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Abstra
t

We review the de�nition of a general planar algebra V = [V

k

. We

show how to asso
iate a general planar algebra with a bipartite graph

by 
reating a spe
i�
 model using statisti
al me
hani
al sums de�ned

by a labelled tangle. It supports a partition fun
tion for a 
losed tangle

whi
h is spheri
ally invariant and de�nes a positive de�nite inner prod-

u
t on ea
h V

k

. We then des
ribe how any planar algebra is naturally

a 
yli
 module in the sense of Connes and do some 
omputations.

1 Introdu
tion

The 
on
ept of planar algebra was introdu
ed in [10℄ for many reasons, the

most important of whi
h was to help in the 
al
ulation of subfa
tors. As

observed in [10℄, it is hardly surprising that su
h a natural 
on
ept arises

in many other situations - notably in [1, 16, 14℄. Our axioms for a planar

algebra are in this respe
t rather spe
ial and 
ould be 
riti
ised for being

somewhat narrow be
ause of the restri
tions imposed by the shadings, but

we would argue that our stru
ture is to the more general ones as a group

is to a semigroup. Indeed this 
ould be made pre
ise in the C�-tensor 
at-

egory 
ontext, but the justi�
ation with the most 
ontent is that provided

by the results of Popa. In a series of papers, [18, 19, 20℄ he 
ame quite

independently a
ross axioms (shown in [10℄ to be equivalent to planar alge-

bras with positivity) whi
h guarantee the existen
e of a subfa
tor of a II

1

fa
tor whose asso
iated invariant is the �-latti
e or planar algebra one be-

gan with! The most re
ent paper in the series is a universal 
onstru
tion

whi
h should allow one to 
ontrol the isomorphism 
lasses of the II

1

fa
tors

in question. Popa's results should be viewed as a 
o-ordinatizaion theorem

analogous to the fundamental theorem of proje
tive geometry, in whi
h the

II

1

fa
tors give the (non-
ommutative) 
o-ordinate ring asso
iated to the


ombinatori
al- geometri
al stru
ture de�ned by the planar algebra. In fa
t
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su
h a 
o-ordinatization will exist, and be mu
h easier to prove, over an arbi-

trary �eld. It is the 
ompleteness properties asso
iated with the II

1

fa
tors

that make Popa's results so 
ompelling.

The planar algebra of a subfa
tor was approa
hed in [10℄ in a somewhat

abstra
t way as invariant ve
tors in the tensor powers of a bimodule. It

would have also been possible to do it via an expli
it model in a way similar

in spirit to O
neanu's paragroup approa
h. The �rst step in su
h a program

would have been to 
onstru
t a rather general kind of planar algebra using

statisti
al me
hani
al sums on the prin
ipal graph of the subfa
tor. Then

the a
tual planar algebra would be obtained as a planar subalgebra formed

by 
ertain "�at" elements. This approa
h was deliberately avoided as being

long, 
lumsy and inelegant. However in more re
ent work the idea of 
on-

stru
ting interesting planar algebras from the rather general ones based on

graphs has turned out to be extremely useful and we �nd it ne
essary to give

these general models. We will present su
h an appli
ation in a forth
oming

paper. These general planar algebras may not turn out to be of mu
h in-

terest for their own sake as they 
an be formed from very general bipartite

graphs. Their detailed 
onstru
tion does bring to light several interesting

points however, su
h as the role of the 
hoi
e of an eigenve
tor of the ad-

ja
en
y matrix of the graph in the statisti
al me
hani
al sums. In fa
t an

arbitrary 
hoi
e of weights would give a planar algebra but it would not in

general have the property that a 
losed 
ir
le in a diagram 
ontributes a

simple multipli
ative 
onstant. We have presented the 
onstru
tion here for

arbitrary weights-what we will 
all the "spin ve
tor" later on.

One feature of these general planar algebras is that there are no obstru
-

tions to obtaining graphs as "prin
ipal graphs" or at least 
onne
ted 
om-

ponents thereof. It is known ([8℄) that graphs o

uring as prin
ipal graphs

of subfa
tors are quite rare so the role of the fa
tor/
onne
tedness 
ondition

be
omes 
lear. This suggests the study of planar algebras intermediate be-

tween the rather simple kind 
onstru
ted here and the restri
ted subfa
tor

kind with 
onne
ted prin
ipal graphs. We will present further results on this

question, in
ulding an ABCDEFGHI 
lassi�
ation for modulus less than 2,

in a forth
oming paper.

We noti
ed some time ago that Connes' 
y
li
 
ategory appears in the

annular or "a�ne" Temperley Lieb 
ategory. (Composition of morphisms

in the Temperley Lieb 
ategory in general leads to 
losed 
ir
les, but they

do not o

ur if one restri
ts to the annular tangles of Connes' 
ategory.)

This means that any planar algebra is in fa
t a 
y
li
 module in the sense

of Connes. In fa
t the natural adjoint map in the Temperley Lieb 
ategory

de�nes a se
ond 
opy of the 
y
li
 
ategory. Together with the �rst, they

generate the Temperley Lieb 
ategory. If the planar algebra has the property
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that isolated 
ir
les in a tangle 
ontribute a non-zero s
alar multipli
ative

fa
tor, the fa
e maps of the se
ond 
ategory provide homotopy 
ontra
tions

of the �rst so that the 
y
li
 homology of su
h a planar algebra will always

be zero. There are however many interesting planar algebras that do not

have this property. We simply present these observations in this paper as we

do not yet know how to use 
y
li
 homology in planar algebras.

2 De�nition of a general planar algebra.

A k�tangle for k � 0 is the unit dis
 D with 2k marked and numbered (
lo
k-

wise) points on its boundary, 
ontaining a �nite number of internal dis
s ea
h

with an even (possibly zero) number of marked and numbered points on their

boundaries. All the marked points of all the dis
s are 
onne
ted by smooth

disjoint 
urves 
alled the strings of the tangle. The strings lie between the

internal dis
s and D. The strings must 
onne
t even-numbered boundary

points to even-numbered ones and odd to odd. There may also be a �nite

number of 
losed strings (not 
onne
ting any dis
s) in the subset I of the

large dis
 between the internal dis
s and the external one. The 
onne
ted


omponents of I minus the strings are 
alled the regions of the tangle and

may be shaded bla
k and white in a unique way with the 
onvention that

the region whose 
losure 
ontains the interval on the boundary of D between

the �rst and se
ond marked points is shaded bla
k. If ne
essary the strings

of the tangle will be oriented so that bla
k regions are on the left as one

moves along strings. To indi
ate the �rst point on the boundary of a dis


in a pi
ture we will sele
t the unshaded region immediately pre
eding the

�rst point(in 
lo
kwise order) and pla
e a * in that region near the relevant

boundary 
omponent.

Tangles are 
onsidered up to smooth isotopy. An example of a 4-tangle,with
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7 internal dis
s is given in �gure 1.1 below:
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fig: 1:1

Tangles with the appropriate number of boundary points 
an be glued

into the internal dis
s of another tangle making the set of all tangles into

a 
oloured operad, the 
olour of an element being the number of boundary

points (and the 
olour of the region near the boundary for 0-tangles). To per-

form the gluing operation, the tangle T to be glued to an internal dis
(with

the same 
olour as T ) of another tangle S is �rst isotoped so that its bound-

ary 
oin
ides with the boundary of the 
hosen internal dis
 D, the marked

points on ea
h boundary dis
 being also made 
oin
ident by the isotpy. Some

smoothing may need to be done near the marked points so that the strings

of T and S meet smoothly. Finally the 
ommon boundary is removed. The

result of the gluing is another tangle T Æ

D

S with the same number of external

marked points as S and having n

T

+ n

S

� 1 internal dis
s, n

T

and n

S

being

the numbers of internal dis
s of T and S respe
tively. It is 
lear that the

isotopy 
lass of T Æ

D

S depends only on the isotopy 
lasses of S and T and
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the 
hoi
e of D. An example of the gluing operation is depi
ted in �gure 1.2:
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fig: 1:2

See [17℄ for the de�nition of an operad. Slight modi�
ations need to be

made to handle the 
olours.

De�nition 2.1 The planar operad P is the set of isotopy 
lasses of planar

tangles with 
olours and 
ompositions de�ned above.

One may 
onstru
t another 
oloured operad with the same 
olours as P from

ve
tor spa
es. Operad elements are then multilinear maps from "input"

ve
tor spa
es, ea
h ve
tor spa
e having a 
olour as in P to an "output"

ve
tor spa
e. Composition is only permitted when the appropriate ve
tor

spa
es have the same 
olour. One obtains another 
oloured operad V e
t.

See [17℄ for a pre
iese de�nition(without 
olours).

De�nition 2.2 A planar algebra is an operad homomorphism from P to

V e
t.

What this means in more 
on
rete terms is this: a planar algebra is a

graded ve
tor spa
e V

k

for k > 0 and two ve
tor spa
es V

+

and V

�

so that

every element T of P determines a multilinear map from ve
tor spa
es, one

for ea
h internal dis
 of T to the ve
tor spa
e of the boundary of T , ve
tor

spa
es being required to have the same 
olour as the dis
s they are assigned
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to. Composition in P and V e
t 
orrespond in the following sense (S (an r-

tangle) and T as above): by singling out an internal k�dis
D, S determines a

linear map from V

k

to Hom(W;V

r

), W being the tensor produ
t of the ve
tor

spa
es 
orresponding to the internal dis
s of S other than D. Composing this

map with the multilinearmap determined by T one obtains a multilinearmap

from the ve
tor spa
es of all the internal tangles of T Æ

D

S. This multilinear

map must be the same as the one the planar algebra stru
ture assigns to

T Æ

D

S.

Here are three good exer
ises to help understand this homomorphism

property of a planar algebra.

(i) Show that V

+

and V

�

are both 
ommutative asso
iative algebras.

(ii) Show that ea
h V

k

be
omes an asso
iative algebra with multipli
ation

being the bilinear map de�ned by the tangle below:

D

1

D

2

�

�

�

fig: 1:3 multipli
ation

(iii) Show that the V

k

's for k > 0 and V

+

for V

0

be
ome an assoi
ative

graded algebra over V

0

with multipli
ation being the bilinear map de�ned by

tangle below: (we will not show the shading any more-it is determined as

soon as we know a region with a *, and given near the boundary if k = 0.)
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*

*  *

fig: 1:4 graded multipli
ation

Tangles without internal dis
s are required to give linear maps from the

�eld into the output ve
tor spa
e. Thus the image of 1 under the 0-tangle

with nothing inside is thus the identity for the algebras V

0

. And in general

the ve
tor spa
e spanned by k-tangles with no internal dis
s is a subalgebra

of V

k

.

The above de�nition of a planar algebra is quite general and one might be

espe
ially interested in many spe
ial 
ases. The following is rather 
ommonly

satis�ed:

De�nition 2.3 The planar algebra will be said to have modulus Æ if inserting

a 
ontra
tible 
ir
le inside a tangle 
auses its multilinear map to be multiplied

by Æ.

There are maps from �

k

: V

k

! V

k+1

de�ned by the "in
lusion" tangle

below:

Proposition 2.4 If V is a planar algebra with modulus Æ 6= 0, the �

k

are

inje
tive.
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Proof. Conne
ting the middle two boundary points and dividing by Æ

gives an inverse to �

k

. �.

There may be examples of planar algebras where the �

k

are not inje
tions

but we have not looked in that dire
tion. We will think of the V

k

as being

embedded one in the next via the �

k

.

Planar tangles possess the following involution: 
all the region pre
eeding

the �rst boundary point of any dis
 the �rst region. Now re�e
t the tangle

in the a diameter passing through the �rst region on the boundary. Number

all boundary points of all dis
s of the re�e
ted tangle 
ounting 
lo
kwise so

that the image under the re�etion of the �rst region be
omes again the �rst

region. The involution applied to the original tangle is the one obtained by

this pro
ess.

If the �eld K possesses a 
onjugation and ea
h V

k

has a 
onjugate linear

involution "�" we will say that V is a planar *-algebra if the involution on

tangles and the involution on V 
ommute in the obvious sense. If K = R or

C , V will be 
alled a C*-planar algebra if it is a planar *-algebra and ea
h

V

k

be
omes a C*-algebra under its involution.

Planar algebras V and W are isomorphi
 if ther are ve
tor spa
e isomor-

phisms �

k

: V

k

! W

k

intertwining the a
tions of the planar operad. The

isomorphism are required to be *-isomorphisms in the planar *-algebra 
ase.

There is a "duality" automorphism of the planar operad de�ned on a

tangle by moving the �rst boundary point by one in a 
lo
kwise dire
tion on

every dis
 in the tangle and reversing the shading. Call this map� : P ! P.

It is 
lear that � preserves the 
omposition of tangles. If V has modulus Æ,

so does

~

V .

De�nition 2.5 The dual

^

V of the planar algebra V will be the planar algebra

whose underlying ve
tor spa
es for k > 0 are those of V ,

^

V

�

0

= V

�

0

, but for

whi
h the multilinear linear map 
orresponding to the tangle T is that of

�(T ).

In general V is not isomorphi
 to

~

V . One may 
he
k for instan
e that

the algbebra stru
ture indu
ed on V

2

indu
ed by multipli
ation in

~

V

2

is that

de�ned by the tangle below:
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*

*

*

Comultipli
ation

We have somewhat abusively 
alled this se
ond multipli
ation "
omulti-

pli
ation" in [2℄. For the planar algebra of a �nite groups as in [10℄, multi-

pli
ation is that of the group algebra and 
omultipli
ation that of fun
tions

on the group.

On the other hand

~

~

V is isomorphi
 to V via the linear maps de�ned by

the " rotation" tangles below:

�

�

The rotation tangle �:

3 The planar algebra of a bipartite graph.

Let � be a lo
ally �nite 
onne
ted bipartite graph (possibly with multiple

edges) with edge set E, vertex set U = U

+

[ U

�

, ℄(U

+

) =n

1

and ℄(U

�

) =n

2

,
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n

1

+ n

2

= n = ℄(U). No edges 
onne
t U

1

to itself nor U

2

to itself. The

adja
en
y matrix of � is of the form

�

0 �

�

t

0

�

where there are �

v

+

;v

�
edges


onne
ting v

+

to v

�

.

The other pie
e of data we suppose given is a fun
tion � : U !K, a! �

a

whereK is the underlying �eld and �

a

is required to be di�erent from zero for

all a. In the 
ases of most interest so far (�

2

a

) has been an eigenve
tor for the

adja
en
y matrix of � but that is only needed to guarantee that 
ontra
tible


ir
les inside pi
tures 
ount as s
alars.

The fun
tion � will be 
alled the ve
tor and its value at a will be 
alled

the spin of a.

For ea
h k > 0 let V

k

be the ve
tor spa
e whose basis 
onsists of loops

of length 2k on � starting and ending at a point in U

+

. Su
h a loop will be

represented by the pair (�; �) of fun
tions from f0; 1; 2; :::; 2k � 1g to � [ E

where the i-th. step in the loop goes from �

i

to �(i� 1) along the edge �(i)

(the i's being 
ounted modulo 2k). Re
ording the verti
es � of a path is

redundant sin
e the edges 
ontain that information but in many examples of

most interest � will have no multiple edges in whi
h 
ase we would suppress

the fun
tion �. For k = 0 a loop of length 0 is just an element of U , so we

de�ne V

0

+

(resp. V

0

�

) to be the ve
tor spa
e with basis U

+

(resp. U

�

).

We will make the V 's into a general planar algebra in the sense of [10℄.

One may do this for dis
s and arbitrary smooth isotopies in the plane as in

se
tion 1 but 
onsideration must be given to the angles at whi
h the strings

meet the boundaries of the dis
s. We prefer to use the equivalent pi
ture

where the dis
s are repla
ed by re
tangles or "boxes" as in the se
ond se
tion

of [10℄. If we use the V 's as a labelling set what we have to do is, given a

k

0

-tangle T in the sense of se
tion 2 of [10℄, with an element of V

k

assigned

to ea
h internal k�box of T , 
onstru
t an �output� element Z(T ) in V

k

0

,

in su
h a way as to respe
t the 
ompostion of tangles, be independent of

isotopy and be multilinear in the �input� V elements. Many ingredients of

the 
onstru
tion below were present in [13℄.

De�nition of Z(T ). A state of the (unlabelled) tangle T will be a fun
tion

�: (regions of T )[ (strings of T ) ! U [ E su
h that

(1) �({shaded regions}) � U

+

and �({unshaded regions}) � U

�

.

(2) �({strings}) � E.

(3) If the 
losure of the regions r

1

and r

2

both 
ontain the string t then

�(t) is an edge joining �(r

1

) and �(r

2

).

Now suppose T is labelled. Let {b} be the set of internal boxes of T and

let v

b

be the ve
tor in V

k

be the ve
tor assigned to the internal k-box b by
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the labelling.

To de�ne the ve
tor Z(T ) in V

k

0

we must give the 
oe�
ient of a loop

(�; �) of length 2k

0

. Say that the state � of T is 
ompatible with (�; �) in

the following way. Consider the ith boundary segment of the external box

of T (the one between the ith and (i+1)th boundary points a

ording to the

numbering 
onvention of [10℄). Then this segment is part of the boundary

of a region r of T . The 
ompatibility requirement of (�; �) with � is that

�

i

= �(r) , �

i

= �(s), �

i+1

= �(s

0

) where s and s

0

are the strings of T meeting

the boundary at the ith and (i + 1)th points respe
tively. Compatibility of

a state with a loop at an internal box of T is de�ned in the same way (with

inside repla
ed by outside) so that every state assigns a loop (�

b

; �

b

) to an

internal box b of T as the only loop 
ompatible with the state at b.

In the 
ase k = 0 the whole boundary is a single segment and the loop

is just a single vertex of U . A state is 
ompatible with the loop a on the

boundary if it assigns a to the region near the boundary.

Now rotate the internal boxes of T so that they are all horizontal with the

�rst boundary point at the top left. Isotope the strings if ne
essary so that

any singularities of the y-
oordinate fun
tion are lo
al maxima or minima.

We de�ne the ve
tor Z(T ) in V

k

0

by its 
oe�
ient of the basis element

(�; �) whi
h is:

(Z(T ))

(�;�)

=

X

f� 
ompatible with(�;�)g

Y

b

(v

b

)

(�

b

;�

b

)

Y

fsingularities� of y on stringsg

�

�

where (i) (v)

(�

b

;�)

denotes the 
oe�
ient of the ve
tor v in the basis

f(�; �)g. ii The spin fa
tor � is the ratio

�

x

�

y

where the state � assigns x

to the 
on
ave region near � and y to the region on the other side of the


urve (regardless of the shading) as below:

spin in this region occurs

DENOMINATOR

 in
Spin in this region occurs in

   NUMERATOR

This ends the de�nition of Z(T ). Note that the sum is �nite even though �

may be in�nite be
ause we only 
onsider states 
ompatible with the boundary

state.

Note that the spin term

Y

fsingularities� of y on stringsg

�

�
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an be repla
ed by

R

�(�)d(�) where � denotes the lo
ally 
onstant fun
tion

on the strings de�ned by � and the spin ve
tor whose value on a string

segment is determined by the ratio of the spin values to the left and right of

that string. This would allow one to de�ne the "singularity" fa
tor without


onsidering singularities or arranging the tangle so that the boxes are all

horizontal. See [12℄ for this in a simpler knot-theoreti
al 
ontext.

Theorem 3.1 The above de�nition of Z(T ) for any planar tangle T makes

the ve
tor spa
es of linear 
ombinations of loops on � into a planar algebra

with dim(V

+

0

) = n

1

and dim(V

�

0

) = n

2

. This planar algebra will have mod-

ulus Æ if (�

2

a

) is an eigenve
tor of the adja
en
y matrix with eigenvalue Æ. It

will be a planar *-algebra if K has a 
onjugation, the spin values are �xed by


onjugation, and ea
h V

k

is equipped with the involution de�ned on the basis

by reading loops ba
kwards, and a C*-planar algebra if, as well, K = R or

C .

Proof. The �rst thing to show is that Z(T ) does not 
hange if the labelled

tangle is 
hanged by isotopy of the dis
. As in se
tion 4 of [10℄ this follows

from the fa
t that isotopy is generated by simple moves. Isotopies that do not


hange the maxima and minima are irrelevant. The �rst move is a 
up-
ap

simpli�
ation as below whi
h leaves ea
h term in the sum invariant by the

de�nition of the spin term. The se
ond move required to generate isotopy

is a 360

Æ

rotation of an internal box, sin
e two ways of making the boxes

horizontal with the �rst boundary point at the top left must di�er by su
h

rotations. To see that su
h rotations do not a�e
t Z, 
onsider the spin term

for a given state on a tangle that has a box surrounded by strings e�e
ting a

360

Æ

rotation in the most obvious way with the maxima above the box and

the minima below. Reading from the top down, 
an
ellation o

urs in the

fa
tors

�

x

�

y

for all the maxima, and similarly for all the minima. So the overall

spin term is exa
tly as if the rotation were not there.

Multilinearity is obvious, as is the 
ompatibility of the operad gluing with

Z(T )-just do the gluing operation with the inputs as horizontal boxes and

the spin fa
tors for the singularities of the y 
oordinate behave in the right

way.

That 
ontra
tible 
ir
les 
ontribute a multipli
ative fa
tor of Æ follows

from the eigenvalue 
ondition and the 
hoi
e of the spin fa
tors at lo
al

maxima and minima.

To see the *-algebra property, note that in the de�nition of the spin term,

the thing that determines the numerator and denominator is the 
on
avity

of the region near the vertex. This is unaltered under re�e
tion. The C*

property is 
lear sin
e the * is just the transpose on a basis of matrix units.

�
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De�nition 3.2 With notation as in the previous theorem, we will 
all the

planar algebra V (or V (�) if ne
essary) the planar algebra of the bipartite

graph � with respe
t to the spin ve
tor �.

Notes. (i) The algebra stru
ture on V

+

0

and V

�

0

is su
h that the basis

paths of length zero are idempotents, self adjoint in the *-
ase.

(ii) In general the loops with given �rst point and midway point form

matrix units for a simple summand of V

k

whi
h is thus a multimatrix algebra

with matrix summands indexed by pairs of verti
es. Any pair of verti
es will

o

ur for appropriate k. The Bratteli diagram for the in
reasing sequen
e

of multimatrix algebras V

k

thus 
onsists of a 
onne
ted 
omponent for ea
h

vertex in U

+

and ea
h 
omponent is ere
ted on a "prin
ipal graph" equal

to � with starting vertex "*" being the element of U

+

. See ([9, 6℄) for a

detailed treatment of su
h Bratteli diagrams. We give an example below of

a graph � and the Bratteli diagram of its planar algebra:

The graph �

1

2

4 2

2

 1

2 1

5 1

1

10 10  6

 1 1

 20  12 26 6

2 2 

1

6 2

 1

 12 8

 1 1

2 1

5 2

The Bratteli diagram of V(�)

(iii) The sum over all basis loops is the identity of V

k

.

We shall now de�ne linear fun
tions on V

�

0

. When applied to a labelled

tangle with no boundary points, it will be 
alled the partition fun
tion of the

labelled tangle.

De�nition 3.3 The linear fun
tions from Z : V

�

0

! K are de�ned as the

linear extensions of the fun
tion whi
h takes the basis path a to �

4

a

.

13



Thus for the partition fun
tion of a 
losed tangle one sums over states taking

all possible values in all the regions, in
luding the external one. There is an

extra multipli
ative spin fa
tor of �

4

a

for the external region.

Proposition 3.4 The partition fun
tion of a 
losed labelled tangle T depends

only on T up to isotopies of the 2-sphere.

Proof. Spheri
al isotopy is generated by planar isotopy and isotopies that


hange a 
losed tangle by sending a string that meets the external region to

a string that en
loses the whole tangle(thus 
hanging the shading of the

external region). Invarian
e of the partition fun
tion under this move is easy

to 
he
k. �

Up to this point the normalisation of the spin ve
tor has been irrelevant.

It is desirable that the partition fun
tion of an empty 
losed tangle be equal

to 1. This suggests the following.

De�nition 3.5 We will say that the planar algebra of a graph is normalised

if

X

a2U

+

�

4

a

= 1:

Note that this is the same as requiring

P

a2U

�

�

4

a

= 1:

Theorem 3.6 Let K be R or C and let V be the normalised planar algebra

of the �nite graph � with respe
t to the appropriately normalised Perron

Frobenius eigenve
tor of the adja
en
y matrix of �. Then tr(x) = Æ

�n+1

Z(x̂)

de�nes a normalised tra
e on the union of the V 's (with in
lusion of V

k

in

V

k+1

by adding a string to the right as usual-see [10℄) where x̂ is any 0-tangle

obtained from x by 
onne
ting the �rst k=2 boundary points to the last k=2.

The s
alar produ
t < x; y >= tr(x

�

y) is positive de�nite.

Proof. Normalisation is a simple 
al
ulation whi
h also shows that the

de�nition of the tra
e is 
onsistent with the in
lusions. The property tr(ab) =

tr(ba) is a 
onsequen
e of planar isotopy when all the strings added to x to

get x̂ go round x in the same dire
tion, and spheri
al invarian
e redu
es the

general 
ase to this one.

Positive de�niteness follows from the fa
t that the loops, whi
h form a

basis of the V

k

, are mutually orthogonal elements of positive length. In fa
t

the square of the norm of a loop (�; �) 2 V

k

is �

2

�(0)

�

2

�(k)

. �
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Proposition 3.7 The rotation tangle � is an isometry for the Hilbert spa
e

stru
ture de�ned above by the tra
e and it a
ts on a basis path in V

k

by:

�(�; �) =

�

�(0)

�

�(k)

�

�(2k�2)

�

�(k�2)

(�; �)

where �(i) = �(i� 2) and �(i) = �(i� 2), with indi
es mod 2k.

Proof. This is an exer
ise in using the de�nition of Z(T ). �

4 Examples

Some of the simplest examples were already present in [10℄.

Example 4.1 Tensors.

The tensor planar algebra of [10℄ is just the planar algebra of the bipartite

graph with 2 verti
es and n edges.

Example 4.2 Spin models and dis
rete string theory.

A so-
alled spin model of [10℄ is the planar algebra P

�

for the bipartite graph

� with#(U

+

) = 1 and#(U

�

) = n. The somewhat mysterious normalisations

of [10℄ are due to the spin ve
tor whi
h is the Perron Frobenius eigenve
tor

of the adja
en
y matrix. This spin ve
tor is parti
ularly simple in this 
ase

whi
h is why it was possible to 
omplete the dis
ussion of spin models in [10℄

without using the formalism developed here.

Observe that a
tion of a permutation of the elements of U

�

on loops

preserves the planar algebra stru
ture so that any group of su
h permutations

de�nes a group of automorphisms of P

�

.

In [10℄ we 
onsidered the planar subalgebra P

G

of P

�

generated by the

single element of V

2

de�ned by the adja
en
y matrix of some arbitrary graph

G with n verti
es. The verti
es of G form the set U

�

in the spin model.

The partition fun
tion of a labelled k- tangle T is then the number of graph

homomorphisms from 
ol(T ) to G where 
ol(T ) is the planar graph obtained

from T by taking as verti
es the shaded regions of T and as edges the 2-boxes.

The path (�; �) is just a 
hoi
e of verti
es of G whi
h spe
i�es where these

boundary verti
es are sent by the graph homomorphism. As the tangle T

be
omes bigger we 
ould imagine it �lling up the inside of the dis
 so that we

are exploring the graph G by 
ounting larger and larger (singular) dis
s inside

it. If the adja
en
y matrix were repla
ed by another symmetri
 matrix with

the same pattern of zero entries we 
ould think of its entries as intera
tion
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oe�
ients so we would have some kind of metri
 on the dis
s inside G. Of


ourse all this is the genus zero 
ase. One might want to 
onsider higher genus

"surfa
es" inside G. For this one 
ould try to extend the planar operad to

allow systems of strings and internal dis
s on a surfa
e of higher genus. It is

not at all 
lear when this is possible. For vertex and spin models it should be

straightforward enough though the spin term in the partition fun
tion will

already 
ause a problem for spin models on higher genus surfa
es.

It remains to be seen just how useful it is to explore a graph by 
ounting

homomorphisms of planar subgraphs into it. For a random graph one would

expe
t that P

G

is all of P

�

. But if G has automorphisms it is obvious that

P

G

will be 
ontained in the planar subalgebra of P

�

given by �xed points for

the a
tion of the automorphism group of G.

We re
ord the following result giving a su�
ient 
ondition for any planar

��subalgebra of P

�

to be the �xed point algebra for the automorphism

group 
oming from a group of permutations of the spins. We o�er a proof

that is 
urious in that the result is �nite dimensional but we shall use type

II

1

fa
tors in our argument. Re
all from [10℄ that the algebra V

k

of P

�

is

faithfully represented on the ve
tor spa
e 


[

k+1

2

℄

W where W is a ve
tor spa
e

with basis equal to U

�

. We 
all an element of P

�

a transposition if it a
ts on




[

k+1

2

℄

W as a transposition between adja
ent tensor produ
t 
omponents.

Theorem 4.3 A planar *-subalgebra P = fP

k

g of P

�

whi
h 
ontains a

transposition is equal to the �xed points of P

�

under the a
tion of some

group of permutations of U

�

.

Proof. The union of the in
reasing sequen
e of �nite dimensionalC

�

�algebras

P

�

k

admits a faithful tra
e. Complete the algebra using the GNS 
onsru
tion

([21℄,page 41) to obtain the hyper�nite type II

1

fa
tor R. The group S

n

of

all permutations of U

�

a
ts on R so that every non-trivial permuation is an

outer automorphism. It was shown in [11℄ that the �xed point algebra for

the a
tion of S

n

is generated by the Temperley Lieb algebra and the "other"

symmetri
 group-the representation of S

[k+1=over2℄

on 


[

k+1

2

℄

W whi
h is ob-

viously generated in P

�

by the transpostions. We see that the algebra R

0

generated in R by the P

k


ontains the �xed point algebra for the S

n

a
tion.

Thus by the Galois theory for type II

1

fa
tors R

0

is the �xed point algebra

for some subgroup G of S

n

.

The only thing left to show is that ea
h individual P

k

is the set of �xed

points for the a
tion of G. It is obvious that P

k

is pointwise �xed. If x is in

P

�

k

and is �xed by G and " > 0 is given, there is a y in P

^

k

for some su�
iently

large

^

k with kx�yk

2

< ". But the 
onditional expe
tation E

P

�

k

(y) is de�ned

by a multiple of a tangle applied to y and so belongs to P

k

. But x is in P

�

k

16



and so is �xed by the 
ondtional expe
tation. We thus get an element of P

k

within " of x for every x, and P

k

is �nite dimensional. �

The above result 
an give an extremely rapid 
al
ulation of P

G

. In joint

work with Curtin ([5℄) we have shown that the planar algbebra thus asso
i-

ated to the Petersen graph is in fa
t the �xed point algebra for the automor-

phism group of that graph. It would be desirable to have an e�e
tive way of

de
iding if the �rst transposition is in P

G

.

Example 4.4 Graphs with Æ < 2

It is well known (see for instan
e [6℄) that graphs the norm of whose ad-

ja
en
y matrix is < 2 are given by the Coxeter graphs A;D and E. These

are the simplest examples where the formalism we have developed is ne
es-

sary. The Perron Frobenius eigenve
tors of the adja
en
y 
an be found in

[6℄. It is of 
ourse possible to use an eigenve
tor other than the one of largest

eigenvalue to obtain planar algebras with Æ < 2 from most graphs but the

partition fun
tion will only give a positive de�nite form is one uses A;D or

E.

The A;D;E graphs were used in the �rst 
onstru
tion of irredu
ible sub-

fa
tors of non-integer index by �nding what we would re
ognize as a 
on-

ne
ted planar algebra inside the general one de�ned above. In a future paper

we will present a 
onstru
tion whi
h gives all 
onne
ted planar algebras with

positivity and Æ < 2 in this way.

5 Towers of Algebras

An in
lusion A

0

� A

1

of �nite dimensional multimatrix algebras with the

same identity de�nes a bipartite graph � with U

+

and U

�

being the sets

of irredu
ible representations of A

0

and A

1

respe
tively. If a 2 U

+

and

b 2 U

�

there are n(a; b) edges between a and b where the restri
tion of b

to A

0


ontains a n(a; b) times. We say the in
lusion is 
onne
ted if � is.

Choose an eigenve
tor of the adja
en
y matrix of � with all entries non-zero

and with non-zero eigenvalue (if there is one), and suppose the a entry of

the eigenve
tor is a square, say �

2

a

. We 
an then de�ne, as in [9℄ and [6℄,

the Markov tra
e Tr of modulus Æ

2

on A

1

by setting the tra
e of a minimal

idempotent p

b

in the matrix algebra dire
t summand of A

1


orresponding to

b 2 U

�

to be �

2

b

, normalising the eigenve
tor so that

X

b2U

�

dim(p

b

A

1

)�

2

b

= 1:
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Performing the "basi
 
onstru
tion" of [9℄ we obtain A

2

=< A

1

; e

1

>, the

algebra of linear endomorphisms of A

1

generated by left multipli
ation by

A

1

and the "
onditional expe
tation" e

1

: A

1

! A

0

de�ned by Tr(e

1

(y)x) =

Tr(yx) for y 2 A

1

; x 2 A

0

. The 
entre of A

2

is naturally identi�ed with

that of A

0

and the bipartite graph for A

1

� A

2

is the transpose of that for

A

0

� A

1

. If we use the same eigenve
tor of the adja
en
y matrix as for

A

0

� A

1

to de�ne a tra
e on A

2

, the restri
tion of that tra
e to A

1

is Tr.

Continuing in this way one gets a tower A

n

for n � 0 with A

n+1

=< A

n

; e

n

>

and a 
oherent tra
e Tr on [

n

A

n

de�ned by Tr(xe

n

) = Æ

�2

Tr(x) for x 2 A

n

.

On general prin
iples we expe
t the 
entralisers A

0

0

\ A

k

= B

k

to form a

planar algebra and this 
ould no doubt be done by the method of se
tion 4 of

[10℄. We give an alternative, expli
it realisation of B

k

as the planar algebra

of � with spin ve
tor equal to (�

a

). Before pro
eeding to 
onstru
t the linear

isomorphism between B and V (�) we give two warnings.

(i) The 
entraliser in
lusions B

k

� B

k+1

are not 
onne
ted - the planar

algebra is not "
onne
ted" in the sense of [10℄.

(ii) The tra
e Tr on V (�) does not 
orrespond to the restri
tion of Tr to

B.

The isomorphism will give an "intrinsi
" meaning to the planar algebra

of a bipartite graph though it is not quite 
anoni
al sin
e there are many

pairs A

0

� A

1

whi
h realise a give �. To make the 
hoi
e unique we shall

now assume that dim(pA

0

) = 1 for all minimal 
entral idempotents p in A

0

.

This has the desirable 
onsequen
e that the algebra A

1

itself 
an be realised

as having a basis 
onsisting of paths (�; �) of length 2 on � starting at a point

in U

+

. In this model the 
entre of A

1


an be identi�ed with elements b of

U

�

thought of as sums of all loops from points in U

+

to b and ba
k.

So with the data �; � form the planar algebra V (�) and the pair A

0

� A

1

as above. De�ne the maps � : V

�

0

! A

1

in the obvious way - a loop (�; �) is

a spe
ial kind of path so automati
ally de�nes an element of A

1

.

In the following theorem E

i

will denote the tangle having all strings verti-


ally 
onne
ting the top to the bottom ex
ept two whi
h 
onne
t the bound-

ary points numbered i and i+ 1, 2k � i and 2k � i+ 1 as below:
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.  .  . . . . .

i  i+1

i  i+1

Theorem 5.1 There is a linear extension of � to all of V (�) su
h that:

(i) � is an inje
tive algebra homorphism.

(ii) �(E

i

) = Æe

i

.

(iii) �(V

k

) = B

k

.

Proof. Paths of length 2k will be given by pairs (�; �) of fun
tions where

� : f0; 1; :::; 2kg ! U and � : f0; 1; :::; 2k � 1g ! E and the path goes from

�(i) to �(i+ 1) along �(i). The multipli
ation of paths is

(�

1

; �

1

)(�

2

; �

2

) = (�; �)

if �

1

(k + i) = �

2

(k � i � 1) for 0 � i < k in whi
h 
ase �(i) = �

1

(i) for

0 � i � k and �(i) = �

1

(i) for 0 � i < k, �(i) = �

2

(i) k � i � 2k and

�(i) = �

2

(i) for k � i < 2k.

If the 
onditions are not satis�ed, i.e. the "returning" path of (�

1

; �

1

) is

di�erent from the "outgoing" path of (�

2

; �

2

), the produ
t is zero.

It follows from [6℄ that there is a unique algebra isomorphism � between

A

k

and the algebra of paths of length 2k on � with initial vertex in U

+

whi
h

is the extension of an identi�
ation of A

1

with linear 
ombinations of paths

of length two, and su
h that �(Z(E

i

)) = Æe

i

. Note that Z(E

i

) is a linear


ombination of loops whi
h are also paths so Z(E

i

) 
an be viewed as an

element of A

k

. The formula at the top of page 86 of [6℄ is exa
tly what Z
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does to E

i

if we 
hoose � as the square roots of the entries in the eigenve
tor

of the adja
en
y matrix of �.

That multipli
ation of loops in V 
orresponds to multipli
ation of paths

des
ribed above is just the de�nition of Z(T ) when T is the multipli
ation

tangle in se
tion 2 drawn with re
tangular boxes rather than dis
s - all strings

are verti
al so there are no singularities and no spin term.

It is simple to 
he
k that a path is a loop if and only if the 
orresponding

element of A

k

is in the 
ommutant B

k

of A

0

. Thus for � we may just take

the restri
tion of � to loops.�

Using � we 
an thus transport all the planar algebra stru
ture of V , and

the spheri
ally invariant partition fun
tion, to B whi
h be
omes a planar

algebra with B

+

0

= A

0

and B

�

0

= A

0

0

\A

1

. The normalised tra
e thus de�ned

on B

k

will be written tr and as we have pointed out, it is not the restri
tion

of the Markov tra
e ot B

k

. In parti
ular if a is a minimal idempotent in A

0

,

identi�ed with an element of U

+

, tr(a) = �

4

a

where � is the multiple of �

with

P

a2U

+

�

4

a

= 1. But Tr(a) = �

2

a

where

P

a2U

+

�

2

a

= 1.

6 Connes' 
y
li
 
ategory

Connes' 
y
li
 
ategory is de�ned in ([3, 4, 15℄) alternatively as (i) the


ategory with obje
ts C

i

, for i = 0; 1; 2; :::: and generated by morphisms

d

i

: C

n�1

! C

n

, for i = 0; 1; :::; n, s

i

: C

n+1

! C

n

for i = 0; 1; :::; n and

t

i

: C

n

! C

n

subje
t to the relations

d

i

d

j

= d

j�1

d

i

for i < j

s

i

s

j

= s

j+1

s

i

for i � j

d

i

s

j

=

8

<

:

s

j�1

d

i

; for i < j

id for i = j; i = j + 1

s

j

d

i�1

for i > j + 1.

d

i

t

n

= t

n�1

d

i�1

for 1 � i � n, d

0

t

n

= d

n

s

i

t

n

= t

n+1

s

i�1

for 1 � i � n, s

0

t

n

= t

2

n+1

s

n

t

n+1

n

= id.

(ii) the 
ategory whose obje
ts are the sets of ith: roots of unity and

whose morphisms are homotopy 
lasses of monotone degree one maps from

the unit 
ir
le to itself sending roots of unity to roots of unity.

Fix an n > 0 and de�ne elements d

i

,s

i

for i = 0; 1; :::; n and t

n

of the

planar operad P as follows:

d

i

is the tangle having one internal dis
 with 2n+2 boundary points, and
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2n boundary points on the outside dis
. Internal boundary points numbered

2i + 1 and 2i + 2 are joined by a string. All internal boundary points are


onne
ted to external ones, with the �rst internal one 
onne
ted to the �rst

external one ex
ept when i = 0 when the �rst external point is 
onne
ted to

the third internal boundary point. These 
onditions uniquely determine d

i

sin
e the strings do not 
ross. .

For 0 � i � n, s

i

is the tangle having one internal dis
 with 2n + 2

internal boundary points, and 2n + 4 boundary points on the outside dis
.

External boundary points numbered 2i + 2 and 2i + 3 are 
onne
ted and

all other external ones are 
onne
ted to internal ones with the �rst external

point 
onne
ted to the �rst internal point.

The tangle t

n

is the 
lo
kwise rotation by two: there are 2n+2 boundary

points on both the internal and external dis
s, all strings 
onne
t inside points

to outside ones and the �rst outside one is 
onne
ted to the third inside one,

as below:

Note that these tangles d

i

,s

i

and t

n

have exa
tly one input and one output

so their 
omposition makes perfe
t sense provided the d's and s's have the

right numbers of internal and external boundary points.

Theorem 6.1 The operad element tangles de�ned above satisfy the relations

of the generators of (the opposite of)Connes' 
y
li
 
ategory. The map they

de�ne from the 
y
li
 
ategory to annula tangles (with one input and one

output) is inje
tive.

Proof. Veri�
ation of the relations is simply a matter of drawing pi
tures.

Inje
tivity is more interesting. We prove it by providing a 
on
rete realisation

of the 
y
li
 
ategory whi
h is arguably simpler than the one provided in [4℄:

for integers m and n � 0 let C

m;n

be the set of all annular tangles (modulo

a twist of 2� near the boundary) with 2m + 2 internal points and 2n + 2

external ones, with the following properties:

(i) All strings either 
onne
t an internal boundary point to an external

one or a boundary point to one of it's neighbours.

(ii)If a string 
onne
ts an internal boundary point to its neighbour the

region between the string and the internal boundary is shaded, if it 
onne
ts

external boundary points the region between the string and the external

boundary is unshaded.
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A typi
al element in C

2;3

is depi
ted below:

*

*

A morphism in the Cy
li
 Category

Constru
t the 
ategory with one obje
t for ea
h n � 0, the obje
ts being

the 2n+2 boundary points up to isotopy and morphisms being the C

m;n

. One

may 
he
k that 
omposition of tangles makes this set into a small 
ategory (no


losed loops are formed in 
omposing su
h tangles) and that it is generated

by the d

i

,s

i

and t

n

. But to ea
h element of this 
ategory there is a well

de�ned homotopy 
lass of degree one monotone maps from the 
ir
le to itself

de�ned by isotoping the tangle so that the ea
h root of unity is in exa
tly

one unshaded region on the inside and outside. The degree one map 
an

then be 
onstru
ted as follows. First 
ontra
t any regions en
losed by non

through-strings to their segments on the internal or external boundary so

that the shading near that boundary interval will reverse. Ea
h unshaded

interval on the outside boundary then 
ontains exa
tly one root of unity

and all the regions are topologi
ally re
tangles with internal and external

boundary segments as opposite edges. These re
tangles determine mappings

from the inner 
ir
le to the outer one and after a litlle isotopy ea
h internal

root of unity may be sent onto the unique external root of unity in the same

shaded region. Tangle 
omposition obviously 
orresponds to 
omposition of

homotopy 
lasses so we have a se
tion of the map from the 
y
li
 
ategroy to
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the C

m;n

's whi
h sends our d

i

,s

i

and t

n

to the 
orresponding generators of the


y
li
 
ategory. This is more than enough to show inje
tivity (and identify

the image).�

Now de�ne the tangles �

i

= �(d

i

), �

i

= �(s

i

) where � is the duality

map of the �rst se
ion. It follows from the previous result that �

i

, �

i

and t

n

(= �(t

n

)) de�ne another 
opy of Connes' 
y
li
 
ategory in annular tangles.

Note also that there is a natural involutory antiautomorphism of annular

tangles (re�e
t with respe
t to a 
ir
le half way between the internal and

external boundaries) whi
h ex
hanges � with s and d with �.

Thus the ve
tor spa
es V

n+1

be
ome a 
y
li
 module in two di�erent ways.

The two stru
tures intera
t as follows.

Proposition 6.2 If V has modulus Æ then D

n

�

0

� �

0

D

n+1

= Æid where

D

n

=

P

n

i=0

(�1)

i

d

i

is the Ho
hs
hild boundary

Corollary 6.3 If V has modulus Æ 6= 0 then it is a
y
li
 so the 
y
li
 ho-

mology is that of the ground �eld.

The same result holds for any representations of the 
ategory of annular

tangles as in [7℄.

Thus the 
y
li
 homology is of no immediate interest in planar algebras


oming from subfa
tors. On the other hand there are very interesting planar

algebras of modulus 0. The �rst is the one 
oming from the skein theory of the

Alexander polynomial. It 
an be obtained by spe
ialising the planar algebra

of example 2:5 in [10℄ to the values x =

p

t�

1

p

t

. The planar algebra involved

in a 
onje
ture of .. 
on
erning asymptoti
s of the sl(2) knot polynomials

also has modulus 0. At this stage we have no results 
on
erning the 
y
li


homology of these planar algebras. It is also true that the planar algebras

of se
tion 2 do not have any modulus at all if the spin ve
tor is not an

eigenve
tor for the adja
en
y matrix. On
e again we have no results.

The appearan
e of 
y
li
 homology in this 
ontext is not understood.

One should note that, in the isomorphism of se
tion 2 between the planar

algebra of a �nite graph and the 
entraliser tower of a �nite dimensional

multimatrix in
ulsion the 
y
li
 module stru
ture de�ned above 
orresponds

to the usual one used in 
al
ulation the homology of the A�A bimodule B.

Sin
e the 
ategory or annular tangles is generated by the two 
opies of the


y
li
 
ategory we have de�ned, and one of those 
ategories is typi
ally the

adjoint of the other for some invariant inner produ
tIt might be interesting

to see if there are known natural examples of 
y
li
 modules for whi
h the


y
li
 
ategory extends to an a
tion of the whole annular stru
ture and even

to a planar algebra.
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