er by suh

rotations. To see that suh rotations do not a�et Z, onsider the spin term

for a given state on a tangle that has a box surrounded by strings e�eting a

360

Æ

rotation in the most obvious way with the maxima above the box and

the minima below. Reading from the top down, anellation ours in the

fators

�

x

�

y

for all the maxima, and similarly for all the minima. So the overall

spin term is exatly as if the rotation were not there.

Multilinearity is obvious, as is the ompatibility of the operad gluing with

Z(T )-just do the gluing operation with the inputs as horizontal boxes and

the spin fators for the singularities of the y oordinate behave in the right

way.

That ontratible irles ontribute a multipliative fator of Æ follows

from the eigenvalue ondition and the hoie of the spin fators at loal

maxima and minima.

To see the *-algebra property, note that in the de�nition of the spin term,

the thing that determines the numerator and denominator is the onavity

of the region near the vertex. This is unaltered under re�etion. The C*

property is lear sine the * is just the transpose on a basis of matrix units.

�
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De�nition 3.2 With notation as in the previous theorem, we will all the

planar algebra V (or V (�) if neessary) the planar algebra of the bipartite

graph � with respet to the spin vetor �.

Notes. (i) The algebra struture on V

+

0

and V

�

0

is suh that the basis

paths of length zero are idempotents, self adjoint in the *-ase.

(ii) In general the loops with given �rst point and midway point form

matrix units for a simple summand of V

k

whih is thus a multimatrix algebra

with matrix summands indexed by pairs of verties. Any pair of verties will

our for appropriate k. The Bratteli diagram for the inreasing sequene

of multimatrix algebras V

k

thus onsists of a onneted omponent for eah

vertex in U

+

and eah omponent is ereted on a "prinipal graph" equal

to � with starting vertex "*" being the element of U

+

. See ([9, 6℄) for a

detailed treatment of suh Bratteli diagrams. We give an example below of

a graph � and the Bratteli diagram of its planar algebra:

The graph �

1

2

4 2

2

 1

2 1

5 1

1

10 10  6

 1 1

 20  12 26 6

2 2 

1

6 2

 1

 12 8

 1 1

2 1

5 2

The Bratteli diagram of V(�)

(iii) The sum over all basis loops is the identity of V

k

.

We shall now de�ne linear funtions on V

�

0

. When applied to a labelled

tangle with no boundary points, it will be alled the partition funtion of the

labelled tangle.

De�nition 3.3 The linear funtions from Z : V

�

0

! K are de�ned as the

linear extensions of the funtion whih takes the basis path a to �

4

a

.
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Thus for the partition funtion of a losed tangle one sums over states taking

all possible values in all the regions, inluding the external one. There is an

extra multipliative spin fator of �

4

a

for the external region.

Proposition 3.4 The partition funtion of a losed labelled tangle T depends

only on T up to isotopies of the 2-sphere.

Proof. Spherial isotopy is generated by planar isotopy and isotopies that

hange a losed tangle by sending a string that meets the external region to

a string that enloses the whole tangle(thus hanging the shading of the

external region). Invariane of the partition funtion under this move is easy

to hek. �

Up to this point the normalisation of the spin vetor has been irrelevant.

It is desirable that the partition funtion of an empty losed tangle be equal

to 1. This suggests the following.

De�nition 3.5 We will say that the planar algebra of a graph is normalised

if

X

a2U

+

�

4

a

= 1:

Note that this is the same as requiring

P

a2U

�

�

4

a

= 1:

Theorem 3.6 Let K be R or C and let V be the normalised planar algebra

of the �nite graph � with respet to the appropriately normalised Perron

Frobenius eigenvetor of the adjaeny matrix of �. Then tr(x) = Æ

�n+1

Z(x̂)

de�nes a normalised trae on the union of the V 's (with inlusion of V

k

in

V

k+1

by adding a string to the right as usual-see [10℄) where x̂ is any 0-tangle

obtained from x by onneting the �rst k=2 boundary points to the last k=2.

The salar produt < x; y >= tr(x

�

y) is positive de�nite.

Proof. Normalisation is a simple alulation whih also shows that the

de�nition of the trae is onsistent with the inlusions. The property tr(ab) =

tr(ba) is a onsequene of planar isotopy when all the strings added to x to

get x̂ go round x in the same diretion, and spherial invariane redues the

general ase to this one.

Positive de�niteness follows from the fat that the loops, whih form a

basis of the V

k

, are mutually orthogonal elements of positive length. In fat

the square of the norm of a loop (�; �) 2 V

k

is �

2

�(0)

�

2

�(k)

. �
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Proposition 3.7 The rotation tangle � is an isometry for the Hilbert spae

struture de�ned above by the trae and it ats on a basis path in V

k

by:

�(�; �) =

�

�(0)

�

�(k)

�

�(2k�2)

�

�(k�2)

(�; �)

where �(i) = �(i� 2) and �(i) = �(i� 2), with indies mod 2k.

Proof. This is an exerise in using the de�nition of Z(T ). �

4 Examples

Some of the simplest examples were already present in [10℄.

Example 4.1 Tensors.

The tensor planar algebra of [10℄ is just the planar algebra of the bipartite

graph with 2 verties and n edges.

Example 4.2 Spin models and disrete string theory.

A so-alled spin model of [10℄ is the planar algebra P

�

for the bipartite graph

� with#(U

+

) = 1 and#(U

�

) = n. The somewhat mysterious normalisations

of [10℄ are due to the spin vetor whih is the Perron Frobenius eigenvetor

of the adjaeny matrix. This spin vetor is partiularly simple in this ase

whih is why it was possible to omplete the disussion of spin models in [10℄

without using the formalism developed here.

Observe that ation of a permutation of the elements of U

�

on loops

preserves the planar algebra struture so that any group of suh permutations

de�nes a group of automorphisms of P

�

.

In [10℄ we onsidered the planar subalgebra P

G

of P

�

generated by the

single element of V

2

de�ned by the adjaeny matrix of some arbitrary graph

G with n verties. The verties of G form the set U

�

in the spin model.

The partition funtion of a labelled k- tangle T is then the number of graph

homomorphisms from ol(T ) to G where ol(T ) is the planar graph obtained

from T by taking as verties the shaded regions of T and as edges the 2-boxes.

The path (�; �) is just a hoie of verties of G whih spei�es where these

boundary verties are sent by the graph homomorphism. As the tangle T

beomes bigger we ould imagine it �lling up the inside of the dis so that we

are exploring the graph G by ounting larger and larger (singular) diss inside

it. If the adjaeny matrix were replaed by another symmetri matrix with

the same pattern of zero entries we ould think of its entries as interation

15



oe�ients so we would have some kind of metri on the diss inside G. Of

ourse all this is the genus zero ase. One might want to onsider higher genus

"surfaes" inside G. For this one ould try to extend the planar operad to

allow systems of strings and internal diss on a surfae of higher genus. It is

not at all lear when this is possible. For vertex and spin models it should be

straightforward enough though the spin term in the partition funtion will

already ause a problem for spin models on higher genus surfaes.

It remains to be seen just how useful it is to explore a graph by ounting

homomorphisms of planar subgraphs into it. For a random graph one would

expet that P

G

is all of P

�

. But if G has automorphisms it is obvious that

P

G

will be ontained in the planar subalgebra of P

�

given by �xed points for

the ation of the automorphism group of G.

We reord the following result giving a su�ient ondition for any planar

��subalgebra of P

�

to be the �xed point algebra for the automorphism

group oming from a group of permutations of the spins. We o�er a proof

that is urious in that the result is �nite dimensional but we shall use type

II

1

fators in our argument. Reall from [10℄ that the algebra V

k

of P

�

is

faithfully represented on the vetor spae 


[

k+1

2

℄

W where W is a vetor spae

with basis equal to U

�

. We all an element of P

�

a transposition if it ats on




[

k+1

2

℄

W as a transposition between adjaent tensor produt omponents.

Theorem 4.3 A planar *-subalgebra P = fP

k

g of P

�

whih ontains a

transposition is equal to the �xed points of P

�

under the ation of some

group of permutations of U

�

.

Proof. The union of the inreasing sequene of �nite dimensionalC

�

�algebras

P

�

k

admits a faithful trae. Complete the algebra using the GNS onsrution

([21℄,page 41) to obtain the hyper�nite type II

1

fator R. The group S

n

of

all permutations of U

�

ats on R so that every non-trivial permuation is an

outer automorphism. It was shown in [11℄ that the �xed point algebra for

the ation of S

n

is generated by the Temperley Lieb algebra and the "other"

symmetri group-the representation of S

[k+1=over2℄

on 


[

k+1

2

℄

W whih is ob-

viously generated in P

�

by the transpostions. We see that the algebra R

0

generated in R by the P

k

ontains the �xed point algebra for the S

n

ation.

Thus by the Galois theory for type II

1

fators R

0

is the �xed point algebra

for some subgroup G of S

n

.

The only thing left to show is that eah individual P

k

is the set of �xed

points for the ation of G. It is obvious that P

k

is pointwise �xed. If x is in

P

�

k

and is �xed by G and " > 0 is given, there is a y in P

^

k

for some su�iently

large

^

k with kx�yk

2

< ". But the onditional expetation E

P

�

k

(y) is de�ned

by a multiple of a tangle applied to y and so belongs to P

k

. But x is in P

�

k

16



and so is �xed by the ondtional expetation. We thus get an element of P

k

within " of x for every x, and P

k

is �nite dimensional. �

The above result an give an extremely rapid alulation of P

G

. In joint

work with Curtin ([5℄) we have shown that the planar algbebra thus assoi-

ated to the Petersen graph is in fat the �xed point algebra for the automor-

phism group of that graph. It would be desirable to have an e�etive way of

deiding if the �rst transposition is in P

G

.

Example 4.4 Graphs with Æ < 2

It is well known (see for instane [6℄) that graphs the norm of whose ad-

jaeny matrix is < 2 are given by the Coxeter graphs A;D and E. These

are the simplest examples where the formalism we have developed is nees-

sary. The Perron Frobenius eigenvetors of the adjaeny an be found in

[6℄. It is of ourse possible to use an eigenvetor other than the one of largest

eigenvalue to obtain planar algebras with Æ < 2 from most graphs but the

partition funtion will only give a positive de�nite form is one uses A;D or

E.

The A;D;E graphs were used in the �rst onstrution of irreduible sub-

fators of non-integer index by �nding what we would reognize as a on-

neted planar algebra inside the general one de�ned above. In a future paper

we will present a onstrution whih gives all onneted planar algebras with

positivity and Æ < 2 in this way.

5 Towers of Algebras

An inlusion A

0

� A

1

of �nite dimensional multimatrix algebras with the

same identity de�nes a bipartite graph � with U

+

and U

�

being the sets

of irreduible representations of A

0

and A

1

respetively. If a 2 U

+

and

b 2 U

�

there are n(a; b) edges between a and b where the restrition of b

to A

0

ontains a n(a; b) times. We say the inlusion is onneted if � is.

Choose an eigenvetor of the adjaeny matrix of � with all entries non-zero

and with non-zero eigenvalue (if there is one), and suppose the a entry of

the eigenvetor is a square, say �

2

a

. We an then de�ne, as in [9℄ and [6℄,

the Markov trae Tr of modulus Æ

2

on A

1

by setting the trae of a minimal

idempotent p

b

in the matrix algebra diret summand of A

1

orresponding to

b 2 U

�

to be �

2

b

, normalising the eigenvetor so that

X

b2U

�

dim(p

b

A

1

)�

2

b

= 1:

17



Performing the "basi onstrution" of [9℄ we obtain A

2

=< A

1

; e

1

>, the

algebra of linear endomorphisms of A

1

generated by left multipliation by

A

1

and the "onditional expetation" e

1

: A

1

! A

0

de�ned by Tr(e

1

(y)x) =

Tr(yx) for y 2 A

1

; x 2 A

0

. The entre of A

2

is naturally identi�ed with

that of A

0

and the bipartite graph for A

1

� A

2

is the transpose of that for

A

0

� A

1

. If we use the same eigenvetor of the adjaeny matrix as for

A

0

� A

1

to de�ne a trae on A

2

, the restrition of that trae to A

1

is Tr.

Continuing in this way one gets a tower A

n

for n � 0 with A

n+1

=< A

n

; e

n

>

and a oherent trae Tr on [

n

A

n

de�ned by Tr(xe

n

) = Æ

�2

Tr(x) for x 2 A

n

.

On general priniples we expet the entralisers A

0

0

\ A

k

= B

k

to form a

planar algebra and this ould no doubt be done by the method of setion 4 of

[10℄. We give an alternative, expliit realisation of B

k

as the planar algebra

of � with spin vetor equal to (�

a

). Before proeeding to onstrut the linear

isomorphism between B and V (�) we give two warnings.

(i) The entraliser inlusions B

k

� B

k+1

are not onneted - the planar

algebra is not "onneted" in the sense of [10℄.

(ii) The trae Tr on V (�) does not orrespond to the restrition of Tr to

B.

The isomorphism will give an "intrinsi" meaning to the planar algebra

of a bipartite graph though it is not quite anonial sine there are many

pairs A

0

� A

1

whih realise a give �. To make the hoie unique we shall

now assume that dim(pA

0

) = 1 for all minimal entral idempotents p in A

0

.

This has the desirable onsequene that the algebra A

1

itself an be realised

as having a basis onsisting of paths (�; �) of length 2 on � starting at a point

in U

+

. In this model the entre of A

1

an be identi�ed with elements b of

U

�

thought of as sums of all loops from points in U

+

to b and bak.

So with the data �; � form the planar algebra V (�) and the pair A

0

� A

1

as above. De�ne the maps � : V

�

0

! A

1

in the obvious way - a loop (�; �) is

a speial kind of path so automatially de�nes an element of A

1

.

In the following theorem E

i

will denote the tangle having all strings verti-

ally onneting the top to the bottom exept two whih onnet the bound-

ary points numbered i and i+ 1, 2k � i and 2k � i+ 1 as below:
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.  .  . . . . .

i  i+1

i  i+1

Theorem 5.1 There is a linear extension of � to all of V (�) suh that:

(i) � is an injetive algebra homorphism.

(ii) �(E

i

) = Æe

i

.

(iii) �(V

k

) = B

k

.

Proof. Paths of length 2k will be given by pairs (�; �) of funtions where

� : f0; 1; :::; 2kg ! U and � : f0; 1; :::; 2k � 1g ! E and the path goes from

�(i) to �(i+ 1) along �(i). The multipliation of paths is

(�

1

; �

1

)(�

2

; �

2

) = (�; �)

if �

1

(k + i) = �

2

(k � i � 1) for 0 � i < k in whih ase �(i) = �

1

(i) for

0 � i � k and �(i) = �

1

(i) for 0 � i < k, �(i) = �

2

(i) k � i � 2k and

�(i) = �

2

(i) for k � i < 2k.

If the onditions are not satis�ed, i.e. the "returning" path of (�

1

; �

1

) is

di�erent from the "outgoing" path of (�

2

; �

2

), the produt is zero.

It follows from [6℄ that there is a unique algebra isomorphism � between

A

k

and the algebra of paths of length 2k on � with initial vertex in U

+

whih

is the extension of an identi�ation of A

1

with linear ombinations of paths

of length two, and suh that �(Z(E

i

)) = Æe

i

. Note that Z(E

i

) is a linear

ombination of loops whih are also paths so Z(E

i

) an be viewed as an

element of A

k

. The formula at the top of page 86 of [6℄ is exatly what Z
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does to E

i

if we hoose � as the square roots of the entries in the eigenvetor

of the adjaeny matrix of �.

That multipliation of loops in V orresponds to multipliation of paths

desribed above is just the de�nition of Z(T ) when T is the multipliation

tangle in setion 2 drawn with retangular boxes rather than diss - all strings

are vertial so there are no singularities and no spin term.

It is simple to hek that a path is a loop if and only if the orresponding

element of A

k

is in the ommutant B

k

of A

0

. Thus for � we may just take

the restrition of � to loops.�

Using � we an thus transport all the planar algebra struture of V , and

the spherially invariant partition funtion, to B whih beomes a planar

algebra with B

+

0

= A

0

and B

�

0

= A

0

0

\A

1

. The normalised trae thus de�ned

on B

k

will be written tr and as we have pointed out, it is not the restrition

of the Markov trae ot B

k

. In partiular if a is a minimal idempotent in A

0

,

identi�ed with an element of U

+

, tr(a) = �

4

a

where � is the multiple of �

with

P

a2U

+

�

4

a

= 1. But Tr(a) = �

2

a

where

P

a2U

+

�

2

a

= 1.

6 Connes' yli ategory

Connes' yli ategory is de�ned in ([3, 4, 15℄) alternatively as (i) the

ategory with objets C

i

, for i = 0; 1; 2; :::: and generated by morphisms

d

i

: C

n�1

! C

n

, for i = 0; 1; :::; n, s

i

: C

n+1

! C

n

for i = 0; 1; :::; n and

t

i

: C

n

! C

n

subjet to the relations

d

i

d

j

= d

j�1

d

i

for i < j

s

i

s

j

= s

j+1

s

i

for i � j

d

i

s

j

=

8

<

:

s

j�1

d

i

; for i < j

id for i = j; i = j + 1

s

j

d

i�1

for i > j + 1.

d

i

t

n

= t

n�1

d

i�1

for 1 � i � n, d

0

t

n

= d

n

s

i

t

n

= t

n+1

s

i�1

for 1 � i � n, s

0

t

n

= t

2

n+1

s

n

t

n+1

n

= id.

(ii) the ategory whose objets are the sets of ith: roots of unity and

whose morphisms are homotopy lasses of monotone degree one maps from

the unit irle to itself sending roots of unity to roots of unity.

Fix an n > 0 and de�ne elements d

i

,s

i

for i = 0; 1; :::; n and t

n

of the

planar operad P as follows:

d

i

is the tangle having one internal dis with 2n+2 boundary points, and
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2n boundary points on the outside dis. Internal boundary points numbered

2i + 1 and 2i + 2 are joined by a string. All internal boundary points are

onneted to external ones, with the �rst internal one onneted to the �rst

external one exept when i = 0 when the �rst external point is onneted to

the third internal boundary point. These onditions uniquely determine d

i

sine the strings do not ross. .

For 0 � i � n, s

i

is the tangle having one internal dis with 2n + 2

internal boundary points, and 2n + 4 boundary points on the outside dis.

External boundary points numbered 2i + 2 and 2i + 3 are onneted and

all other external ones are onneted to internal ones with the �rst external

point onneted to the �rst internal point.

The tangle t

n

is the lokwise rotation by two: there are 2n+2 boundary

points on both the internal and external diss, all strings onnet inside points

to outside ones and the �rst outside one is onneted to the third inside one,

as below:

Note that these tangles d

i

,s

i

and t

n

have exatly one input and one output

so their omposition makes perfet sense provided the d's and s's have the

right numbers of internal and external boundary points.

Theorem 6.1 The operad element tangles de�ned above satisfy the relations

of the generators of (the opposite of)Connes' yli ategory. The map they

de�ne from the yli ategory to annula tangles (with one input and one

output) is injetive.

Proof. Veri�ation of the relations is simply a matter of drawing pitures.

Injetivity is more interesting. We prove it by providing a onrete realisation

of the yli ategory whih is arguably simpler than the one provided in [4℄:

for integers m and n � 0 let C

m;n

be the set of all annular tangles (modulo

a twist of 2� near the boundary) with 2m + 2 internal points and 2n + 2

external ones, with the following properties:

(i) All strings either onnet an internal boundary point to an external

one or a boundary point to one of it's neighbours.

(ii)If a string onnets an internal boundary point to its neighbour the

region between the string and the internal boundary is shaded, if it onnets

external boundary points the region between the string and the external

boundary is unshaded.
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A typial element in C

2;3

is depited below:

*

*

A morphism in the Cyli Category

Construt the ategory with one objet for eah n � 0, the objets being

the 2n+2 boundary points up to isotopy and morphisms being the C

m;n

. One

may hek that omposition of tangles makes this set into a small ategory (no

losed loops are formed in omposing suh tangles) and that it is generated

by the d

i

,s

i

and t

n

. But to eah element of this ategory there is a well

de�ned homotopy lass of degree one monotone maps from the irle to itself

de�ned by isotoping the tangle so that the eah root of unity is in exatly

one unshaded region on the inside and outside. The degree one map an

then be onstruted as follows. First ontrat any regions enlosed by non

through-strings to their segments on the internal or external boundary so

that the shading near that boundary interval will reverse. Eah unshaded

interval on the outside boundary then ontains exatly one root of unity

and all the regions are topologially retangles with internal and external

boundary segments as opposite edges. These retangles determine mappings

from the inner irle to the outer one and after a litlle isotopy eah internal

root of unity may be sent onto the unique external root of unity in the same

shaded region. Tangle omposition obviously orresponds to omposition of

homotopy lasses so we have a setion of the map from the yli ategroy to
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the C

m;n

's whih sends our d

i

,s

i

and t

n

to the orresponding generators of the

yli ategory. This is more than enough to show injetivity (and identify

the image).�

Now de�ne the tangles �

i

= �(d

i

), �

i

= �(s

i

) where � is the duality

map of the �rst seion. It follows from the previous result that �

i

, �

i

and t

n

(= �(t

n

)) de�ne another opy of Connes' yli ategory in annular tangles.

Note also that there is a natural involutory antiautomorphism of annular

tangles (re�et with respet to a irle half way between the internal and

external boundaries) whih exhanges � with s and d with �.

Thus the vetor spaes V

n+1

beome a yli module in two di�erent ways.

The two strutures interat as follows.

Proposition 6.2 If V has modulus Æ then D

n

�

0

� �

0

D

n+1

= Æid where

D

n

=

P

n

i=0

(�1)

i

d

i

is the Hohshild boundary

Corollary 6.3 If V has modulus Æ 6= 0 then it is ayli so the yli ho-

mology is that of the ground �eld.

The same result holds for any representations of the ategory of annular

tangles as in [7℄.

Thus the yli homology is of no immediate interest in planar algebras

oming from subfators. On the other hand there are very interesting planar

algebras of modulus 0. The �rst is the one oming from the skein theory of the

Alexander polynomial. It an be obtained by speialising the planar algebra

of example 2:5 in [10℄ to the values x =

p

t�

1

p

t

. The planar algebra involved

in a onjeture of .. onerning asymptotis of the sl(2) knot polynomials

also has modulus 0. At this stage we have no results onerning the yli

homology of these planar algebras. It is also true that the planar algebras

of setion 2 do not have any modulus at all if the spin vetor is not an

eigenvetor for the adjaeny matrix. One again we have no results.

The appearane of yli homology in this ontext is not understood.

One should note that, in the isomorphism of setion 2 between the planar

algebra of a �nite graph and the entraliser tower of a �nite dimensional

multimatrix inulsion the yli module struture de�ned above orresponds

to the usual one used in alulation the homology of the A�A bimodule B.

Sine the ategory or annular tangles is generated by the two opies of the

yli ategory we have de�ned, and one of those ategories is typially the

adjoint of the other for some invariant inner produtIt might be interesting

to see if there are known natural examples of yli modules for whih the

yli ategory extends to an ation of the whole annular struture and even

to a planar algebra.
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