The Planar Algebra of a bipartite graph.

Vaughan F.R. Jones
9th December 1999

Abstract

We review the definition of a general planar algebra V = UV;. We
show how to associate a general planar algebra with a bipartite graph
by creating a specific model using statistical mechanical sums defined
by alabelled tangle. It supports a partition function for a closed tangle
which is spherically invariant and defines a positive definite inner prod-
uct on each Vi. We then describe how any planar algebra is naturally
a cylic module in the sense of Connes and do some computations.

1 Introduction

The concept of planar algebra was introduced in [10] for many reasons, the
most important of which was to help in the calculation of subfactors. As
observed in [10], it is hardly surprising that such a natural concept arises
in many other situations - notably in [1, 16, 14]. Our axioms for a planar
algebra are in this respect rather special and could be criticised for being
somewhat narrow because of the restrictions imposed by the shadings, but
we would argue that our structure is to the more general ones as a group
is to a semigroup. Indeed this could be made precise in the C*-tensor cat-
egory context, but the justification with the most content is that provided
by the results of Popa. In a series of papers, [18, 19, 20| he came quite
independently across axioms (shown in [10] to be equivalent to planar alge-
bras with positivity) which guarantee the existence of a subfactor of a I1;
factor whose associated invariant is the A-lattice or planar algebra one be-
gan with! The most recent paper in the series is a universal construction
which should allow one to control the isomorphism classes of the I/ factors
in question. Popa’s results should be viewed as a co-ordinatizaion theorem
analogous to the fundamental theorem of projective geometry, in which the
Il factors give the (non-commutative) co-ordinate ring associated to the
combinatorical- geometrical structure defined by the planar algebra. In fact



such a co-ordinatization will exist, and be much easier to prove, over an arbi-
trary field. It is the completeness properties associated with the Il factors
that make Popa’s results so compelling.

The planar algebra of a subfactor was approached in [10] in a somewhat
abstract way as invariant vectors in the tensor powers of a bimodule. It
would have also been possible to do it via an explicit model in a way similar
in spirit to Ocneanu’s paragroup approach. The first step in such a program
would have been to construct a rather general kind of planar algebra using
statistical mechanical sums on the principal graph of the subfactor. Then
the actual planar algebra would be obtained as a planar subalgebra formed
by certain "flat" elements. This approach was deliberately avoided as being
long, clumsy and inelegant. However in more recent work the idea of con-
structing interesting planar algebras from the rather general ones based on
graphs has turned out to be extremely useful and we find it necessary to give
these general models. We will present such an application in a forthcoming
paper. These general planar algebras may not turn out to be of much in-
terest for their own sake as they can be formed from very general bipartite
graphs. Their detailed construction does bring to light several interesting
points however, such as the role of the choice of an eigenvector of the ad-
jacency matrix of the graph in the statistical mechanical sums. In fact an
arbitrary choice of weights would give a planar algebra but it would not in
general have the property that a closed circle in a diagram contributes a
simple multiplicative constant. We have presented the construction here for
arbitrary weights-what we will call the "spin vector" later on.

One feature of these general planar algebras is that there are no obstruc-
tions to obtaining graphs as "principal graphs' or at least connected com-
ponents thereof. It is known ([8]) that graphs occuring as principal graphs
of subfactors are quite rare so the role of the factor/connectedness condition
becomes clear. This suggests the study of planar algebras intermediate be-
tween the rather simple kind constructed here and the restricted subfactor
kind with connected principal graphs. We will present further results on this
question, inculding an ABCDEFGHI classification for modulus less than 2,
in a forthcoming paper.

We noticed some time ago that Connes’ cyclic category appears in the
annular or "affine" Temperley Lieb category. (Composition of morphisms
in the Temperley Lieb category in general leads to closed circles, but they
do not occur if one restricts to the annular tangles of Connes’ category.)
This means that any planar algebra is in fact a cyclic module in the sense
of Connes. In fact the natural adjoint map in the Temperley Lieb category
defines a second copy of the cyclic category. Together with the first, they
generate the Temperley Lieb category. If the planar algebra has the property



that isolated circles in a tangle contribute a non-zero scalar multiplicative
factor, the face maps of the second category provide homotopy contractions
of the first so that the cyclic homology of such a planar algebra will always
be zero. There are however many interesting planar algebras that do not
have this property. We simply present these observations in this paper as we
do not yet know how to use cyclic homology in planar algebras.

2 Definition of a general planar algebra.

A k—tangle for & > 0 is the unit disc D with 2k marked and numbered (clock-
wise) points on its boundary, containing a finite number of internal discs each
with an even (possibly zero) number of marked and numbered points on their
boundaries. All the marked points of all the discs are connected by smooth
disjoint curves called the strings of the tangle. The strings lie between the
internal discs and D. The strings must connect even-numbered boundary
points to even-numbered ones and odd to odd. There may also be a finite
number of closed strings (not connecting any discs) in the subset Z of the
large disc between the internal discs and the external one. The connected
components of Z minus the strings are called the regions of the tangle and
may be shaded black and white in a unique way with the convention that
the region whose closure contains the interval on the boundary of D between
the first and second marked points is shaded black. If necessary the strings
of the tangle will be oriented so that black regions are on the left as one
moves along strings. To indicate the first point on the boundary of a disc
in a picture we will select the unshaded region immediately preceding the
first point(in clockwise order) and place a * in that region near the relevant
boundary component.
Tangles are considered up to smooth isotopy. An example of a 4-tangle,with



7 internal discs is given in figure 1.1 below:

fig. 1.1

Tangles with the appropriate number of boundary points can be glued
into the internal discs of another tangle making the set of all tangles into
a coloured operad, the colour of an element being the number of boundary
points (and the colour of the region near the boundary for 0-tangles). To per-
form the gluing operation, the tangle T' to be glued to an internal disc(with
the same colour as T') of another tangle S is first isotoped so that its bound-
ary coincides with the boundary of the chosen internal disc D, the marked
points on each boundary disc being also made coincident by the isotpy. Some
smoothing may need to be done near the marked points so that the strings
of T and S meet smoothly. Finally the common boundary is removed. The
result of the gluing is another tangle T'op S with the same number of external
marked points as S and having ny + ng — 1 internal discs, ny and ng being
the numbers of internal discs of T" and S respectively. It is clear that the
isotopy class of T op S depends only on the isotopy classes of S and T and



the choice of D. An example of the gluing operation is depicted in figure 1.2:
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fig. 1.2

See [17] for the definition of an operad. Slight modifications need to be
made to handle the colours.

Definition 2.1 The planar operad P is the set of isotopy classes of planar
tangles with colours and compositions defined above.

One may construct another coloured operad with the same colours as P from
vector spaces. Operad elements are then multilinear maps from "input"
vector spaces, each vector space having a colour as in P to an "output"
vector space. Composition is only permitted when the appropriate vector
spaces have the same colour. One obtains another coloured operad Vect.
See [17] for a preciese definition(without colours).

Definition 2.2 A planar algebra is an operad homomorphism from P to
Vect.

What this means in more concrete terms is this: a planar algebra is a
graded vector space V} for k > 0 and two vector spaces VT and V'~ so that
every element T' of P determines a multilinear map from vector spaces, one
for each internal disc of T' to the vector space of the boundary of T', vector
spaces being required to have the same colour as the discs they are assigned



to. Composition in P and Vect correspond in the following sense (S (an r-
tangle) and T as above): by singling out an internal k—disc D, S determines a
linear map from Vi to Hom (W, V,.), W being the tensor product of the vector
spaces corresponding to the internal discs of .S other than D. Composing this
map with the multilinear map determined by 7' one obtains a multilinear map
from the vector spaces of all the internal tangles of 7' op S. This multilinear
map must be the same as the one the planar algebra structure assigns to
TopS.

Here are three good exercises to help understand this homomorphism
property of a planar algebra.

(i) Show that V* and V= are both commutative associative algebras.

(ii) Show that each Vj becomes an associative algebra with multiplication
being the bilinear map defined by the tangle below:

fig. 1.3 multiplication

(iii) Show that the V;’s for & > 0 and VT for V5 become an assoicative
graded algebra over V4 with multiplication being the bilinear map defined by
tangle below: (we will not show the shading any more-it is determined as
soon as we know a region with a *, and given near the boundary if £ = 0.)



fig. 1.4 graded multiplication

Tangles without internal discs are required to give linear maps from the
field into the output vector space. Thus the image of 1 under the 0-tangle
with nothing inside is thus the identity for the algebras V5. And in general
the vector space spanned by k-tangles with no internal discs is a subalgebra
of Vj.

The above definition of a planar algebra is quite general and one might be
especially interested in many special cases. The following is rather commonly
satisfied:

Definition 2.3 The planar algebra will be said to have modulus § if inserting
a contractible circle inside a tangle causes its multilinear map to be multiplied

by o.

There are maps from ¢, : Viz — Viyq defined by the "inclusion" tangle
below:

Proposition 2.4 If V is a planar algebra with modulus 6 # 0, the 1, are
injective.



Proof. Connecting the middle two boundary points and dividing by ¢
gives an inverse to ¢. .

There may be examples of planar algebras where the ¢} are not injections
but we have not looked in that direction. We will think of the V) as being
embedded one in the next via the ¢.

Planar tangles possess the following involution: call the region preceeding
the first boundary point of any disc the first region. Now reflect the tangle
in the a diameter passing through the first region on the boundary. Number
all boundary points of all discs of the reflected tangle counting clockwise so
that the image under the refletion of the first region becomes again the first
region. The involution applied to the original tangle is the one obtained by
this process.

If the field K possesses a conjugation and each Vj has a conjugate linear
involution "*" we will say that V is a planar *-algebra if the involution on
tangles and the involution on V' commute in the obvious sense. If K =R or
C, V will be called a C*-planar algebra if it is a planar *-algebra and each
Vi becomes a C*-algebra under its involution.

Planar algebras V and W are isomorphic if ther are vector space isomor-
phisms 8y : Vi, — W intertwining the actions of the planar operad. The
isomorphism are required to be *-isomorphisms in the planar *-algebra case.

There is a "duality" automorphism of the planar operad defined on a
tangle by moving the first boundary point by one in a clockwise direction on
every disc in the tangle and reversing the shading. Call this map A : P — P.
It is clear that A preserves the composition of tangles. If V' has modulus 4,

so does V.

Definition 2.5 The dual V of the planar algebra V' will be the planar algebra
whose underlying vector spaces for k > 0 are those of V, V:E = V¥, but for
which the multilinear linear map corresponding to the tangle T is that of

A(T).

In general V' is not isomorphic to V. One may check for instance that
the algbebra structure induced on V; induced by multiplication in V5 is that
defined by the tangle below:



Comultiplication

We have somewhat abusively called this second multiplication "comulti-
plication" in [2]. For the planar algebra of a finite groups as in [10], multi-
plication is that of the group algebra and comultiplication that of functions
on the group.

On the other hand V is isomorphic to V via the linear maps defined by
the " rotation" tangles below:

The rotation tangle p.

3 The planar algebra of a bipartite graph.

Let T' be a locally finite connected bipartite graph (possibly with multiple
edges) with edge set &, vertex set U =UT UU™, §(UT) =ny and §(U™) =na,
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ni1 +ny = n = §(U). No edges connect U; to itself nor Uy to itself. The
adjacency matrix of I' is of the form (ft g) where there are A+ ,— edges

connecting vt to v~.

The other piece of data we suppose given is a function p : U — K., a — pu,
where K is the underlying field and p, is required to be different from zero for
all a. In the cases of most interest so far (u2) has been an eigenvector for the
adjacency matrix of I' but that is only needed to guarantee that contractible
circles inside pictures count as scalars.

The function g will be called the vector and its value at a will be called
the spin of a.

For each & > 0 let Vi be the vector space whose basis consists of loops
of length 2k on T starting and ending at a point in ™. Such a loop will be
represented by the pair (7, €) of functions from {0,1,2,....,2k — 1} to TU &
where the i-th. step in the loop goes from m; to m(i — 1) along the edge €(7)
(the i’s being counted modulo 2k). Recording the vertices 7 of a path is
redundant since the edges contain that information but in many examples of
most interest ' will have no multiple edges in which case we would suppress
the function e. For & = 0 a loop of length 0 is just an element of U, so we
define V5T (resp. V57) to be the vector space with basis Ut (resp. U7).

We will make the V’s into a general planar algebra in the sense of [10].
One may do this for discs and arbitrary smooth isotopies in the plane as in
section 1 but consideration must be given to the angles at which the strings
meet the boundaries of the discs. We prefer to use the equivalent picture
where the discs are replaced by rectangles or "boxes" as in the second section
of [10]. If we use the V’s as a labelling set what we have to do is, given a
ko-tangle T in the sense of section 2 of [10], with an element of V} assigned
to each internal k—box of T, construct an “output” element Z(7T') in Vi,
in such a way as to respect the compostion of tangles, be independent of
isotopy and be multilinear in the “input” V' elements. Many ingredients of
the construction below were present in [13].

Definition of Z(T'). A state of the (unlabelled) tangle T will be a function
o: (regions of 1)U (strings of T') — U U &£ such that

(1) o({shaded regions}) C U+ and o({unshaded regions}) C ™.

(2) o({strings}) C £.

(3) If the closure of the regions r; and ry both contain the string ¢ then
o(t) is an edge joining o(ry) and o(ry).

Now suppose T is labelled. Let {b} be the set of internal boxes of T and
let v, be the vector in Vj be the vector assigned to the internal k-box b by
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the labelling.

To define the vector Z(T) in Vi, we must give the coefficient of a loop
(m,¢€) of length 2ky. Say that the state o of T is compatible with (7, €) in
the following way. Consider the ith boundary segment of the external box
of T' (the one between the ith and (i+1)th boundary points according to the
numbering convention of [10]). Then this segment is part of the boundary
of a region r of T'. The compatibility requirement of (7, ¢) with o is that
mi=0(r), ¢ = 0(s), €41 = 0(s’) where s and s" are the strings of T' meeting
the boundary at the ith and (¢ 4+ 1)th points respectively. Compatibility of
a state with a loop at an internal box of T is defined in the same way (with
inside replaced by outside) so that every state assigns a loop (m,€) to an
internal box b of T" as the only loop compatible with the state at b.

In the case & = 0 the whole boundary is a single segment and the loop
is just a single vertex of ¢. A state is compatible with the loop a on the
boundary if it assigns a to the region near the boundary.

Now rotate the internal boxes of T' so that they are all horizontal with the
first boundary point at the top left. Isotope the strings if necessary so that
any singularities of the y-coordinate function are local maxima or minima.

We define the vector Z(T') in Vi, by its coefficient of the basis element
(7, €) which is:

(Z(T))re) = > | JICHES 11 o

{o compatible with(m,)} b {singularities o of y on strings}

where (i) (v)(r, denotes the coefficient of the vector v in the basis

{(m,¢)}. ii The spin factor p is the ratio f£ where the state o assigns @
y

to the concave region near « and y to the region on the other side of the

curve (regardless of the shading) as below:

Spininthisregion occursin

inin thisregion occursin
NUMERATOR ¥ ™

DENOMINATOR
This ends the definition of Z(T'). Note that the sum is finite even though I’
may be infinite because we only consider states compatible with the boundary

state.
Note that the spin term

n o«

{singularities o of y on strings}
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can be replaced by [ u(o)d(8) where o denotes the locally constant function
on the strings defined by ¢ and the spin vector whose value on a string
segment is determined by the ratio of the spin values to the left and right of
that string. This would allow one to define the "singularity" factor without
considering singularities or arranging the tangle so that the boxes are all
horizontal. See [12] for this in a simpler knot-theoretical context.

Theorem 3.1 The above definition of Z(T) for any planar tangle T makes
the vector spaces of linear combinations of loops on I into a planar algebra
with dim(Vy") = ny and dim(Vy ) = ny. This planar algebra will have mod-
ulus & if (p2) is an eigenvector of the adjacency matriz with eigenvalue §. It
will be a planar *-algebra if K has a conjugation, the spin values are fived by
conjugation, and each Vy is equipped with the involution defined on the basis

by reading loops backwards, and a C*-planar algebra if, as well, K = R or
C.

Proof. The first thing to show is that Z(7T') does not change if the labelled
tangle is changed by isotopy of the disc. As in section 4 of [10] this follows
from the fact that isotopy is generated by simple moves. Isotopies that do not
change the maxima and minima are irrelevant. The first move is a cup-cap
simplification as below which leaves each term in the sum invariant by the
definition of the spin term. The second move required to generate isotopy
is a 360° rotation of an internal box, since two ways of making the boxes
horizontal with the first boundary point at the top left must differ by such
rotations. To see that such rotations do not affect 7, consider the spin term
for a given state on a tangle that has a box surrounded by strings effecting a
360° rotation in the most obvious way with the maxima above the box and
the minima below. Reading from the top down, cancellation occurs in the
factors Z—; for all the maxima, and similarly for all the minima. So the overall
spin term is exactly as if the rotation were not there.

Multilinearity is obvious, as is the compatibility of the operad gluing with
Z(T)-just do the gluing operation with the inputs as horizontal boxes and
the spin factors for the singularities of the y coordinate behave in the right
way.

That contractible circles contribute a multiplicative factor of ¢ follows
from the eigenvalue condition and the choice of the spin factors at local
maxima and minima.

To see the *-algebra property, note that in the definition of the spin term,
the thing that determines the numerator and denominator is the concavity
of the region near the vertex. This is unaltered under reflection. The C*
property is clear since the * is just the transpose on a basis of matrix units.

4
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Definition 3.2 With notation as in the previous theorem, we will call the
planar algebra V- (or V(I') if necessary) the planar algebra of the bipartite
graph I with respect to the spin vector p.

Notes. (i) The algebra structure on V" and V;~ is such that the basis
paths of length zero are idempotents, self adjoint in the *-case.

(ii) In general the loops with given first point and midway point form
matrix units for a simple summand of Vj, which is thus a multimatrix algebra
with matrix summands indexed by pairs of vertices. Any pair of vertices will
occur for appropriate k. The Bratteli diagram for the increasing sequence
of multimatrix algebras Vj thus consists of a connected component for each
vertex in U™ and each component is erected on a "principal graph" equal
to I' with starting vertex "*" being the element of U™ . See ([9, 6]) for a
detailed treatment of such Bratteli diagrams. We give an example below of
a graph I' and the Bratteli diagram of its planar algebra:

OO O O

The graph I’
1

\ /N, A
//\ N\ /\ //\/ /\
\\ / \ //\ / \\6/\2 Q/\/

. /I\/ W/
//\ / \\/\ .

12 8

2\0\/12\ //\/ AWAN /I\/

The Bratteli diagram of V(I')

(iii) The sum over all basis loops is the identity of Vj.

We shall now define linear functions on V. When applied to a labelled
tangle with no boundary points, it will be called the partition function of the
labelled tangle.

Definition 3.3 The linear functions from Z : V& — K are defined as the
linear extensions of the function which takes the basis path a to put.
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Thus for the partition function of a closed tangle one sums over states taking
all possible values in all the regions, including the external one. There is an
extra multiplicative spin factor of u? for the external region.

Proposition 3.4 The partition function of a closed labelled tangle T depends
only on T" up to isotopies of the 2-sphere.

Proof. Spherical isotopy is generated by planar isotopy and isotopies that
change a closed tangle by sending a string that meets the external region to
a string that encloses the whole tangle(thus changing the shading of the
external region). Invariance of the partition function under this move is easy
to check. O

Up to this point the normalisation of the spin vector has been irrelevant.
It is desirable that the partition function of an empty closed tangle be equal
to 1. This suggests the following.

Definition 3.5 We will say that the planar algebra of a graph is normalised

o
» up=1.

aclt

Note that this is the same as requiring ., - pa = 1.

Theorem 3.6 Let K be R or C and let V' be the normalised planar algebra
of the finite graph I' with respect to the appropriately normalised Perron
Frobenius eigenvector of the adjacency matriz of I'. Then tr(z) = §7" 1 Z (%)
defines a normalised trace on the union of the Vs (with inclusion of Vi in
Vit1 by adding a string to the right as usual-see [10]) where & is any 0-tangle
obtained from x by connecting the first k/2 boundary points to the last k/2.
The scalar product < x,y >= tr(z*y) is positive definite.

Proof. Normalisation is a simple calculation which also shows that the
definition of the trace is consistent with the inclusions. The property tr(ab) =
tr(ba) is a consequence of planar isotopy when all the strings added to x to
get & go round z in the same direction, and spherical invariance reduces the
general case to this one.

Positive definiteness follows from the fact that the loops, which form a
basis of the V4, are mutually orthogonal elements of positive length. In fact
the square of the norm of a loop (7€) € Vj is /,Lfr(o)/,cfr(k). O

14



Proposition 3.7 The rotation tangle p is an isometry for the Hilbert space
structure defined above by the trace and it acts on a basis path in Vi by:

Hor(0) (k) (a ﬁ)
Hr(2k—2)Hr(k—2) 7

o) =
where a(i) = w(1 — 2) and B(1) = e(i — 2), with indices mod 2k.

Proof. This is an exercise in using the definition of Z(T'). O

4 Examples
Some of the simplest examples were already present in [10].
Example 4.1 Tensors.

The tensor planar algebra of [10] is just the planar algebra of the bipartite
graph with 2 vertices and n edges.

Example 4.2 Spin models and discrete string theory.

A so-called spin model of [10] is the planar algebra P? for the bipartite graph
I' with #(U*) =1 and #(U~) = n. The somewhat mysterious normalisations
of [10] are due to the spin vector which is the Perron Frobenius eigenvector
of the adjacency matrix. This spin vector is particularly simple in this case
which is why it was possible to complete the discussion of spin models in [10]
without using the formalism developed here.

Observe that action of a permutation of the elements of &/~ on loops
preserves the planar algebra structure so that any group of such permutations
defines a group of automorphisms of P°.

In [10] we considered the planar subalgebra PY of P° generated by the
single element of V; defined by the adjacency matrix of some arbitrary graph
G with n vertices. The vertices of G form the set 4~ in the spin model.
The partition function of a labelled k- tangle T' is then the number of graph
homomorphisms from col(T') to G where col(T') is the planar graph obtained
from T' by taking as vertices the shaded regions of T" and as edges the 2-boxes.
The path (m,€) is just a choice of vertices of G which specifies where these
boundary vertices are sent by the graph homomorphism. As the tangle T
becomes bigger we could imagine it filling up the inside of the disc so that we
are exploring the graph G by counting larger and larger (singular) discs inside
it. If the adjacency matrix were replaced by another symmetric matrix with
the same pattern of zero entries we could think of its entries as interaction
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coeflicients so we would have some kind of metric on the discs inside G. Of
course all this is the genus zero case. One might want to consider higher genus
"surfaces' inside G. For this one could try to extend the planar operad to
allow systems of strings and internal discs on a surface of higher genus. It is
not at all clear when this is possible. For vertex and spin models it should be
straightforward enough though the spin term in the partition function will
already cause a problem for spin models on higher genus surfaces.

It remains to be seen just how useful it is to explore a graph by counting
homomorphisms of planar subgraphs into it. For a random graph one would
expect that PY is all of P?. But if G has automorphisms it is obvious that
PY will be contained in the planar subalgebra of P? given by fixed points for
the action of the automorphism group of G.

We record the following result giving a sufficient condition for any planar
x—subalgebra of P? to be the fixed point algebra for the automorphism
group coming from a group of permutations of the spins. We offer a proof
that is curious in that the result is finite dimensional but we shall use type
Il factors in our argument. Recall from [10] that the algebra Vi of P7 is
faithfully represented on the vector space @I FIW where W is a vector space
with basis equal to /™. We call an element of P? a transposition if it acts on
QI as a transposition between adjacent tensor product components.

Theorem 4.3 A planar *-subalgebra P = {P.} of P? which contains a
transposition is equal to the fived points of P” under the action of some
group of permutations of U~ .

Proof. The union of the increasing sequence of finite dimensional C*—algebras
P7 admits a faithful trace. Complete the algebra using the GNS consruction
(|21],page 41) to obtain the hyperfinite type I[; factor R. The group S, of
all permutations of &/~ acts on R so that every non-trivial permuation is an
outer automorphism. It was shown in [11]| that the fixed point algebra for
the action of 5, is generated by the Temperley Lieb algebra and the "other"
symmetric group-the representation of Spy1/over2) 00 ®[%—1]W which is ob-
viously generated in P? by the transpostions. We see that the algebra Ry
generated in R by the Py contains the fixed point algebra for the .S, action.
Thus by the Galois theory for type [[; factors Ry is the fixed point algebra
for some subgroup G of 5.

The only thing left to show is that each individual Py is the set of fixed
points for the action of Gi. It is obvious that Py is pointwise fixed. If x is in
P7 and is fixed by G and € > 0 is given, there is a y in P, for some sufficiently
large ki with |z —yll2 < e. But the conditional expectation Fps(y) is defined
by a multiple of a tangle applied to y and so belongs to P;. But z is in P]
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and so is fixed by the condtional expectation. We thus get an element of P
within € of = for every z, and Pj is finite dimensional. [

The above result can give an extremely rapid calculation of PY. In joint
work with Curtin ([5]) we have shown that the planar algbebra thus associ-
ated to the Petersen graph is in fact the fixed point algebra for the automor-
phism group of that graph. It would be desirable to have an effective way of
deciding if the first transposition is in PY.

Example 4.4 Graphs with § < 2

It is well known (see for instance [6]) that graphs the norm of whose ad-
jacency matrix is < 2 are given by the Coxeter graphs A, D and K. These
are the simplest examples where the formalism we have developed is neces-
sary. The Perron Frobenius eigenvectors of the adjacency can be found in
[6]. Tt is of course possible to use an eigenvector other than the one of largest
eigenvalue to obtain planar algebras with 6 < 2 from most graphs but the
partition function will only give a positive definite form is one uses A, D or
E.

The A, D, E graphs were used in the first construction of irreducible sub-
factors of non-integer index by finding what we would recognize as a con-
nected planar algebra inside the general one defined above. In a future paper
we will present a construction which gives all connected planar algebras with
positivity and § < 2 in this way.

5 Towers of Algebras

An inclusion Ay C A; of finite dimensional multimatrix algebras with the
same identity defines a bipartite graph I' with /T and U~ being the sets
of irreducible representations of Ay and A; respectively. If « € Ut and
b € U~ there are n(a,b) edges between a and b where the restriction of b
to Ag contains a n(a,b) times. We say the inclusion is connected if T' is.
Choose an eigenvector of the adjacency matrix of I' with all entries non-zero
and with non-zero eigenvalue (if there is one), and suppose the a entry of
the eigenvector is a square, say v2. We can then define, as in [9] and [6],
the Markov trace Tr of modulus 6% on A; by setting the trace of a minimal
idempotent p, in the matrix algebra direct summand of A; corresponding to

b € U™ to be v}, normalising the eigenvector so that

Z dim(pyAy)vi = 1.

bel—
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Performing the "basic construction" of [9] we obtain Ay =< Ay, ¢y >, the
algebra of linear endomorphisms of A; generated by left multiplication by
A; and the "conditional expectation" e; : Ay — Ag defined by Tr(ei(y)x) =
Tr(yx) for y € Aj,x € Ag. The centre of Ay is naturally identified with
that of Ag and the bipartite graph for A; C A, is the transpose of that for
Ag C A;. If we use the same eigenvector of the adjacency matrix as for
Ag C Aj to define a trace on A,, the restriction of that trace to Ay is T'r.
Continuing in this way one gets a tower A, for n > 0 with A, 11 =< A,, e, >
and a coherent trace T'r on U, A,, defined by T'r(ze,) = 6 *Tr(z) for x € A,.

On general principles we expect the centralisers Ay N Ax, = By to form a
planar algebra and this could no doubt be done by the method of section 4 of
[10]. We give an alternative, explicit realisation of By as the planar algebra
of I with spin vector equal to (v,). Before proceeding to construct the linear
isomorphism between B and V(I') we give two warnings.

(i) The centraliser inclusions By C Bj4; are not connected - the planar
algebra is not "connected" in the sense of [10].

(ii) The trace Tr on V(I') does not correspond to the restriction of T'r to
B.

The isomorphism will give an "intrinsic" meaning to the planar algebra
of a bipartite graph though it is not quite canonical since there are many
pairs Ag C A; which realise a give I'. To make the choice unique we shall
now assume that dim(pAg) = 1 for all minimal central idempotents p in Aq.
This has the desirable consequence that the algebra A; itself can be realised
as having a basis consisting of paths (7, €) of length 2 on I' starting at a point
in 4T. In this model the centre of A; can be identified with elements b of
U~ thought of as sums of all loops from points in 4T to b and back.

So with the data I', v form the planar algebra V(I') and the pair Ag C Ay
as above. Define the maps © : V¥ — A in the obvious way - a loop (m,¢€) is
a special kind of path so automatically defines an element of Aj;.

In the following theorem F; will denote the tangle having all strings verti-
cally connecting the top to the bottom except two which connect the bound-
ary points numbered 7 and 7 + 1, 2k — 7 and 2k — 74+ 1 as below:
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Theorem 5.1 There is a linear extension of © to all of V(I') such that:
(i) © is an injective algebra homorphism.
(ii)) ©O(Vy) = By.

Proof. Paths of length 2k will be given by pairs (m,€) of functions where
7:{0,1,....,2k} - U and ¢:{0,1,...,2k — 1} — &£ and the path goes from
7(i) to m(¢ + 1) along €(i). The multiplication of paths is

(71, €1)(m2, €2) = (7€)

if eg(k+1i) = ea(k —i—1) for 0 < ¢ < k in which case 7(¢) = m(¢) for
0 <i<kande(i)=e()for 0 <i <k, w(i) =m(i) k <1 < 2k and
€(1) = €(7) for k <1 < 2k.

If the conditions are not satisfied, i.e. the "returning" path of (m1,¢€;) is
different from the "outgoing" path of (w2, €3), the product is zero.

It follows from [6] that there is a unique algebra isomorphism II between
Ay, and the algebra of paths of length 2k on T' with initial vertex in * which
is the extension of an identification of A; with linear combinations of paths
of length two, and such that I[I(Z(FE;)) = de;. Note that Z(F;) is a linear
combination of loops which are also paths so Z(FE;) can be viewed as an
element of Aj. The formula at the top of page 86 of [6] is exactly what Z
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does to E; if we choose v as the square roots of the entries in the eigenvector
of the adjacency matrix of I'.

That multiplication of loops in V' corresponds to multiplication of paths
described above is just the definition of Z(T') when T is the multiplication
tangle in section 2 drawn with rectangular boxes rather than discs - all strings
are vertical so there are no singularities and no spin term.

It is simple to check that a path is a loop if and only if the corresponding
element of Ay is in the commutant By of Ag. Thus for © we may just take
the restriction of 11 to loops.[]

Using O we can thus transport all the planar algebra structure of V', and
the spherically invariant partition function, to B which becomes a planar
algebra with Bf = Ag and By = AN A;. The normalised trace thus defined
on By will be written ¢r and as we have pointed out, it is not the restriction
of the Markov trace ot By. In particular if @ is a minimal idempotent in Ag,
identified with an element of UT, tr(a) = u} where y is the multiple of v
with > o pta = 1. But Tr(a) = v where 3 . v2 = 1.

a

6 Connes’ cyclic category

Connes’ cyclic category is defined in ([3, 4, 15]) alternatively as (i) the
category with objects C;, for ¢« = 0,1,2,.... and generated by morphisms
di : Choy — Cy, for e =0,1,..0n, s; : Chyy — €, for e = 0,1,....,n and
t; . O, — €, subject to the relations

did]‘ = d]‘_ldi for 1 <j
sis; = sj418; for 1 <y

sj_1d;, for 1<y
dis; =< ud for i1=9,0=75+1

sjdi_y for 1> 35+ 1.
dztn = tn—ldi—l for 1 S ) S n, dotn = dn
Sty =thr18,-1 for 1 <1 <n, Soty, = t721+15n
1 =qd.

(ii) the category whose objects are the sets of ith. roots of unity and
whose morphisms are homotopy classes of monotone degree one maps from
the unit circle to itself sending roots of unity to roots of unity.

Fix an n > 0 and define elements d;,s; for 1 = 0,1,...,n and ¢, of the
planar operad P as follows:
d; is the tangle having one internal disc with 2n 42 boundary points, and
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2n boundary points on the outside disc. Internal boundary points numbered
21 4+ 1 and 2 4+ 2 are joined by a string. All internal boundary points are
connected to external ones, with the first internal one connected to the first
external one except when ¢ = 0 when the first external point is connected to
the third internal boundary point. These conditions uniquely determine d;
since the strings do not cross. .

For 0 <1 < n, s; is the tangle having one internal disc with 2n 4 2
internal boundary points, and 2n + 4 boundary points on the outside disc.
External boundary points numbered 2: + 2 and 2¢ 4+ 3 are connected and
all other external ones are connected to internal ones with the first external
point connected to the first internal point.

The tangle ¢, is the clockwise rotation by two: there are 2n + 2 boundary
points on both the internal and external discs, all strings connect inside points
to outside ones and the first outside one is connected to the third inside one,
as below:

Note that these tangles d;,s; and ¢,, have exactly one input and one output
so their composition makes perfect sense provided the d’s and s’s have the
right numbers of internal and external boundary points.

Theorem 6.1 The operad element tangles defined above satisfy the relations
of the generators of (the opposite of )Connes’ eyclic category. The map they
define from the cyclic category to annula tangles (with one input and one
oulput) is injective.

Proof. Verification of the relations is simply a matter of drawing pictures.
Injectivity is more interesting. We prove it by providing a concrete realisation
of the cyclic category which is arguably simpler than the one provided in [4]:
for integers m and n > 0 let C,,,, be the set of all annular tangles (modulo
a twist of 27 near the boundary) with 2m + 2 internal points and 2n + 2
external ones, with the following properties:

(i) All strings either connect an internal boundary point to an external
one or a boundary point to one of it’s neighbours.

(ii)If a string connects an internal boundary point to its neighbour the
region between the string and the internal boundary is shaded, if it connects
external boundary points the region between the string and the external
boundary is unshaded.
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A typical element in C; 3 is depicted below:

A morphism in the Cyclic Category

Construct the category with one object for each n > 0, the objects being
the 2n+2 boundary points up to isotopy and morphisms being the C,, ,,. One
may check that composition of tangles makes this set into a small category (no
closed loops are formed in composing such tangles) and that it is generated
by the d;,s; and t, . But to each element of this category there is a well
defined homotopy class of degree one monotone maps from the circle to itself
defined by isotoping the tangle so that the each root of unity is in exactly
one unshaded region on the inside and outside. The degree one map can
then be constructed as follows. First contract any regions enclosed by non
through-strings to their segments on the internal or external boundary so
that the shading near that boundary interval will reverse. Fach unshaded
interval on the outside boundary then contains exactly one root of unity
and all the regions are topologically rectangles with internal and external
boundary segments as opposite edges. These rectangles determine mappings
from the inner circle to the outer one and after a litlle isotopy each internal
root of unity may be sent onto the unique external root of unity in the same
shaded region. Tangle composition obviously corresponds to composition of
homotopy classes so we have a section of the map from the cyclic categroy to
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the C,, ,’s which sends our d;,s; and t,, to the corresponding generators of the
cyclic category. This is more than enough to show injectivity (and identify
the image).O]

Now define the tangles 9; = A(d;), 0, = A(s;) where A is the duality
map of the first secion. It follows from the previous result that d; , o; and ¢,
(= A(t,,)) define another copy of Connes’ cyclic category in annular tangles.
Note also that there is a natural involutory antiautomorphism of annular
tangles (reflect with respect to a circle half way between the internal and
external boundaries) which exchanges d with s and d with o.

Thus the vector spaces V,,11 become a cyclic module in two different ways.
The two structures interact as follows.

Proposition 6.2 If V has modulus 6 then D,oo — 0oD,11 = did where
D, =>"" (=1)'d; is the Hochschild boundary

Corollary 6.3 If V has modulus 6 # 0 then it is acyclic so the cyclic ho-
mology is that of the ground field.

The same result holds for any representations of the category of annular
tangles as in [7].

Thus the cyclic homology is of no immediate interest in planar algebras
coming from subfactors. On the other hand there are very interesting planar
algebras of modulus 0. The first is the one coming from the skein theory of the
Alexander polynomial. It can be obtained by specialising the planar algebra
of example 2.5 in [10] to the values x = /t — % The planar algebra involved
in a conjecture of .. concerning asymptotics of the sl(2) knot polynomials
also has modulus 0. At this stage we have no results concerning the cyclic
homology of these planar algebras. It is also true that the planar algebras
of section 2 do not have any modulus at all if the spin vector is not an
eigenvector for the adjacency matrix. Once again we have no results.

The appearance of cyclic homology in this context is not understood.
One should note that, in the isomorphism of section 2 between the planar
algebra of a finite graph and the centraliser tower of a finite dimensional
multimatrix inculsion the cyclic module structure defined above corresponds
to the usual one used in calculation the homology of the A — A bimodule B.
Since the category or annular tangles is generated by the two copies of the
cyclic category we have defined, and one of those categories is typically the
adjoint of the other for some invariant inner productlt might be interesting
to see if there are known natural examples of cyclic modules for which the
cyclic category extends to an action of the whole annular structure and even
to a planar algebra.
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