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Abstra
t. Interest in 
obordism 
ategories arises for various reasons, in ar-

eas from topology to theoreti
al physi
s. These 
ategories have manifolds as

obje
ts, and as morphisms, have 
obordisms between them - that is, manifolds

of one dimension higher whose boundary de
omposes into the sour
e and tar-

get. The prin
iple that the boundary of a boundary is the empty set means

that this formulation 
annot a

ount for 
obordisms between manifolds with

boundary, as required, for instan
e, to des
ribe evolution of open strings in

string theory. We des
ribe a 
ategory-theoreti
 framework in whi
h this 
an

be expressed, in the form of a Verity double bi
ategory. This is similar to a

double 
ategory (a 
ategory obje
t in Cat), but with properties holding only

up to 
ertain 2-morphisms.. We sket
h how this is a spe
ial 
ase of a more

general \n-tuple bi
ategory". Then we show how a broad general 
lass of ex-

amples arise from a 
onstru
tion involving spans (or 
ospans) in any 
hosen


ategory, and how this gives 
obordisms between 
obordisms when we start

with a 
ategory of suitable smooth spa
es.

1. Introdu
tion

The purpose of this paper is to des
ribe a double bi
ategory of 
obordisms with


orners.

A 
obordism between manifolds S and S

0

is a manifold with boundary M su
h

that �M is the disjoint union of S and S

0

, whi
h we think of as an arrowM : S ! S

0

.

One 
an de�ne 
omposition of 
obordisms, by gluing along 
omponents of the

boundary, leading to the de�nition of a 
ategory nCob of n-dimensional 
obordisms

between (n�1)-dimensional manifolds. It is natural to 
onsider the possibility that

S and S

0

themselves have boundary, and ask if one 
an similarly des
ribe 
obordisms

between them. In parti
ular, we are interested in the 
ase where S : X ! Y and

S

0

: X

0

! Y

0

are already themselves 
obordisms. Su
h 
obordisms are always

manifolds with 
orners. Here we shall des
ribe a formalism for des
ribing the ways

su
h 
obordisms 
an be glued together. Louis Crane has written a number of papers

on this issue, in
luding one with David Yetter [CY℄ whi
h des
ribes a bi
ategory of

su
h 
obordisms. Here, we 
onstru
t a double bi
ategory, nCob

2

.

One motivation for doing this 
omes from the fa
t that interest in nCob has

been en
ouraged by Mi
hael Atiyah's axiomati
 des
ription of topologi
al quantum

�eld theories, or TQFTs ([Ati1, Ati2℄). A TQFT assigns a spa
e of states to ea
h

manifold, and a linear transformation between states to 
obordisms. Ruth Lawren
e

[Law℄ des
ribed the notion of an extended TQFT. These are theories similar to

TQFT's, for whi
h the theory is de�ned not on 
obordisms, but on manifolds

with 
orners. Crane and Yetter [CY℄, des
ribe the algebrai
 stru
ture of TQFT's

and extended TQFT's. Baez and Dolan [BaDo℄ summarize the 
onne
tion between

TQFT's and higher 
ategory theory, in the form of the Extended TQFT Hypothesis,

1
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suggesting that all extended TQFT's 
an be viewed as representations of a 
ertain

kind of \free n-
ategory".

The kind of n-
ategory we are interested in here is a 
ommon generalization of

a double 
ategory and a bi
ategory. Double 
ategories, introdu
ed by Ehresmann

([Eh1, Eh2℄), may be seen as an \internal" 
ategory in Cat - that is, a stru
ture

with a 
ategory of obje
ts and a 
ategory of morphisms. Less abstra
tly, it has

obje
ts, horizontal and verti
al morphisms (edges in an underlying 2-graph), and

squares (
ells in the underlying 2-graph):

(1)

x

�

//

f

��

~

~

~

~

{�

F

x

0

f

0

��

y

^

�

//

y

0

These 
an be 
omposed in geometri
ally obvious ways to give diagrams analogous

to those in ordinary 
ategory theory. Moskaliuk and Vlassov [MV℄ dis
uss the

appli
ation of double 
ategories to mathemati
al physi
s, parti
ularly TQFT's, and

dynami
al systems with 
hanging boundary 
onditions - that is, with inputs and

outputs.

Double 
ategories are too stri
t to be really natural for our purpose, however.

In parti
ular, des
ribing 
obordisms as 
ategories or double 
ategories requires us

to take di�eomorphism 
lasses of 
obordisms, not 
obordisms themselves, as mor-

phisms. So we will 
onsider a weakening of this stru
ture, in the sense that axioms

for a double 
ategory giving equations (su
h as asso
iativity) will be true only up

to a 
ertain 2-morphism. This is analogous to the way in whi
h a bi
ategory is a

weakening of the idea of a 
ategory. These are like 
ategories with an extra level

of 2-morphism between morphisms, and su
h that equations in the axioms for a


ategory are repla
ed by 2-isomorphisms, whi
h look like:

(2)

x

f

  

g

>>

y
�

��

Bi
ategories, however, are not really what we want to des
ribe nCob

2

, either,

sin
e we want to des
ribe systems with 
hanging boundary 
onditions, and the most

natural way to do this is by allowing both initial and �nal states, and these 
hanging


onditions, as part of the boundary. On the other hand, we show in theorem 1 that

double bi
ategories satisfying 
ertain 
onditions are equivalent to bi
ategories - and

in fa
t nCob

2

is an example of this.

In �gure 1 we see a manifold with 
orners whi
h illustrates these points and

provides some motivating intuition. This 
an be seen a 
obordism from the pair of

annuli at the top to the two-pun
tured dis
 at the bottom. These in turn 
an be

thought of as 
obordisms - respe
tively - from one pair of 
ir
les to another, and

from one 
ir
le to two 
ir
les. The large 
obordism has other boundary 
omponents:

the outside boundary is itself a 
obordism from two 
ir
les to one 
ir
le; the inside

boundary (in dotted lines) is a 
obordism from one pair of 
ir
les to another pair.

We 
ould \
ompose" this with another su
h 
obordism with 
orners by gluing

along any of the four boundary 
omponents: top or bottom, inside or outside.
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Figure 1. A Cobordism With Corners

This involves atta
hing another su
h 
obordism having a boundary 
omponent

di�eomorphi
 to any of these.

The stru
ture we use is a Verity double bi
ategory. There is some ambiguity here

sin
e the 
on
ept this appears to des
ribe is an internal bi
ategory in Bi
at (the


ategory of all bi
ategories). This is analogous to the de�nition of double 
ategory.

Indeed, it is what we will mean by a double bi
ategory, and we dis
uss these in

se
tion 6. However, the term double bi
ategory seems to have been originally intro-

du
ed by Domini
 Verity [Ver℄, and uses it to refer to a somewhat di�erent stru
ture

- whi
h is, in fa
t, the one we want to use. We 
all these Verity double bi
ategories.

In se
tion 3 we des
ribe some of the ne
essary mathemati
al ba
kground of bi
ate-

gories and double 
ategories, and brie
y des
ribe standard examples of these from

homotopy theory, whi
h provide some topologi
al motivation for these 
ategori
al


on
epts.

In se
tion 4 we des
ribe double bi
ategories in the sense of Verity (whi
h we 
all

Verity double bi
ategories to distinguish them from internal bi
ategories in Bi
at).

These go further than many e�orts to weaken the 
on
ept of a double 
ategory,

su
h as the \weak double 
ategories" dis
ussed by Mar
o Grandis and Robert Par�e

([GP1℄, [GP2℄), or the \pseudo-
ategories" dis
ussed by Martins-Ferreira [Mar℄.

Thomas Fiore in [Fio℄ des
ribes how these arise by \
ategori�
ation" of the theory

of 
ategories, and des
ribes examples motivated by 
onformal �eld theory. In these

examples, the 
omposition in double 
ategories are weakened in only one dire
tion.

That is, the asso
iativity of 
omposition, and unit laws, apply only up to 
ertain

higher morphisms, 
alled asso
iators and unitors - but only in the horizontal di-

re
tion (equivalently, only in the verti
al dire
tion). In double bi
ategories, this is

true in both dire
tions. In se
tion 5.3 we prove the main theorem of the paper,

that su
h nCob

2

indeed forms a Verity double bi
ategory. This uses a te
hni
al
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lemma involving double bi
ategories. In se
tion 4.3 we prove that a Verity double

bi
ategory gives a bi
ategory, just as any double 
ategory 
orresponds to a stri
t

2-
ategory.

To �nish se
tion 4, we des
ribe a general 
lass of examples of double bi
ate-

gories, analogous to the result that Span(C) is a bi
ategory. This was shown by

Jean B�enabou in [Ben℄, who introdu
ed both the 
on
ept of a span, and of bi
at-

egories. The \double spans" we des
ribe here give a broad 
lass of examples, and

in parti
ular, we 
an use them to derive the fa
t that there is a double bi
ategory

of 
obordisms with 
orners.

We des
ribe the ba
kground for su
h 
obordisms in se
tion 5. Gerd Laures

[Laur℄ dis
usses the general theory of 
obordisms of manifolds with 
orners. In the

terminology used there, introdu
ed by J�ani
h [Jan℄, what we primarily dis
uss in

this paper are h2i-manifolds: in parti
ular, the 
odimension of the manifold is 2.

That is, the manifold M (whose dimension is dim(M) = n) will have a boundary

�M , whi
h will in turn be 
omposed of fa
es whi
h are manifolds with boundary, of

dimension (n� 1). However, the boundaries of these fa
es will be 
losed manifolds:

they are manifolds of dimension (n � 2). This separates into fa
es. For us, the

fa
es de
ompose into 
omponents, whi
h are the sour
e and the target in both

horizontal and verti
al dire
tions. The 
orners, fa
es of 
odimension 2, are the

sour
e and target of these. We 
all the Verity double bi
ategory obtained this way

nCob

2

.

Having done this, we 
ontinue, in se
tion 7 by brie
y examining a low-dimensional

example, studied in a \de
ategori�ed" setting, without using Verity double bi
ate-

gories in [LP℄. This is the 
ase of \open-
losed strings", on whi
h Lauda and Pfei�er

des
ribe a 
ertain kind of TQFT. We see how their 
ategory of \open-
losed strings"

is related to the Verity double bi
ategory 2Cob

2

.

In se
tion 8, we suggest some further dire
tions to expand on this work. We 
on-

sider the program of des
ribing nCob

2

in terms of generators and relations. Also,

we dis
uss the problem of extending the idea of double bi
ategories to 
obordisms

of higher 
odimension than 2. We suggest a way in whi
h this 
ould be approa
hed.

Finally, we should note here that there are at least two audien
es for this paper.

Cobordisms are of interest to topologists and, through TQFT's to those interested

in mathemati
al physi
s. On the other hand, the notion of a double bi
ategory

may appeal to those interested in 
ategory theory, and n-
ategories in parti
ular.

The aim here is to provide something of interest to ea
h. Readers mainly interested

in 
ategory theory, may �nd se
tion 6 of most interest, while topologi
ally-in
lined

readers may 
onsider it merely a repository of two te
hni
al lemmas and skip it.

Likewise, most dis
ussion of 
obordisms with 
orners is in se
tion 5, and in par-

ti
ular se
tion 5.1 des
ribes a \
ollaring" 
ondition essential to make sure that


omposition of 
obordisms gives a smooth 
obordism. This is important from a

topologi
al point of view and has an important impli
ation for what we take our


obordisms to be. Categori
ally in
lined readers may �nd this less interesting sin
e


obordisms are, from that point of view, only a spe
ial 
ase of a very general 
lass

of examples of Verity double bi
ategories. Readers should feel free to skip to the

se
tions of most interest, whi
h should be relatively self-
ontained.
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2. The Category nCob

In this se
tion, we review the stru
ture of the symmetri
 monoidal 
ategory

2Cob whi
h we generalize in this paper. Cobordism theory goes ba
k to the work of

Ren�e Thom [Tho℄, and is 
losely related to homotopy theory. A good introdu
tory

dis
ussion suitable for our needs is found, e.g. in Hirs
h [Hir℄. There is substantial

resear
h on many questions in 
obordism theory, su
h as referen
es. Two manifolds

S

1

; S

2

are 
obordant if there is a 
ompa
t manifold with boundary, M , su
h that

�M is isomorphi
 to the disjoint union of S

1

and S

2

. This M is 
alled a 
obordism

between S

1

and S

2

. We note that there is some similarity between this 
on
ept

and that of homotopy of paths, ex
ept that su
h homotopies are understood as

embedded in an ambient spa
e. We will return to this in se
tion 3.5. Our aim

here is to des
ribe a generalization of 
ategories of 
obordisms. To begin with, we

re
all some of the stru
ture of nCob, and parti
ularly 2Cob, to re
all why this is

of interest.

2Cob is the 
ategory whose obje
ts are one-dimensional 
ompa
t oriented mani-

folds, and whose morphisms are di�eomorphism 
lasses of two-dimensional 
ompa
t

oriented 
obordisms between su
h obje
ts. That is, the obje
ts are 
olle
tions of


ir
les, and the morphisms are (di�eomorphism 
lasses of) manifolds with bound-

ary, whose boundaries are broken into two parts, whi
h we 
onsider their sour
e and

target. We think of the 
obordism as \joining" two manifolds, rather as a relation

joins two sets, in the 
ategory of sets and relations. More generally, nCob is the


ategory whose obje
ts are (
ompa
t, oriented) (n� 1)-dimensional manifolds, and

whose morphisms are di�eomorphism 
lasses of 
ompa
t oriented n-dimensional


obordisms.

2.1. Presentation. It was shown by Abrams [Abr℄ that 2Cob 
an be seen as the

free symmetri
 monoidal 
ategory on a Frobenius obje
t. (Another good exposi-

tion of this was developed by Joa
him Ko
k [Ko℄.) This amounts to saying that

2Cob is generated from �ve generators, 
alled the unit, 
ounit, multipli
ation,


omultipli
ation. They in
lude 
obordisms: taking the empty set to the 
ir
le

(the unit); taking two 
ir
les to one 
ir
le (the multipli
ation); adjoints of ea
h of

these (
ounit and 
omultipli
ation repse
tively). The \Frobenius obje
t" appears

here as the 
ir
le, equipped with these morphisms, whi
h are illustrated in �gure 2.

Figure 2. Generators of 2Cob

The 
ategory 2Cob also in
ludes identity 
obordism, taking the 
ir
le to itself

by S

1

� I ; and the swit
h 
obordism, ex
hanging the order of two 
ir
les by two


ylinders (this gives the symmetry for the monoidal operation). These are required

to exist by the assumption that 2Cob is a free symmetri
 monoidal 
ategory. They

are illustrated in �gure 3.

Two proofs 
an be given for the fa
t than 2Cob is generated by these 
obordisms,

and ea
h relies on some spe
ial 
onditions satis�ed by 2D 
obordisms. The �rst
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Figure 3. Morphisms Required for 2Cob to be a Symmetri


Monoidal Category

is that 2-dimensional manifolds with boundary 
an be 
ompletely 
lassi�ed up to

di�eomorphism 
lass by genus and number of pun
tures. The se
ond is that we 
an

use the results of Morse theory to de
ompose any su
h surfa
e with a smooth Morse

fun
tion into [0; 1℄ into a 
omposite (in the sense of 
omposition of morphisms in

2Cob) of pie
es. In ea
h pie
e, there is just one \topology 
hange" (a value in

[0; 1℄ where the preimage 
hanges topology). We will return to this point when we

dis
uss the question of how to present nCob

2

in terms of generators.

So far, we have des
ribed the generators for the 
ategory 2Cob, but not yet how

the 
omposition operation for morphisms works. The main idea is that we 
ompose


obordisms by identifying their boundaries - however, sin
e the morphisms in 2Cob

are di�eomorphism 
lasses of manifolds with boundary, some extra 
onsiderations

are needed to ensure that the 
omposite is equipped with a di�erentiable stru
ture.

In parti
ular, the 
ollaring theorem means that any manifold with boundary,

M 
an be equipped with a \
ollar": an inje
tion � : �M � [0; 1℄ ! M su
h that

�(x; 0) = x;8x 2 �M . The idea is that, while we 
an 
ompose topologi
al 
obor-

disms along their boundaries, we should 
ompose smooth 
obordisms M

1

and M

2

along 
ollars. This ensures that every point - in
luding points on the boundary

of M

i

- will have a neighborhood with a smooth 
oordinate 
hart. Se
tion 5.1

des
ribes this in detail for a more general setting.

Moreover, as a monoidal 
ategory, 2Cob must have a tensor produ
t operation.

For obje
ts, this is just the disjoint union: given obje
ts m;n 2 2Cob, 
onsisting

of 
olle
tions of m and n 
ir
les respe
tively, the obje
t m
n is the disjoint union

of m and n - a 
olle
tion of m+ n 
ir
les. The tensor produ
t of two 
obordisms

C

1

: m

1

! n

1

and C

2

: m

2

! n

2

is likewise the disjoint union of the two


obordisms, giving C

1


C

2

:m

1


m

2

! n

1


 n

2

.

2.2. Appli
ations. The 
ategory 2Cob is parti
ularly interesting in the study

of topologi
al quantum �eld theories (TQFT's), as formalized by Mi
hael Atiyah

([Ati1, Ati2℄). Ea
h TQFT is a fun
tor F : 2Cob ! Ve
t. The presentation of

2Cob in terms of its generators means that this immediately de�nes an algebrai


stru
ture with a unit, 
ounit, multipli
ation, 
omultipli
ation, and identity (a bial-

gebra). The fa
t that 2Cob is a symmetri
 monoidal 
ategory means that this

stru
ture satis�es the axioms of a Frobenius algebra.

One may wish to des
ribe an \extended topologi
al quantum �eld theory" in

the same format. These are topologi
al �eld theories whi
h are de�ned not just on

manifolds with boundary, but also on manifolds with 
orners. This idea is des
ribed

by Ruth Lawren
e in [Law℄. In parti
ular, what we are interested in here is that,

instead of using a 
ategory of 
obordisms between manifolds, we would want to

use some stru
ture of 
obordisms between 
obordisms between manifolds, whi
h we
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tentatively 
all nCob

2

. However, to do this, we must use a stru
ture with more

elaborate than a mere 
ategory.

So next we des
ribe su
h a stru
ture, a Verity double bi
ategory, and show how

the putative nCob

2

is an example, and indeed a spe
ial 
ase of a broad 
lass of

examples.

3. Bi
ategories and Double Categories

We want to give a des
ription of a Verity double bi
ategory. Weakening a 
on
ept

X in 
ategory theory generally involves 
reating a new 
on
ept in whi
h equations

in the original 
on
ept are repla
ed by isomorphisms. Thus, we say that the old

equations hold only \up to" isomorphism in the weak version of X , and say that

when they hold with equality, we have a \stri
t X". Thus, before des
ribing our

newly weakened 
on
ept, it makes sense to re
all how this pro
ess works, and

examine the stri
t form of the 
on
ept we want to weaken. So we begin by reviewing

bi
ategories and double 
ategories.

3.1. 2-Categories. A 
ategory E is enri
hed over a 
ategory C (whi
h must

have produ
ts) when for x; y 2 E we have hom(x; y) 2 C. A spe
ial 
ase of this

o

urs in \
losed" 
ategories, whi
h are enri
hed over themselves - examples in
lude

Set (sin
e there is a set of maps between any two sets) and Ve
t (sin
e the linear

operators between two ve
tor spa
es form a ve
tor spa
e).

A 2-
ategory is a 
ategory enri
hed overCat. That is, if C

2

is a 2-
ategory, and

x; y 2 C

2

), then hom(x; y) 2 Cat. Thus, there are sets of obje
ts and morphisms in

hom(x; y) itself, with the usual 
ategory axioms. We des
ribe a 2-
ategory as having

obje
ts, morphisms between obje
ts, and 2-morphisms between morphisms.

The morphisms of C

2

are the obje
ts of the hom-
ategories, and the 2-morphisms

of C

2

are the morphisms of the hom-
ategories. We depi
t these as in diagram (2).

These have a 
omposition operation between morphisms, and also a \horizontal"


omposition, whi
h we denote Æ, and a \verti
al" 
omposition, denoted �, between

2-morphisms.

Furthermore, for all x; y; z 2 C

2

, the 
omposition operation

(3) Æ : hom(x; y)� hom(y; z)! hom(x; z)

must be a fun
tor between hom-
ategories. This requirement means that the in-

ter
hange law holds:

(4) (� Æ �) � (�

0

Æ �

0

) = (� � �

0

) Æ (� � �

0

)

Now, in a 2-
ategory, the asso
iative law holds stri
tly: that is, for morphisms

f 2 hom(w; x), g 2 hom(x; y), and h 2 hom(y; z), we have the two possible triple-


ompositions in hom(w; z) the same, namely f Æ (g Æ h) = (f Æ g) Æ h. This is

one of the axioms for a 
ategory - that is, a 
ategory enri
hed over Set. Sin
e a

2-
ategory is enri
hed over Cat, however, a weaker version of this rule is possible,

sin
e hom(w; z) is no longer a set in whi
h elements 
an only be equal or unequal:

it is a 
ategory, where it is possible to speak of isomorphi
 obje
ts. This fa
t leads

to the notion of bi
ategories.

3.2. Bi
ategories. On
e we have the 
on
ept of a 2-
ategory, we 
an weaken this


on
ept, giving the idea of a bi
ategory. The de�nition is similar to that for a 2-


ategory, but we only insist that the usual equations should be natural isomorphisms
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(satisfying some equations). That is, the following diagrams should 
ommute up to

natural isomorphisms:

(5) hom(w; x) � hom(x; y)� hom(y; z)

Æ�1

��

1�Æ

//

hom(w; x) � hom(x; z)

Æ

��

hom(w; y)� hom(y; z)

Æ

//

hom(w; z)

and

(6) hom(x; y)� 1

�

1

))

R

R

R

R

R

R

R

R

R

R

R

R

R

id� !

��

hom(x; y)� hom(x; x)

Æ

//

hom(x; y)

and

(7) 1� hom(x; y)

�

2

))

R

R

R

R

R

R

R

R

R

R

R

R

R

!� id

��

hom(y; y)� hom(x; y)

Æ

//

hom(x; y)

That is: given (f; g; h) 2 hom(w; x) � hom(x; y) � hom(y; z), there should be

an isomorphism a

f;g;h

2 hom(w; z) with a

f;g;h

: (f Æ g) Æ h ! f Æ (g Æ h); and

isomorphisms r

f

: f Æ 1

x

, l

f

: 1

y

Æ f . The equations these satisfy are 
oheren
e

laws. Ma
Lane's Coheren
e Theorem shows that all su
h equations follow from

two generating equations: the pentagon identity, and the unitor law:

In a 
ategory, the asso
iativity property stated that two 
omposition operations


an be performed in either order and the results should be equal - equality is the only

sensible relation between a pair of morphisms in a 
ategory. There is an analogous

statement for the asso
iator 2-morphism: two di�erent ways of 
omposing it should

yield equal results (sin
e equality is the only sensible relation between a pair of 2-

morphisms in a bi
ategory). This property is the pentagon identity:

(8)

(f Æ g) Æ (h Æ j)

f Æ (g Æ (h Æ j))

f Æ ((g Æ h) Æ j)(f Æ (g Æ h)) Æ j

((f Æ g) Æ h) Æ j

a

f;g;hÆj

((

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

1

f

Æa

g;h;j

GG

�

�

�

�

�

�

�

�

�

�

�

�

a

f;gÆh;j

//

a

f;g;h

Æ1

j

��

/

/

/

/

/

/

/

/

/

/

/

/

a

fÆg;h;j

66

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Similarly, the unit laws satisfy the property that the following 
ommutes:

(9)
(g Æ 1

y

) Æ f

a

g;1

y

;f

//

r

g

�1

f

��

g Æ (1 Æ f)

1

g

�l

f

wwp

p

p

p

p

p

p

p

p

p

p

g Æ f
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This last 
hange is the sort of weakening we want to apply to the 
on
ept of a

double 
ategory. Following the same pattern, we will �rst des
ribe (in se
tion 3.4)

the stri
t notion before des
ribing how to weaken it in se
tion 4. First, however,

we will des
ribe a standard, quite general, example of bi
ategory, whi
h we will

generalize to give examples of double bi
ategories in se
tion 4.4.

3.3. Bi
ategories of Spans. Jean B�enabou [Ben℄ introdu
ed bi
ategories in a

1967 paper, and one broad 
lass of examples introdu
ed there 
omes from the

notion of a span.

De�nition 1. Given any 
ategory C, a span (S; �

1

; �

2

) between obje
ts X

1

; X

2

2 C

is a diagram in C of the form

(10)
P

1

S

�

1

oo

�

2

//

P

2

Given two spans (S; s; t) and (S

0

; s

0

; t

0

) between X

1

and X

2

between a morphism

of spans is a morphism g : S ! S

0

making the following diagram 
ommute:

(11)

S

�

1

~~|

|

|

|

|

|

|

|

�

2

  

B

B

B

B

B

B

B

B

g

��

X

1

S

0

�

0

1

oo

�

0

2

//

X

2

De�nition 2. Composition of spans S from X

1

to X

2

and S

0

from X

2

to X

3

is

given by a pullba
k: that is, an obje
t R with maps f

1

and f

2

making the following

diagram 
ommute:

(12)

R

f

1

~~}

}

}

}

}

}

}

}

f

2

!!

B

B

B

B

B

B

B

B

S

�

1

~~
~

~

~

~

~

~

~

~

�

2

  

�

�

�

�

�

�

�

�

S

0

�

0

2

~~
}

}

}

}

}

}

}

}

�

0

3

  

B

B

B

B

B

B

B

B

X

1

X

2

X

3

whi
h is terminal among all su
h obje
ts. That is, given any other Q with maps g

1

and g

2

whi
h make the analogous diagram 
ommute, these maps fa
tor through a

unique map Q ! R. R be
omes a span from X

1

to X

3

with the maps �

1

Æ f

1

and

�

2

Æ f

2

.

The span 
onstru
tion has a dual 
on
ept:

De�nition 3. A 
ospan in C is a span in C

op

, morphisms of 
ospans are mor-

phisms of spans in C

op

, and 
omposition of 
ospans is given by pullba
k in C

op

.

That is, by a pushout in C.

One fa
t about (
o)spans whi
h is important for our purposes is that any 
ategory

C with limits (
olimits, respe
tively) gives rise to a bi
ategory of spans (or 
ospans).

This relies in part on the fa
t that the pullba
k is a universal 
onstru
tion (universal

properties of Span(C) are dis
ussed by Dawson, Par�e and Pronk [DPP℄).

Remark 1. [Ben℄, ex. 2.6 Given any 
ategory C with all limits, there is a bi
at-

egory Span(C), whose obje
ts are the obje
ts of C, whose hom-sets of morphisms
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Span(C)(X

1

; X

2

) 
onsist of all spans (
ospans) between X

1

and X

2

, with 
om-

position as de�ned above, and whose bigons are morphisms of spans (
ospans).

Span(C) (or Cosp(C)) as de�ned above forms a bi
ategory.

This is a standard result, �rst shown by Jean Benabou in [Ben℄, as one of the

�rst examples of a bi
ategory. We brie
y des
ribe the proof:

The identity for X is X

id

 X

id

!X , whi
h is easy to 
he
k.

The asso
iator arises from the fa
t that the pullba
k is a universal 
onstru
tion.

Given morphisms in Span(C) f : X ! Y , g : Y ! Z, h : Z ! W , the 
omposites

((f Æ g) Æ h) and (f Æ (g Æ h)) are pullba
ks 
onsisting of obje
ts O

1

and O

2

with

maps into X and W . The universal property of pullba
ks gives an isomorphism

between O

1

and O

2

. These isomorphisms satisfy the pentagon identity sin
e they

are unique (in parti
ular, both sides of the pentagon give the same isomorphism).

It is easy to 
he
k that hom(X

1

; X

2

) is a 
ategory, sin
e it inherits all the usual

properties from C.

3.4. Double Categories. A (stri
t) double 
ategory 
an be thought of as an in-

ternal 
ategory in Cat. That is, it is a model of the theory of 
ategories, denoted

Th(Cat), in Cat. This Th(Cat) 
onsists of a 
ategory with two obje
ts, Obj and

Mor with morphisms of the form:

(13)

Mor

s

++

t

33

Obj

subje
t to some axioms. In parti
ular, the 
omposition operation is a partially

de�ned operation on pairs of morphisms. In parti
ular, there is a 
olle
tion of


omposable pairs of morphisms, namely the �bre produ
t Pairs = Mor�

Obj

Mor,

whi
h is a pullba
k of the two arrows from Mor to Obj. That is, Pairs is an

equalizer in the following diagram:

(14)

Mor

t

""

F

F

F

F

F

F

F

F

Pairs

i

//

Mor

2

�

1

;;

w

w

w

w

w

w

w

w

�

2

##

G

G

G

G

G

G

G

G

Obj

Mor

s

<<

y

y

y

y

y

y

y

y

(Note that we assume the existen
e of pullba
ks, here - in fa
t, Th(Cat) is a �nite

limit theory.) The 
omposition map Æ : Pairs! Mor satis�es the usual properties

for 
omposition.

There is also an identity for ea
h obje
t: there is a map Obj

1

!Mor, su
h that

for any morphism f 2 Mor, we have 1

s(f)

and 1

t(f)

are 
omposable with f , and the


omposite is f itself.

A model of Th(Cat) in Cat is a (limit-preserving) fun
tor

F : Th(Cat)! Cat

This gives a stru
ture having a 
ategoryOb of obje
ts and a 
ategoryMor of mor-

phisms, with two fun
tors s (\sour
e") and t (\target") satisfying the usual 
ategory

axioms. In parti
ular, we 
an des
ribe 
omposition as a pullba
k 
onstru
tion in
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this 
ategory, whi
h makes sense sin
e the fun
tor preserves �nite limits (in
luding

pullba
ks):

(15) F (Mor)




1

yys

s

s

s

s

s

s

s

s

s




2

%%

K

K

K

K

K

K

K

K

K

K

�� ��

F (Mor)

s

yys

s

s

s

s

s

s

s

s

t

%%

K

K

K

K

K

K

K

K

K

K

F (Mor)

s

yys

s

s

s

s

s

s

s

s

s

t

%%

K

K

K

K

K

K

K

K

K

F (Obj) F (Obj) F (Obj)

A 
ategory is a model of the theory Th(Cat) in Set, and we understand this to

mean that when two morphisms f and g have the target of f the same as the sour
e

of g, there is a 
omposite morphism from the sour
e of f to the target of g. In the


ase of a double 
ategory, we have a model of Th(Cat) in Cat, so that F (Obj) and

F (Mor) are 
ategories and F (s) and F (t) are fun
tors, we have the same 
ondition

for both obje
ts and morphisms - subje
t to the 
ompatibility 
onditions for these

two maps whi
h any fun
tor must satisfy.

We thus have sets of obje
ts and morphisms in Ob, whi
h of 
ourse must satisfy

the usual axioms. The same is true for Mor. The 
ategory axioms for the double


ategory are imposed on top of these properties, with 
ompatibility 
onditions

between the two. The result is that we 
an think of both the obje
ts in Mor and

the morphisms in Ob as a
ting like morphisms between the obje
ts in Ob, in a way


ompatible with the sour
e and target maps. A double 
ategory 
an be thought of

as in
luding within it the morphisms of two potentially di�erent 
ategories on the

same 
olle
tion of obje
ts. These are 
ustomarily 
alled the horizontal and verti
al

morphisms, intuitively 
apturing the pi
ture:

(16)

x

�

//

f

��

x

0

f

0

��

y

^

�

//

y

0

Here, the obje
ts in the diagram 
an be thought of as obje
ts in F (Obj), the

verti
al morphisms f and f

0


an be thought of as morphisms in F (Obj) and the

horizontal morphisms � and

^

� as obje
ts in F (Mor). In fa
t, there is enough

symmetry in the axioms for an internal 
ategory in Cat that we 
an adopt either


onvention. However, we also have morphisms in Mor. We represent these as

two-
ells, or squares , like the square S represented in this diagram:

(17)

x

�

//

f

��

~

~

~

~

{�

S

x

0

f

0

��

y

^

�

//

y

0

The fa
t that the 
omposition map Æ is a fun
tor means that horizontal and

verti
al 
omposition of squares 
ommutes.
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3.5. Topologi
al Examples. We 
an illustrate bi
ategories and double 
ategories

in an elementary topologi
al setting, namely from homotopy theory. This was the

sour
e of mu
h of the original motivation for higher-dimensional 
ategory theory.

Moreover, as we have already remarked in 2, there are 
lose 
onne
tions between


obordism and homotopy. These examples will turn out to suggest how to des
ribe

Verity double bi
ategories of 
obordisms.

Our �rst example is perhaps the original motivating example of a bi
ategory.

Example 1. Given a spa
e S in the 
ategory Top of topologi
al spa
es, we might

wish to de�ne a 
ategory Path(S) whose obje
ts are points of X , and whose mor-

phisms are paths in S. That is, a morphism in Path(S) from a to b is a map


 : [0; 1℄ ! X su
h that 
(0) = a and 
(1) = b. The obvious 
omposition rule for




1

2 hom(a; b) and 


2

2 hom(b; 
) is that

(18) 


1

; 


2

(x) =

(




1

(2x) if x 2 [0;

1

2

)




2

(2x� 1) if x 2 [

1

2

; 1℄

However, this 
omposition rule is not asso
iative, and resolving this involves, either

impli
itly or expli
itly, use of a bi
ategory. We get this bi
ategory Path

2

(S), by

�rst de�ning, for a; b 2 S, a 
ategory hom(a; b) with:

� obje
ts: paths from a to b

� morphisms: homotopies between paths, namely a homotopy from 


1

to




2

is H : [0; 1℄ � [0; 1℄ ! S su
h that H(x; 0) = 


1

(x), H(x; 1) = 
(x),

H(0; y) = a, H(1; y) = b for all (x; y) 2 [0; 1℄� [0; 1℄.

Then we have a unit law for the identity morphism (the 
onstant path) at ea
h

point, and an asso
iator for 
omposition. Both of these are homotopies whi
h

reparametrize 
omposite paths.

Finally, we note that, if we de�ne horizontal and verti
al 
omposition of homo-

topies in the same way as above (in ea
h 
omponent), then this 
omposition is

again not asso
iative. So to get around this, we say that the bi
ategory we want

has its hom-
ategories hom(a; b), where the morphisms are isomorphism 
lasses of

homotopies. The isomorphisms in question will not be homotopies themselves (to

avoid an in�nite regress), but rather smooth maps whi
h �x the boundary of the

homotopy square.

We 
all the resulting bi
ategory Path

2

(S).

A similar 
onstru
tion is possible for a double 
ategory.

Example 2. A double 
ategory is a model of Th(Cat) in Cat, and we have seen

that it is analogous to a bi
ategory. So we would like to 
onstru
t one analogous

to the bi
ategory in Example 1, we 
onstru
t a model having the following:

� A 
ategory Obj of obje
ts: we take this to be Path(S), the path 
ategory

of S.

� A 
ategory Mor of morphisms: we take this to have the following data:

{ obje
ts: paths 
 : [m;n℄ in S

{ morphisms: homotopies H : [p; q℄ � [m;n℄ between paths (these have

sour
e and target maps whi
h are just s : H(�;�) ! H(�;m) and

t : H(�;�)! H(�; n).

These 
ategories have sour
e and target maps s and t whi
h are fun
tors

from Mor to Obj. The obje
t map for s is just evaluation at 0, and for t it is
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evaluation at 1. The morphism maps for these fun
tors are s : H(�;�)!

H(p;�) and t : H(�;�)! H(q;�).

We 
all the result the double 
ategory of homotopies, H(S).

We observe here that the double 
ategory H(S) is similar to the bi
ategory

Path

2

(S) in one sense. Both give a pi
ture in whi
h obje
ts are points in a topo-

logi
al spa
e, morphisms are 1-dimensional obje
ts (paths), and higher morphisms

involve 2-dimensional obje
ts (homotopies). There are some obvious di�eren
es,

however. The most obvious is that Path

2

(S) involves only homotopies with �xed

endpoints: its 2D obje
ts are bigons , whereas in H(S) the 2D obje
ts are \squares"

(or images of re
tangles under smooth maps).

A more subtle di�eren
e, however, is that, in order to make 
omposition stri
tly

asso
iative inH(S), it was ne
essary to 
hange how we parametrize the homotopies.

There are no asso
iators here, and so we make sure 
omposition is stri
t by not

res
aling our sour
e obje
t (the produ
t of two intervals) as we did in Path

2

(S).

This is rather unsatisfa
tory, and in fa
t improving it leads to a general de�nition

of a double bi
ategory , whi
h has a large 
lass of examples - namely, double spans,

in
luding as a spe
ial, restri
ted 
ase, the double bi
ategory of 
obordisms with


orners we want.

4. Double Bi
ategories

4.1. Weak Double Categories, Double Bi
ategories, and Internal Bi
ate-

gories. We wish to des
ribe a stru
ture whi
h is suÆ
ient to 
apture the possible


ompositions of 
obordisms with 
orners just as 2Cob does for 
obordisms. These

not only have 
omposition along the manifolds with boundary whi
h form their

sour
e and target, but also along the boundaries of those manifolds (and along the

boundaries of the 
obordisms, whi
h join these). However, to allow the boundaries

to vary, we do not want to 
onsider them as di�eomorphism 
lasses of 
obordisms,

but simply as 
obordisms. However, 
omposition is then not stri
tly asso
iative,

but only up to di�eomorphism.

Thus, we want something like a double 
ategory, but we must weaken the axioms

for a double 
ategory, just as bi
ategories were de�ned by weakening those for a


ategory. The 
on
ept of a \weak double 
ategory" has been de�ned (for instan
e,

see [GP1℄ and [Fio℄, where these are seen as \Pseudo Double Categories"), but the

weakening only o

urs in only one dire
tion - either horizontal or verti
al. In the

other dire
tion, the 
ategory axioms hold stri
tly. In a sense, this is be
ause the

weakening uses the squares of the double 
ategory as 2-morphisms - in parti
ular,

squares with two sides equal to the identity. Trying to do this in both dire
tions

leads to diÆ
ultly.

In parti
ular, if we have asso
iators for horizontal morphisms given by squares

of the form:

(19)

a

f ;g

//

��

Æ

Æ

Æ

Æ

��

a

f;g;h




h

//

d

��

a

f

//

b

g;h

//

d

then unless 
omposition of verti
al morphisms is stri
t, then to make a equation

(for instan
e, the pentagon equation) involving this square, we would need to use
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unit laws (or asso
iators) in the verti
al dire
tion to perform this 
omposition. This

would again be a square with identities on two sides, and the problem arises again.

In fa
t, there is no 
onsistent way to do this. Instead, we need to introdu
e a new

kind of 2-morphism separate from the squares, as we shall see in se
tion 4.2. The

result is what Domini
 Verity has termed a double bi
ategory [Ver℄.

The problem of weakening the 
on
ept of a double 
ategory so that the unit and

asso
iativity properties hold up to higher-dimensional morphisms 
an be 
ontrasted

with a di�erent approa
h. One might instead try to 
ombine the notions of bi
at-

egory and double 
ategory in a di�erent way. This is by \doubling" the notion of

bi
ategory, in the same way that double 
ategories did with the notion of 
ategory.

Just as a double 
ategory is an internal 
ategory in Cat, the result would be an

internal bi
ategory in Bi
at.

We would like to 
all this a double bi
ategory : however, this term has already

been used by Domini
 Verity to des
ribe the stru
ture we will mainly be interested

in. Sin
e the former 
on
ept is also important for us in 
ertain lemmas, and is most

naturally 
alled a double bi
ategory, we will refer to the latter as a Verity double

bi
ategory. For more dis
ussion of the relation between these, see se
tion 6.

4.2. De�nition of a Double Bi
ategory. The following de�nition of a Verity

double bi
ategory is due to Domini
 Verity ([Ver℄), and is readily seen as a natural

weakening of the de�nition of a double 
ategory. Just as the 
on
ept of bi
ate-

gory weakens that of 2-
ategory by weakening the asso
iative and unit laws, Verity

double bi
ategories will do the same for double 
ategories.

De�nition 4. A Verity double bi
ategory C is a stru
ture 
onsisting of the

following data:

� a 
lass of obje
ts Obj,

� horizontal and verti
al bi
ategories Hor and Ver having Obj as their

obje
ts

� for every square of horizontal and verti
al morphisms of the form

(20)

a

h

//

v

��

b

v

0

��




h

0

//

d

a 
lass of squares Squ, with maps s

h

; t

h

: Squ ! Mor(Hor) and s

v

; t

v

:

Squ! Mor(Ver), satisfying an equation for ea
h 
orner, namely:

s(s

h

) = s(s

v

)(21)

t(s

h

) = s(t

v

)

s(t

h

) = t(s

v

)

t(t

h

) = t(t

v

)
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The squares should have horizontal and verti
al 
omposition operations, de�ning

the verti
al 
omposite F 


V

G

(22)

x

//

��

~

~

~

~

{�

F

x

0

��

y

//

��

~

~

~

~

{�

G

y

0

��

z

//

z

0

=

x

//

��

�

�

�

�

{�

F


V

G

x

0

��

z

//

z

0

and horizontal 
omposite F 


H

G:

(23)

x

//

��

�

�

�

�

{�

F

y

��

//

�

�

�

�

{�

G

z

��

x

0
//

y

0

//

z

0

=

x

//

��

�

�

�

�

|�

F


H

G

z

��

x

0
//

z

0

These have the usual relation to sour
e and target maps, satisfy the inter
hange law

(24) (F 


V

F

0

)


H

(G


V

G

0

) = (F 


H

G)


V

(F

0




H

G

0

)

and have a left and right a
tion by the horizontal and verti
al 2-morphisms on Squ,

giving F ?

H

�,

(25)

x

//

��

�

�

�

�

{�

F

y

��

vv

x

0
//

y

0

�

ks

=

x

//

��

�

�

�

�

{�

F?

V

�

y

��

x

0
//

y

0

(and similarly on the left) and F ?

V

�,

(26)

x

//

��

��

�

�

�

�

{�

F

y

��

x

0
//

y

0

�

��

=

x

//

��

�

�

�

�

{�

�?

H

F

y

��

x

0
//

y

0

The a
tions are 
ompatible with 
omposition:

(27) (F 


H

G) ?

V

� = F 


H

(G ?

V

�)

(and analogously for verti
al 
omposition). They also satisfy additional 
ompatibil-

ity 
onditions: the left and right a
tions of both verti
al and horizontal 2-morphisms

satisfy the \asso
iativity" property

(28) � ? (S ? �) = (� ? S) ? �
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for both ?

H

or ?

V

in either position. Moreover, horizontal and verti
al a
tions are

independent:

(29) � ?

H

(� ?

V

S) = � ?

V

(� ?

H

S)

and similarly for the right a
tion.

We note that, although this de�nition is fairly elaborate, it is simpler than would

be a similarly elementary des
ription of a double bi
ategory. Indeed, in se
tion 5.3

we that a Verity double bi
ategory is a spe
ial 
ase of a double bi
ategory, satisfying

some extra properties.

In parti
ular, where there are 
ombatibility 
onditions involving equations in this

de�nition, su
h a stru
ture would have only isomorphisms, themselves satisfying

additional 
oheren
e laws. In parti
ular, in double bi
ategories, the a
tion of 2-

morphisms on squares is des
ribed by stri
t equations, rather than being given by

a de�nite isomorphism.

Similarly, it is possible (see [Ver℄ se
. 1.4) to de�ne 
ategories Cyl

H

and Cyl

V

of 
ylinders whose obje
ts are squares, and maps are pairs of verti
al (respe
tively,

horizontal) 2-morphisms joining the verti
al (resp. horizontal) sour
e and targets

of pairs of squares whi
h share the other two sides. These are plain 
ategories, with

stri
t asso
iativity and unit laws. These 
onditions would be weakened in a double

bi
ategory (in whi
h maps would in
lude not just pairs of 2-morphisms, but also

a 3-dimensional interior of the 
ylinder - a morphism in 2Mor, or 2-morphism in

Mor, satisfying properties only up to a 4-dimensional 2-morphism in 2Mor).

However, the de�nition given above, despite being a more spe
ial 
ase, having

no (nontrivial) morphisms of more than 2 dimensions, 
ontains as mu
h stru
ture

as we need to des
ribe our intended examples.

4.3. An Equivalen
e Theorem. There are numerous 
onne
tions between dou-

ble 
ategories and bi
ategories (or their stri
t form, 2-
ategories). One is Ehres-

mann's double 
ategory of quintets, relating double 
ategories to 2-
ategories: a

double 
ategory by taking the squares to be 2-morphisms between 
omposite pairs

of morphisms, su
h as � : g

0

Æ f ! f

0

Æ g.

Furthermore, it is well known that double 
ategories 
an be made equivalent to

2-
ategories in three di�erent ways. Two obvious 
ases are when there are only

identity horizontal and verti
al morphisms, respe
tively, so that squares simply


ollapse into bigons.Noti
e that it is also true that a double bi
ategory in whi
h

Hor is trivial (equivalently, if Ver is trivial) is again a bi
ategory. The squares

be
ome 2-morphisms in the obvious way, the a
tion of 2-morphisms on squares then

is just 
omposition, and the 
omposition rules for squares and bigons are the same.

The result is 
learly a bi
ategory.

The other, less obvious, 
ase, is when the horizontal and verti
al morphisms are

identi�ed - that is, when the horizontal and verti
al 
ategories on the obje
ts are

the same. Then we again 
an interpret squares as bigons by 
omposing the top and

right edges, and the left and bottom edges. Introdu
ing identity bigons 
ompletes

the stru
ture. These new bigons have a natural 
omposition inherited from that

for squares. It turns out that this yields a stru
ture satisfying the de�nition of a

2-
ategory. Here, our goal will be to show an analogous result, that a Verity double

bi
ategory similarly gives rise to a bi
ategory when the horizontal and verti
al

bi
ategories are equal. We expe
t that the 
onverse holds as well - but we show

one dire
tion only.
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Our 
ondition that Hor = Ver holds in our general example of double spans:

both horizontal and verti
al bi
ategories in any 2Span(C)

0

are just Span(C). In

parti
ular, this result will also apply to our example of 
obordisms.

Theorem 1. Any Verity double bi
ategory (Obj;Hor;Ver;Squ;


H

;


V

; ?

H

; ?

V

)

for whi
h Hor = Ver produ
es a bi
ategory by taking squares to be 2-
ells.

Proof. We begin by de�ning the data of this bi
ategory, whi
h we 
allB. Its obje
ts

and morphisms are the same as those of Ver (equivalently, Hor). We des
ribe the

2-morphisms by observing thatBmust 
ontain all those inVer (equivalently,Hor),

but also some others, whi
h 
orrespond to the squares in Squ.

In parti
ular, given a square

(30)

a

f

//

g

��

~

~

~

~

{�

S

b

g

0

��




f

0

//

d

there should be a 2-morphism

(31)

a

g

0

Æf

%%

f

0

Æg

99

d

S

��

The 
omposition of squares 
orresponds to either horizontal or verti
al 
ompo-

sition of 2-morphisms in B, and the equivalen
e of these is given in terms of the

inter
hange law in a bi
ategory:

Given a 
omposite of squares,

(32)

x

f

//

�

x

��

�

�

�

�

{�

F

y

�

y

��

g

//

�

�

�

�

{�

G

z

�

z

��

x

0

f

0

//

y

0

g

0

//

z

0

there will be a 
orresponding diagram in B:

(33)

x

f

//

�

x

Æf

0

��

y

�

y

//

�

z

Æg

��

y

0

g

0

//

z

0

F

��

G

��

Using horizontal 
omposition with identity 2-morphisms, we 
an write this as a

verti
al 
omposition:

(34)

x

�

z

ÆgÆf

!!

g

0

Æ�

y

Æf

//

g

0

Æf

0

Æ�

x

==

z

0

GÆ1

f

��

1

g

0

ÆF

��
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So the square F 


H

G 
orresponds to (1 ÆG) � (F Æ 1) for appropriate identities

1. Similarly, the verti
al 
omposite of F

0




V

G

0

must be the same as (1 ÆF ) � (G Æ

1). Thus, every 
omposite of squares, whi
h 
an all be built from horizontal and

verti
al 
omposition, gives a 
orresponding 
omposite of 2-morphisms in B, whi
h

are generated by those 
orrepsonding to squares in Squ, subje
t to the relations

imposed by the 
omposition rules in a bi
ategory.

To show the Verity double bi
ategory gives a bi
ategory, it now suÆ
es to show

that all su
h 2-morphisms not already in Ver arise as squares (that is, the stru
-

ture is 
losed under 
omposition). So suppose we have any 
omposable pair of

2-morphisms whi
h arise from squares. If the squares have an edge in 
ommon,

then we have the situation depi
ted above (or possibly the equivalent in the verti-


al dire
tion). In this 
ase, the 
omposite 2-morphism 
orresponds exa
tly to the


omposite of squares, and the axioms for 
omposition of squares ensure that all

2-morphisms generated this way are already in our bi
ategory.

If there is no edge in 
ommon, the 2-morphisms in B must be made 
omposable

by 
omposition with identities. In this 
ase, all the identities 
an be derived from

2-morphisms in Ver, or from identity squares in Squ (inside 
ommuting diagrams).

Clearly, any identity 2-morphism 
an be fa
tored this way. Then, again, the 
om-

posite 2-morphisms in B will 
orrespond to the 
omposite of all su
h squares and

2-morphisms in Squ and Ver. �

4.4. Double Spans. Now we 
onstru
t a 
lass of examples. These examples are

analogous to the example of bi
ategories of spans, dis
ussed in se
tion 3.3. These

span-ish examples of Verity double bi
ategories are 
losely related to a topologi
al

example similar in 
avour to the topologi
al examples of bi
ategories and double


ategories in se
tion 3.5.

We remarked in se
tion 3.4 that a double 
ategory is a 
ategory internal to Cat.

In 4 we observed that Verity double bi
ategories 
an similarly be understood in

terms of double bi
ategories (with suitable restri
tion to isomorphism 
lasses at

the top-dimensional level). The 
onstru
tion we will make here uses this idea in

the parti
ular 
ase where all the bi
ategories involved are realized as Span(C) for

some C. These examples are also analogous to the \profun
tor-based examples"

of pseudo-double 
ategories des
ribed by Grandis and Par�e [GP2℄. The important

example for us here is 2Span(C)

0

(we will see the reason for this notation shortly).

In Remark 1 we des
ribed B�enabou's demonstration that Obj = Span(C) is a

bi
ategory. There is an analogous fa
t about double spans, whi
h 
an be des
ribed

in terms of double bi
ategories. These are des
ribed expli
itly in se
tion 6. We

begin by des
ribing 2Span(C). The Verity double bi
ategory des
ribed above is

derived from this, as we shall show shortly.

De�nition 5. 2Span(C) is a double bi
ategoryof double spans in C, 
onsisting

of the following:

� the bi
ategory of obje
ts is Obj = Span(C)
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� the bi
ategory of morphisms Mor has spans in C as obje
ts, as morphisms


ommuting diagrams of the form:

(35)

X S

�

1

oo

�

2

//

Y

T

X

p

1

OO

p

2

��

M

P

1

OO

P

2

��

�

1

oo

�

2

//

T

Y

p

1

OO

p

2

��

X

0

S

0

�

1

oo

�

2

//

Y

0

� as 2-morphisms 
ommuting diagrams of the form:

(36)

X S

�

1

oo

�

2

//

Y

T

0

X

p

0

1

aaC

C

C

C

C

C

C

C

p

0

2

		�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

M

0

P

0

1

``B

B

B

B

B

B

B

B

P

0

2

		�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

1

oo

�

0

2

//

T

0

Y

p

0

1

aaB

B

B

B

B

B

B

B

p

0

2

		�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

T

X

f

X

==

|

|

|

|

|

|

|

|

p

1

OO

p

2

��

M

f

M

>>

}

}

}

}

}

}

}

}

P

1

OO

P

2

��

�

1

oo

�

2

//

T

Y

f

Y

>>

|

|

|

|

|

|

|

|

p

1

OO

p

2

��

X

0

S

0

�

1

oo

�

2

//

Y

0

� the bi
ategory of 2-morphisms has as obje
ts span maps in C as in (11), as

morphisms spans of span maps (as in (36), but with span maps horizontal),

and as 2-morphisms span maps of span maps

All 
omposition operations are by pullba
k; sour
e and target operations follow those

for spans.

De�ne 2Cosp(C) as 2Span(C

op

).

In se
tion 6 we show (lemma 3) that for any 
ategoryC with pullba
ks, 2Span(C)

forms a double bi
ategory.

Remark 2. Just as 2-morphisms in Mor and morphisms in 2Mor 
an be seen

as diagrams whi
h are \produ
ts" of a span with a map of spans, 2-morphisms in

2Mor are given by diagrams whi
h are \produ
ts" of horizontal and verti
al span

maps. These have, in either dire
tion, four maps of spans, with obje
ts joined by

maps of spans. Composition again is by pullba
k in 
omposable pairs of diagrams.

In fa
t, there is more stru
ture here than we really need to des
ribe our example

of 
obordisms with 
orners. There is another Verity double bi
ategory whi
h we


an derive from 2Span(C) by 
onsidering it only up to a 
ertain kind of equivalen
e:

De�nition 6. For a 
ategory C with �nite limits, the Verity double bi
ategory

2Span(C)

0

, has:

� the obje
ts are obje
ts of C

� the horizontal and verti
al bi
ategories Hor = Ver are equal to a sub-

bi
ategory of Span(C), whi
h in
ludes only invertible span maps
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� the squares are isomorphism 
lasses of 
ommuting diagrams of the form

(35)

where two diagrams of the form (35) are isomorphi
 if they di�er only in the middle

obje
ts, say M and M

0

, and their maps to the edges, and if there is an isomorphism

f :M !M

0

making the 
ombined diagram 
ommute.

The a
tion of 2-morphisms � in Hor and Ver on squares is by 
omposition in

diagrams of the form:

(37)
S

2

�

1

~~|

|

|

|

|

|

|

|

�

2

  

B

B

B

B

B

B

B

B

X

S

1

�

1

oo

�

2

//

�

OO

Y

T

X

p

1

OO

p

2

��

M

P

1

OO

P

2

��

�

1

oo

�

2

//

T

Y

p

1

OO

p

2

��

X

0

S

0

�

1

oo

�

2

//

Y

0

(where the resulting square is as in 35, with S

2

in pla
e of S and � ÆP

1

in pla
e of

P

1

).

Composition (horizontal or verti
al) of squares of spans is, as in 2Span(C), given

by 
omposition (by pullba
k) of the three spans of whi
h the square is 
omposed. The


omposition operators for diagrams of span maps are by the usual ones in Span(C).

De�ne 2Cosp

0

(C) as 2Span(C)

0

(C

op

).

Remark 3. Noti
e that Hor and Ver as de�ned are indeed bi
ategories: elimi-

nating all but the invertible 2-morphisms leaves a 
olle
tion whi
h is 
losed under


omposition by pullba
ks.

We show more fully that this is a Verity double bi
ategory in theorem 2, but for

now we note that the de�nition of horizontal and verti
al 
omposition of squares

is de�ned on equivalen
e 
lasses. One must show that this is well de�ned. We will

get this result indire
tly as a result of lemmas 3 and 4, but it is instru
tive to see

dire
tly how this works in Span(C).

Lemma 1. The 
omposition of squares in De�nition 6 is well-de�ned.

Proof. Suppose we have two representatives of a square, bounded by horizontal

spans (S; �

1

; �

2

) from X to Y and (S

0

; �

1

; �

2

) from X

0

to Y

0

, and verti
al spans

(T

X

; p

1

; p

2

) from X to X

0

and (T

Y

; p

1

; p

2

) from Y to Y

0

. The middle obje
ts M

1

and M

2

as in the diagram (35). If we also have a 
omposable diagram - one whi
h


oin
ides along an edge (morphism in Hor or Ver) with the �rst, then we need to

know that the pullba
ks are also isomorphi
 (that is, represent the same 
omposite

square).

In the horizontal and verti
al 
omposition of these squares, the maps from the

middle obje
t M of the new square to the middle obje
ts of the new sides (given

by 
omposition of spans) arise from the universal property of the pullba
ks on the

sides being 
omposed (and the indu
ed maps from M to the 
orners, via the maps

in the spans on the other sides). Sin
e the middle obje
ts are de�ned only up to
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isomorphism 
lass, so is the pullba
k: so the 
omposition is well de�ned, sin
e the

result is again a square of the form (35). �

In se
tion 5.3 we show that 2Span(C)

0

is a Verity double bi
ategory. For now,

we will examine how 
obordisms form a spe
ial topologi
al example of this sort of

Verity double bi
ategory.

5. Cobordisms

One of our motivations for studying Verity double bi
ategories is to provide the

right formal stru
ture for some spe
ial examples. The examples we have in mind

are higher 
ategories of 
obordisms. The obje
ts in these 
ategories are manifolds

of some dimension, say k. In this 
ase, the morphisms are (k + 1)-dimensional


obordisms between these manifolds: that is, manifolds with boundary, su
h that

the boundary de
omposes into two 
omponents, with one 
omponent as the sour
e,

and one as the target. The 2-
ells are (k + 2)-dimensional 
obordisms between

(k+1)-dimensional 
obordisms: these 
an be seen as manifolds with 
orners, where

the 
orners are the k-dimensional obje
ts.

We 
ould 
ontinue building a ladder in whi
h the j + 1-
ells are 
obordisms

between the j-
ells, whi
h are 
obordisms between the (j � 1)-
ells, but two levels

is enough to give a Verity double bi
ategory. We will see that these 
an be 
onstrued

using the double span 
onstru
tion of se
tion 4.4.

5.1. Collars on Manifolds with Corners. Here we will use our 
onstru
tion of a

Verity double bi
ategory 2Span(C) from se
tion 4.4 in order to show an example of

a double bi
ategory of 
obordisms with 
orners, starting with C, a 
ertain 
ategory

of smooth spa
es. To begin with, we re
all that a smooth manifold with 
orners is a

topologi
al manifold with boundary, together with a 
ertain kind of C

1

stru
ture.

In parti
ular, we need a maximal 
ompatible set of 
oordinate 
harts � : 
 !

[0;1)

n

(where �

1

, �

2

are 
ompatible if �

2

Æ �

�1

1

is a di�eomorphism). The fa
t

that the maps are into the positive se
tor of R

n

distinguishes a manifold with


orners from a manifold.

J�ani
h [Jan℄ introdu
es the notion of hni-manifold, reviewed by Laures [Laur℄.

This is build on a manifold with fa
es:

De�nition 7. A fa
e of a manifold with 
orners is the 
losure of some 
on-

ne
ted 
omponent of the set of points with just one zero 
omponent in any 
o-

ordinate 
hart). An hni-manifold is a manifold with fa
es together with an n-tuple

(�

0

M; : : : ; �

n�1

M) of fa
es of M , su
h that

� �

0

M [ : : : �

n�1

M = �M

� �

i

M \ �

j

M is a fa
e of �

i

M and �

j

M

The 
ase we will be interested in here is the 
ase of h2i-manifolds. In this nota-

tion, a h0i-manifold is just a manifold without boundary, a h1i-manifold is a mani-

fold with boundary, and a h2i-manifold is a manifold with 
orners whose boundary

de
omposes into two 
omponents (of 
odimension 1), whose interse
tions form the


orners (of 
odimension 2). We 
an think of �

0

M and �

1

M as the \horizontal" and

\verti
al" part of the boundary of M .

Example 3. Let M be the solid 3-dimensional illustrated in �gure 1. The bound-

ary de
omposes into 2-dimensional manifolds with boundary. Denote by �

0

M the
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boundary 
omponent 
onsisting of the top and bottom surfa
es, and �

1

M be the

remaining boundary 
omponent (a topologi
al annulus).

In this 
ase, �

0

M is the disjoint union of the manifolds with 
orners S (two

annuli) and S

0

(topologi
ally a three pun
tured sphere); �

1

M is the disjoint union

of two 
omponents, T

X

(whi
h is topologi
ally a three-pun
tured sphere) and T

Y

(topologi
ally a four-pun
tured torus).

Then we have �

0

M [�

1

M = �M . Also, �

0

M \�

1

M is a 1-dimensional manifold

without boundary, whi
h is a fa
e of both �

0

M and �

1

M (in fa
t, the shared

boundary). In parti
ular, it is the disjoint union X [ Y [X

0

[ Y

0

.

We have des
ribed a Verity double bi
ategory formed from all 
obordisms with


orners in a 
ategory obtained by 
o-
ompleting that of all su
h 
obordisms, so that

all pushouts exist. The problem with this is that the pushout of two 
obordismsM

1

and M

2

over a submanifold S in
luded in both by maps S

i

1

!M

1

and S

i

2

!M

2

may

not be a 
obordism. If the submanifolds are not on the boundaries, 
ertainly the

result may not even be a manifold: for instan
e, two line segments with a 
ommon

point in the interior. So to get a Verity double bi
ategory in whi
h the morphisms

are smooth manifolds with boundary, 
ertainly we 
an only 
onsider the 
ase where

we 
ompose two 
obordisms by a pushout along shared submanifolds S whi
h are


omponents of the boundary of both M

1

and M

2

.

However, even if the 
ommon submanifold is at the boundary, there is no guar-

antee that the result of the pushout will be a smooth manifold. In parti
ular, for

a point x 2 S, there will be a neighborhood U of x whi
h restri
ts to U

1

� M

1

and U

2

�M

2

with smooth maps �

i

: U

i

! [0;1)

n

with �

i

(x) on the boundary of

[0;1)

n

with exa
tly one 
oordinate equal to 0. One 
an easily 
ombine these to give

a homeomorphism � : U ! R

n

, but this will not ne
essarily be a di�eomorphism

along the boundary S.

To solve this problem, we use the 
ollaring theorem: For any smooth manifold

with boundary M , �M has a 
ollar : an embedding f : �M � [0;1) ! M , with

(x; 0) 7! x for x 2 �M . This is a well-known result (for a proof, see e.g. [Hir℄,

se
. 4.6). It is an easy 
orrolary of this usual form that we 
an 
hoose to use the

interval [0; 1℄ in pla
e of [0;1) here.

In ([Laur℄, Lemma 2.1.6), Gerd Laures des
ribes a generalization of this theorem

to hni-manifolds, so that for any hni-manifoldM , there is an n-dimensional 
ubi
al

diagram (hni-diagram) of embeddings of 
ornered neighborhoods of the fa
es. It is

then standard that one 
an 
ompose two smooth 
obordisms with 
orners, equipped

with su
h smooth 
ollars, by gluing along S. The 
omposite is then the topologi
al

pushout of the two in
lusions. Along the 
ollars of S inM

1

andM

2

, 
harts �

i

: U

i

!

[0;1)

n

are equivalent to 
harts into R

n�1

� [0;1), and sin
e the the 
omposite

has a smooth stru
ture de�ned up to a di�eomorphism

1

whi
h is the identity along

S.

1

Note that the pre
ise smooth stru
ture on this 
obordism depends on the 
ollar whi
h is


hosen - but that there is always su
h a 
hoi
e, and the resulting 
omposites are all equivalent up

to di�eomorphism. That is, they are equivalent up to a 2-morphism in the bi
ategory. So stri
tly

speaking, the 
omposition map is not a fun
tor but an anafun
tor. It is 
ommon to disregard this

issue, sin
e one 
an always de�ne a fun
tor from an anafun
tor by using the axiom of 
hoi
e. This

is somewhat unsatisfa
tory, sin
e it does not generalize to the 
ase where our 
ategories are over

a base in whi
h the axiom of 
hoi
e does not hold, but this is not a problem in our example.
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5.2. Cobordisms with Corners. Suppose we take the 
ategory Man whose ob-

je
ts are smooth manifolds with 
orners and whose morphisms are smooth maps.

Naively, would would like to use the 
ospan 
onstru
tion from se
tion 4.4, we obtain

a Verity double bi
ategory 2Cosp(Man). While this approa
h will work with the


ategory Top, however, it will not work with Man sin
e this does not have all 
ol-

imits. In parti
ular, given two smooth manifolds with boundary, we 
an glue them

along their boundaries in non-smooth ways, so to ensure that the pushout exists in

Man we need to spe
ify a smoothness 
ondition. We des
ribe in se
tion 5.1 how to

�nd a sub
ategory with �nite 
olimits in whi
h all obje
ts, morphisms, and squares

are indeed manifolds with (possibly empty) 
orners. This requires using 
ollars on

the boundaries and 
orners.

For ea
h n, we de�ne a Verity double bi
ategory within Man, whi
h we will 
all

nCob

2

:

De�nition 8. The Verity double bi
ategory nCob

2

is given by the following data:

� The obje
ts of nCob

2

are of the form P =

^

P � I

2

where

^

P may be any

(n� 2) manifolds without boundary and I = [0; 1℄.

� The horizontal and verti
al bi
ategories of nCob

2

have

{ obje
ts: as above

{ morphisms: 
ospans P

1

i

1

!S

i

2

 P

2

where S =

^

S � I and

^

S may be

any of those 
ospans of (n � 1)-dimensional manifolds-with-boundary

whi
h are 
obordisms with 
ollars su
h that the

^

P

i

� I are obje
ts,

the maps are inje
tions into S, a manifold with boundary, su
h that

i

1

(P

1

) [ i

2

(P

2

) = �S � I, i

1

(P

1

) \ i

2

(P

2

) = ;,

{ 2-morphisms: 
ospan maps whi
h are di�eomorphisms of the form f�

id : T � [0; 1℄! T

0

� [0; 1℄ where T and T

0

have a 
ommon boundary,

and f is a di�eomorphismT ! T

0


ompatible with the sour
e and target

maps - i.e. �xing the 
ollar.

where the sour
e of a 
obordism S 
onsists of the 
olle
tion of 
omponents

of �S � I for whi
h the image of (x; 0) lies on the boundary for x 2 �S,

and the target has the image of (x; 1) on the boundary

� squares: di�eomorphism 
lasses of n-dimensional manifolds M with 
or-

ners satisfying the properties of M in the diagram of equation (35), where

isomorphisms are di�eomorphisms preserving the boundary

� the a
tion of the di�eomorphisms on the \squares" (
lasses of manifolds

M) is given by 
omposition of di�eomorphisms of the boundary 
obordisms

with the inje
tion maps of the boundary M

The sour
e and target obje
ts of any 
obordism are the 
ollars, embedded in the


obordism in su
h a way that the sour
e obje
t P =

^

P � I

2

is embedded in the


obordism S =

^

S � I by a map whi
h is the identity on I taking the �rst interval

in the obje
t to the interval for a horizontal morphism, and the se
ond to the inter-

val for a verti
al morphism. The same 
ondition distinguishing sour
e and target

applies as above.

Composition of squares works as in 2Span(C)

0

.

We will see that nCob

2

is a Verity double bi
ategory in se
tion 5.3, but for

now it suÆ
es to note that sin
e it is 
omposed of double 
ospans, we 
an hope to

de�ne 
omposition to be just that in the Verity double bi
ategory2Span(C)

0

where
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C is the 
ategory of manifolds with 
orners. The proof that this is a Verity double

bi
ategory will entail showing that nCob

2

is 
losed under this 
omposition.

Lemma 2. Composing horizontal morphisms in nCob

2

this way produ
es another

horizontal morphism in nCob

2

. Similarly, 
omposition of verti
al morphisms pro-

du
es a verti
al morphism, and 
omposition of squares produ
es another square.

Proof. The horizontal and verti
al morphisms are produ
ts of the interval I with

h1i-manifolds, whose boundary is �

0

S), equipped with 
ollars. Suppose we are

given two su
h 
obordisms S

1

and S

2

, and an identi�
ation of the sour
e of S

2

with

the target of S

1

(say this is P =

^

P �I). Then the 
omposite S

2

ÆS

1

is topologi
ally

the pushout of S

1

and S

2

over P . Now, P is smoothly embedded in S

1

and S

2

,

and any point in the pushout will be in the interior of either S

1

or S

2

sin
e for any

point on

^

P ea
h end of the interval I o

urs as the boundary of only one of the two


obordisms. So the result is smooth. Thus, 2Cob is 
losed under su
h 
omposition

of morphisms.

The same argument holds for squares, sin
e it holds for any representative of

the equivalen
e 
lass of some manifold with 
orners, M , and the di�erentiable

stru
ture will be the same, sin
e we 
onsider equivalen
e up to di�eomorphisms

whi
h preserve the 
ollar exa
tly. �

This establishes that 
omposition in nCob

2

is well de�ned, and 
omposites are

again 
obordisms in nCob

2

. We show that it is a Verity double bi
ategoryin se
tion

5.3.

Example 4. We 
an represent a typi
al manifestation of the diagram (35) as in

�gure 1.

Consider how this pi
ture is related to (35). In the �gure, we have n = 3, so

the obje
ts are (
ompa
t, oriented) 1-dimensional manifolds, thi
kened by taking a

produ
t with I

2

. X (top, solid lines) and Y (top, dotted lines) are both isomorphi


to (S

1

[S

1

)� I

2

, while X

0

and Y

0

(bottom, solid and dotted respe
tively) are both

isomorphi
 to S

1

� I

2

.

The horizontal morphisms are (thi
kened) 
obordisms S, and S

0

, whi
h are a pair

of thi
kened annuli and a two-holed disk, respe
tively, with the evident inje
tion

maps from the obje
ts X;Y;X

0

; Y

0

. The verti
al morphisms are the thi
kened


obordisms T

X

and T

Y

. In this example, T

X

happens to be of the same form as S

0

(a two-holed disk), and has in
lusion maps from X and X

0

, the two 
omponents

of its boundary, as the \sour
e" and \target" maps. T

Y

is homotopy equivalent

to a four-pun
tured torus, where the four pun
tures are the 
omponents of its

boundary - two 
ir
les in Y and two in Y

0

, whi
h again have the obvious in
lusion

maps. Reading from top to bottom, we 
an des
ribe T

Y

as the story of two (thi
k)


ir
les whi
h join into one 
ir
le, then split apart, then rejoin, and �nally split apart

again.

Finally, the \square" in this pi
ture is the manifold with 
orners, M , whose

boundary has four 
omponents, S; S

0

; T

X

; andT

Y

, and whi
h has 
orners pre
isely

along the boundaries of these manifolds - whose 
omponents are divided between the

obje
ts X;Y;X

0

; Y

0

. The embeddings of these thi
kened manifolds and 
obordisms

gives a spe
i�
 way to equip M with 
ollars.

Given any of the horizontal or verti
al morphisms (thi
kened 
obordisms S, S

0

,

T

X

and T

Y

), a 2-morphism would be a di�eomorphism to some other 
obordism
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Figure 4. A Square in nCob

2

(Thi
kened Lines Denote Collars)

equipped with maps from the same obje
ts (boundary 
omponents), whi
h �xes the


ollar on that 
obordism - that is, �xes the embedded obje
t. Su
h a di�eomorphism

is ne
essarily a homeomorphism, so topologi
ally the pi
ture will be similar after

the a
tion of su
h a 2-morphism - but we would 
onsider two su
h 
obordisms as

separate morphisms in Hor or Ver.

Remark 4. We note the resemblan
e between this example and Path(S)

2

and

H(S) de�ned previously. In those 
ases, we are 
onsidering manifolds embedded in a

topologi
al spa
e S, and only a low-dimensional spe
ial 
ase (the square [0; 1℄�[0; 1℄

is a manifold with 
orners). Instead of homotopies, whi
h make sense only for

embedded spa
es, nCob

2

has di�eomorphisms. However, in both 
ases, we 
onsider

the squares to be isomorphism 
lasses of a 
ertain kind of top-dimensional obje
t

(homotopies or 
obordisms). This eliminates the need to de�ne morphisms or 
ells

in our 
ategory of dimension higher than 2. We may omit this restri
tion if we

move to a more general de�nition of double bi
ategory, as des
ribed in se
tion 6.

5.3. Main Theorem. Now we want to show that 
obordisms of 
obordisms form

a Verity double bi
ategory under the 
omposition operations we have des
ribed.

We will do this by �rst showing a more general result, in
luding 2Span(C)

0

for

any 
ategory C with �nite limits, and showing how a Verity double bi
ategory is

an internal bi
ategory in Bi
at, and of a spe
ial kind whi
h 
an be obtained by

pre
isely the redu
tion to isomorphism 
lasses and restri
tion to parti
ular spans

whi
h we perform in de�ning nCob

2

.

We use lemmas 3 and 4, proved in se
tion 6 to show the following:
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Theorem 2. If C is a 
ategory with �nite limits, then 2Span(C)

0

is a Verity double

bi
ategory. If C has �nite 
olimits, then 2Cosp

0

(C) is a Verity double bi
ategory.

Proof. For any 
o
omplete 
ategory C, 2Span(C) as de�ned above forms a double

bi
ategory (Lemma 3). Then in the 
onstru
tion of 2Span(C)

0

, we take isomor-

phism 
lasses of double spans as the squares - that is, 2-isomorphism 
lasses of

morphisms in Mor in the double bi
ategory, where the 2-isomorphisms are in-

vertible span maps, in both horizontal and verti
al dire
tions. We also restri
t to

invertible span maps in the horizontal and verti
al bi
ategories.

We are then e�e
tively dis
arding all morphisms and 2-morphisms in 2Mor,

and the 2-morphisms in Mor ex
ept for the invertible ones. In parti
ular, there

may be \squares" of the form (35) in 2Span(C) with non-invertible maps joining

their middle obje
ts M - but we have ignored these, and also ignore non-invertible

span maps in the bi
ategories on the edges. Thus, we 
onsider no diagrams of the

form (36) ex
ept for invertible ones - in whi
h 
ase, the middle obje
ts M and M

0

are representatives of the same isomorphism 
lass. Similar reasoning applies to the

2-morphisms in 2Mor.

The resulting stru
ture we get from dis
arding these will again be a double

bi
ategory. In parti
ular, the new Mor and 2Mor will be bi
ategories, sin
e they

are, respe
tively, just a 
ategory and a set made into a dis
rete bi
ategory by adding

identities. On the other hand, for the 
omposition, sour
e and target maps to be

bifun
tors amounts to saying that the stru
tures built from the obje
ts, morphisms,

and 2-
ells respe
tively are again bi
ategories, sin
e the 
omposition, sour
e, and

target maps satisfy the usual axioms. But the same argument applies to those built

from the morphisms and 2-
ells as within Mor and 2Mor. So we have a double

bi
ategory.

Next we show that the horizontal and verti
al a
tion 
onditions (de�nition 11)

hold in 2Span(C). A square in 2Span(C) is a diagram of the form (35), and a

2-
ell is a map of spans. Given a square M

1

and 2-
ell � with 
ompatible sour
e

and targets as in the a
tion 
onditions, we have a diagram of the form shown in

(37). Here, M

1

is the square diagram at the bottom, whose top row is the span


ontaining S

1

. The 2-
ell � is the span map in
luding the arrow � : S

1

! S

2

.

There is a unique square built using the same obje
ts as M

1

ex
ept using the span


ontaining S

2

as the top row. The map to S

2

from M is then � Æ P

1

.

To satisfy the a
tion 
ondition, we want this square M

2

, whi
h is the 
andidate

for M

1

?

V

�, to be unique. But suppose there were another M

0

2

with a map to S

2

.

Sin
e we are in 2Span(C)

0

, � must be invertible, whi
h would give a map from M

0

2

to S

1

. We then �nd that M

0

2

and M

2

are representatives of the same isomorphism


lass - so in fa
t this is the same square. That is, there is a unique morphism

in 2Mor taking M

1

to M

2

(a diagram of the form 36, oriented verti
ally) with

invertible span maps in the middle and bottom rows. This is the unique �ller for

the pillow diagram required by de�nition 11.

The argument that 2Span(C)

0

satis�es the a
tion 
ompatibility 
ondition is

similar.

So 2Span(C)

0

is a double bi
ategory in whi
h, there there is at most one unique

morphism in Mor, and at most unique morphisms and 2-morphisms in 2Mor, for

any spe
i�ed sour
e and target, and the horizontal and verti
al a
tion 
onditions

hold. So 2Span(C)

0


an be interpreted as a Verity double bi
ategory (Lemma 4).



A DOUBLE BICATEGORY OF COBORDISMS WITH CORNERS 27

The 
ase where we begin with a 
ategory C with �nite 
olimits and use 
ospans


an be redu
ed to this 
ase, by taking C

op

. �

The argument that double spans or double 
ospans form a Verity double bi
ate-

gory 
an be slightly modi�ed to show the same about 
obordisms with 
orners. We

note that there are two di�eren
es. First, the 
ategory of manifolds with 
orners

does not have all �nite 
olimits. Se
ond, we are not dealing with all double 
ospans

of manifolds with 
orners, so nCob

2

is not 2Span(C)

0

for any C. In fa
t, the

se
ond di�eren
e is what allows us to deal with the �rst.

Theorem 3. nCob

2

is a Verity double bi
ategory.

Proof. First, re
all that obje
ts in nCob

2

are manifolds with 
orners of the form

P =

^

P � I

2

for some manifold

^

P , and noti
e that both horizontal and verti
al

morphisms are 
ospans. In general, if we have two 
ospans in the 
ategory of

manifolds with 
orners sharing a 
ommon obje
t, we 
annot take a pullba
k and

get a manifold with 
orners. However, we are only 
onsidering a subset of all

possible spans of smooth manifolds with 
orners, all all those we 
onsider have

pullba
ks whi
h are again smooth manifolds with 
orners (lemma 2).

In parti
ular, sin
e 
omposition of squares is as in 2Span(C)

0

, before taking

di�eomorphism 
lasses of manifolds M in nCob

2

, we would again get a double

bi
ategory made from 
obordisms with 
orners, together with the embeddings used

in its 
ospans, and 
ollar-�xing di�eomorphisms. This is shown by arguments

identi
al to those of lemma 3.

When we redu
e to di�eomorphism 
lasses of these manifolds, then just as in the

proof of 2, we 
an 
ut down this double bi
ategory to a stru
ture, and the result

will satisfy the horizontal and verti
al a
tion 
onditions, giving a Verity double

bi
ategory, sin
e it satis�es the 
onditions of lemma 4.

So in fa
t, by the same arguments as in these other 
ases, nCob

2

is a Verity

double bi
ategory. �

6. Internal Bi
ategories in Bi
at

6.1. Introdu
tion. We rely on the notion of a bi
ategory internal to Bi
at at

several points in this paper. Here we present a more pre
ise de�nition of this


on
ept, and in lemmas 3 and 4 we use it to show that examples having properties

like those of 2Span(C)

0

(de�nition 6) give double bi
ategories in the sense of Verity.

These lemmas were used in the proofs Theorems 2 and 3.

To begin with, we remark that the theory of bi
ategories, Th(Bi
at) is more


ompli
ated than that for 
ategories. However as with Th(Cat), it will be a


ategory with obje
ts Obj, Mor and 2Mor, and having all equalizers, pullba
ks.

To our knowledge, a model of Th(Bi
at) in Bi
at has not been expli
itly des
ribed

before. We 
ould treat Obj as a horizontal bi
ategory, and the obje
ts of Obj,

Mor and 2Mor as forming a verti
al bi
ategory, but we note that diagrammati


representation of, for instan
e, 2-morphisms in 2Mor would require a 4-dimensional

diagram element. The 
omparison 
an be seen by 
ontrasting tables 1 and 2.

The axioms satis�ed by su
h a stru
ture are rather more unwieldy than either a

bi
ategory or a double 
ategory, but they provide some 
oheren
e to the axioms for

a Verity double bi
ategory, as shown in de�nition 4, as we shall see in se
tion 6.4.

We start by des
ribing how to obtain a double bi
ategory.
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6.2. The Theory of Bi
ategories. We des
ribed in se
tion 3.4 how a double


ategory may be seen as a 
ategory internal to Cat. To put it another way, it a

model of Th(Cat), the theory of 
ategories, in Cat, whi
h is a limit-preserving

fun
tor from Th(Cat) into Cat. We did not make a spe
ial point of the fa
t, but

this is a stri
t model. A weak model would satisfy the 
ategory axioms su
h as


omposition only up to a 2-morphism in Cat - that is, up to natural transformation.

So, for instan
e, the pullba
k (15) would be a weak pullba
k, so that instead of

satisfying tÆ 


1

= sÆ 


2

, there would only be a natural transformation relating tÆ 


1

and s Æ 


2

. Su
h a weak model is the most general kind of model available in Cat,

but double 
ategories arise as stri
t models.

So here we note that we are thinking ofBi
at as a mere 
ategory, and that we are

speaking of stri
t internanl bi
ategories. In parti
ular, the most natural stru
ture

for Bi
at is that of a tri
ategory: it has obje
ts whi
h are bi
ategories, morphisms

whi
h are bifun
tors between bi
ategories, 2-morphisms whi
h are natural trans-

formations between bifun
tors, and 3-morphisms whi
h are \modi�
ations" of su
h

transformations. Indeed, Bi
at is the standard example of a tri
ategory, just as

Cat is the standard example of a bi
ategory. But we ignore the tri
ategori
al

stru
ture for our purposes.

Similarly, we only 
onsider stri
t models of the theory of bi
ategories,Th(Bi
at)

in Bi
at. That is, a stri
t fun
tor from the 
ategory Th(Bi
at) into Bi
at (a

tri
ategory). Thus, equations in the model are mapped to equations (not isomor-

phisms) in Bi
at. This is what we will 
all a double bi
ategory.

Before we 
an say expli
itly what this means, we must expli
itly des
ribeTh(Bi
at)

as we did for Th(Cat) in se
tion 3.4.

De�nition 9. The theory of bi
ategories is the 
ategory (with �nite limits) Th(Bi
at)

given by the following data:

� Obje
ts Ob, Mor, 2Mor

� Morphisms s; t : Ob! Mor and s; t : Mor! 2Mor

� 
omposition maps Æ : MPairs!Mor and � : BPairs! 2Mor, satisfying

the inter
hange law (4), where MPairs = Mor�

Ob

Mor and BPairs =

2Mor�

Mor

2Mor are equalizers of diagrams of the form:

(38)

Mor

t

""

E

E

E

E

E

E

E

E

MPairs

i

//

Mor

2

�

1

;;

w

w

w

w

w

w

w

w

�

2

##

G

G

G

G

G

G

G

G

Ob

Mor

s

<<

z

z

z

z

z

z

z

z

and similarly for opnameBPairs.

� the asso
iator map a : Triples! 2Mor, where Triples = �

Ob

Mor�

Ob

Mor

is the equalizer of a similar diagram for involving Mor

3

, su
h that a satis�es

s(a(f; g; h)) = (f Æ g) Æ h and t(a(f; g; h)) = f Æ (g Æ h)

� unitors l; r : Ob! Mor with s Æ l = t Æ l = id

Ob

and s Æ r = t Æ r = id

Ob

This data is subje
t to the 
onditions that the asso
iator is subje
t to the Pentagon

identity, and the unitors obey 
ertain unitor laws.
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Remark 5. The Pentagon identity is shown in (8) and for a model of Th(Bi
at)

in Sets), where we 
an spe
ify elements of Mor, but the general relations - that

the 
omposites on ea
h side of the diagram are equal - hold in general. These are

built from 
omposable quadruples of morphisms and 
omposition as indi
ated in

the labels. Similar remarks apply to the unitor laws shown in (9).

So we have the following:

De�nition 10. A double bi
ategory 
onsists of:

� bi
ategories Obj of obje
ts,Mor ofmorphisms, 2Mor of 2-morphisms

� sour
e and target maps s; t :Mor! Obj and s; t : 2Mor!Mor

� partially de�ned 
omposition fun
tors Æ :Mor

2

!Mor and � : 2Mor

2

!

2Mor, satisfying the inter
hange law (4)

� partially de�ned asso
iator a : Mor

3

! 2Mor with s(a(f; g; h)) = (f Æ

g) Æ h and t(a(f; g; h)) = f Æ (g Æ h)

� partially de�ned unitors l; r : Obj!Mor with s(l(x)) = t(l(x)) = x and

s(r(x)) = t(r(x)) = x

All the partially de�ned fun
tors are de�ned for 
omposable pairs or triples, for

whi
h sor
e and target maps 
oin
ide in the obvious ways. The asso
iator should

satisfy the pentagon identity (8), and the unitors should satisfy the unitor laws (9).

With this de�nition in mind, we 
an remember B�enabou's 
lassi
 example of

a bi
ategory, that of spans. There is an analogous example here, namely double

spans.

6.3. The Double Span Example. Se
tion 4.4 des
ribes a stru
ture of double

spans in a 
ategory C with pullba
ks, whi
h we denoted 2Span(C). The next

lemma shows how this is the example we want:

Lemma 3. For any 
ategory C with pullba
ks, 2Span(C) forms a double bi
ategory.

Proof. Mor and 2Mor are bi
ategories sin
e the 
omposition fun
tors a
t just like


omposition in Span(C) in ea
h 
olumn, and therefore satis�es the same axioms.

Sin
e the horizontal and verti
al dire
tions are symmetri
, we 
an 
onstru
t

fun
tors between Obj, Mor, and 2Mor with the properties of a bi
ategory sim-

ply by using the same 
onstru
tions that turn ea
h into a bi
ategory. In par-

ti
ular, the sour
e and target maps from Mor to Obj and from 2Mor to Mor

are the obvious maps giving the ranges of the proje
tion maps in the diagrams

(35). The partially de�ned (horizontal) 
omposition maps Æ : Mor

2

! Mor and




H

: 2Mor

2

! 2Mor are de�ned by taking pullba
ks of diagrams in C, whi
h

exist for any 
omposable pairs of diagrams be
ause C has �nite limits. They are

fun
torial sin
e they are independent of 
omposition in the horizontal dire
tion.

The asso
iator for 
omposition of morphisms is given in the pullba
k 
onstru
tion.

To see that this 
onstru
tion gives a double bi
ategory, we note that Obj, Mor,

and 2Mor as de�ned above are indeed bi
ategories. Obj, be
ause Span(C) is a

bi
ategory. Mor and 2Mor be
ause the morphism and 2-morphism maps from the


omposition, asso
iator, and other fun
tors required for an double bi
ategory give

these the stru
ture of bi
ategories as well.

Moreover, the 
omposition fun
tors satisfy the properties of a bi
ategory for

just the same reason that 
omposition of spans does (sin
e ea
h of the three maps

involved are given by this kind of 
onstru
tion). Thus, we have a double bi
ategory.

�
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Remark 6. Lemma 3 suggests one dire
tion of generalization for double bi
ate-

gories, to \n-tuple bi
ategories" for any n. We 
an extend the notion of double

spans to arbitrarily high dimension. In se
tion 8.2, we dis
uss in more detail how

this possibility might work.

6.4. De
ategori�
ation. Our motivation for showing lemma 3 is to get a Verity

double bi
ategory of 
obordisms as a spe
ial example of a Verity double bi
ategory

of double spans in suitable 
ategories C. To get this, we need to de�ne 
onditions

whi
h allow the a
tion of 2-
ells upon squares. It is helpful, in trying to understand

what these are, to 
onsider a \lower dimensional" example of a similar pro
ess.

In a double 
ategory, thought of as an internal 
ategory in Cat, we have data of

four sorts, as shown in Table 1.

Obj Mor

Obje
ts

�

x

�

f

//

�

Morphisms

�

g

��

�

�

//

��

�

�

�

�

|�

F

�

��

�

//

�

Table 1. Data of a Double Category

That is, a double 
ategory DC has 
ategories Obj of obje
ts and Mor of mor-

phisms. The �rst 
olumn of the table shows the data of Obj: its obje
ts are the

obje
ts ofDC; its morphisms are the verti
al morphisms. The se
ond 
olumn shows

the data of Mor: its obje
ts are the horizontal morphisms of DC; its morphisms

are the squares of DC.

Remark 7. The kind of \de
ategori�
ation" we will want to do to obtain Verity

double bi
ategories has an analog in the 
ase of double 
ategories. Namely, there

is a 
ondition we 
an impose whi
h e�e
tively turns the double 
ategory into a


ategory, where the horizontal and verti
al morphisms are 
omposable, and the

squares 
an be ignored. The sort of 
ondition involved is similar to the horn-�lling


onditions introdu
ed by Ross Street [Str℄ in his �rst introdu
tion of the idea of

weak !-
ategories. In that 
ase, all morphisms 
orrespond to simpli
ial sets, and a

horn �lling 
ondition is one whi
h says that, for a given hollow simplex with just

one fa
e (morphism) missing from the boundary, there will be a morphism to �ll

that fa
e, and a \�ller" for the inside of the simplex, making the whole 
ommute.

A restri
ted horn-�lling 
ondition demands that this is possible for some 
lass of


andidate simpli
es.

For a double 
ategory, morphisms 
an be edges or squares, rather than n-

simpli
es, but we 
an de�ne the following \�ller" 
ondition: given any pair (f; g) of

a horizontal and verti
al morphism where the target obje
t of f is the sour
e obje
t

of g, there will be a unique pair (h; ?) 
onsisting of a unique horizontal morphism
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h and unique invertible square ? making the following diagram 
ommute:

(39)

x

h

��

�

�

�

f

//

�

�

�

�

{�

?

y

g

��

z

1

z

//

z

and similarly when the sour
e of f is the target of g. Noti
e that taking f or g to

be the identity in these 
ases implies F is the identity.

If, furthermore, there are no other interesting squares, then this double 
ategory


an be seen as just a 
ategory. In that 
ase, the unique h 
an just be interpreted

as the 
omposite of f and g and ? as the pro
ess of 
omposition. So we will use

the notation g Æ f instead of h in this situation.

To see that this de�nes a 
omposition operation, we need to observe that 
ompo-

sition de�ned using these �llers agrees with the usual 
omposition in the horizontal

or verti
al 
ategories, is asso
iative, et
. For example, given morphisms as in the

diagram:

w

f

//

x

f

0

//

y

g

��

z

1

z

//

z

1

z

//

z

there are two ways to use the unique-�ller prin
iple to �ll this re
tangle. One way

is to �rst 
ompose the pairs of horizontal morphisms on the top and bottom, then

�ll the resulting square. The square we get is unique, and the morphism is denoted

g Æ (f

0

Æ f). The se
ond way is to �rst �ll the right-hand square, and then using

the unique morphism we 
all g Æ f

0

, we get another square on the left hand side,

whi
h our prin
iple allows us to �ll as well. The square is unique, and the resulting

morphism is 
alled (g Æ f

0

) Æ f . Composing the two squares obtained this way must

give the square obtained the other way, sin
e both make the diagram 
ommute,

and both are unique. So we have:

w

(gÆf

0

)Æf

��

�

�

�

f

//

�

�

�

�

|�

?

x

gÆf

0

��

�

�

�

�

�

�

�

{�

?

f

0

//

y

g

��

z

1

z

//

z

1

z

//

z

=

w

gÆ(f

0

Æf)

��

�

�

�

f

0

Æf

//

�

�

�

�

|�

?

y

g

��

z

1

z

//

z

So in fa
t we 
an \de
ategorify" a double 
ategory satisfying the unique �ller


ondition, and treat it as if it were a mere 
ategory with horizontal and verti
al

morphisms equivalent. The 
omposition between horizontal and verti
al morphisms

is given by the �ller: given one of ea
h, we 
an �nd a square of the required kind,

by taking the third side to be an identity.

Remark 8. Note that our 
ondition does not give a square for every possible


ombination of morphisms whi
h might form its sour
es and targets. In parti
ular,

there must be an identity morphism - on the bottom in the example shown. If that

identity 
ould be any morphism h, then by 
hoosing f and g to be identities, this

would imply that every morphism must be invertible (at least weakly), sin
e there

must then be an h

�1

with h

�1

Æ h isomorphi
 to the identity. When a �ller square

does exist, and we 
onsider DB as a 
ategory C, the �ller square indi
ates there
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is a 
ommuting square in C: we think of it as the identity between the 
omposites

along the upper right and lower left.

The de
ategori�
ation of a double bi
ategory to give a Verity double bi
ategory

is similar, ex
ept that whereas with a double 
ategory we were 
utting down only

the squares (the lower-right quadrant of Table 1. We need to do more with a

double bi
ategory, sin
e there are more sorts of data, but they fall into a similar

arrangement, as shown in Table 2.

Obj Mor 2Mor

Obje
ts

�

x

�

f

//

�

�

��

??

�

�

��

Morphisms

�

g

��

�

�

//

��

�

�

�

�

|�

F

�

��

�

//

�

�

�

�

�

�

|�

P

1

��

��

??

�

��

�

��

��

u

_

I

??

�

��

�

�

�

�

2-Cells

�

~~  

�

�

ks

�

�

�

�

�

|�

P

2

~~  

//

�

~~  

	

�

5

�

//

�

ks ks

_ _

_ _

�

����

''

77

�

����

�

�

�

�

$

)

/

W

T

�

''

m

h

d

_

Z

V

Q

77

�

ks

��

ks

_ _

_ _

��

�

�

�

�

Table 2. The data of a double bi
ategory

Remark 9. This shows the data of the bi
ategories Obj, Mor, and 2Mor, ea
h

of whi
h has obje
ts, morphisms, and 2-
ells. Note that the morphisms in the three

entries in the lower right hand 
orner - 2-
ells in Mor, and morphisms and 2-
ells

in 2Mor - are not 2-dimensional. The 2-
ells in Mor and morphisms in 2Mor are

the three-dimensional \�lling" inside the illustrated 
ylinders, whi
h ea
h have two

square fa
es and two bigonal fa
es.

The 2-
ells in 2Mor should be drawn 4-dimensionally. The pi
ture illustrated


an be thought of as taking both square fa
es of one 
ylinder P

1

to those of another,

P

2

, by means of two other 
ylinders (S

1

and S

2

, say), in su
h a way that P

1

and

P

2

share their bigonal fa
es. This des
ription works whether we 
onsider the P

i

to be horizontal and the S

j

verti
al, or vi
e versa. These des
ribe the \frame" of

this sort of morphism: the \�lling" is the 4-dimensional tra
k taking P

1

to P

2

, or

equivalently, S

1

to S

2

(just as a square in a double 
ategory 
an be read horizontally
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or verti
ally). Not all relevant parts of the diagram have been labelled here, for


larity.

Next we want to des
ribe a 
ondition similar to that we gave whi
h made it

possible to think of a double 
ategory as a 
ategory. In that 
ase, we got a 
ondition

whi
h e�e
tively allowed us to treat any square as an identity, so that we only had

obje
ts and morphisms. Here, we want a 
ondition whi
h lets us throw away the

three entries of table 2 in the bottom right. This 
ondition, when satis�ed, should

allow us to treat a double bi
ategory as a Verity double bi
ategory. It 
omes in two

parts:

De�nition 11. We say that a double bi
ategory satis�es the verti
al a
tion 
on-

dition if, for any morphism M

1

2 Mor and 2-morphism � 2 Obj su
h that

s(M

1

) = t(�), there is a morphism M

2

2 Mor and 2-morphism P 2 Mor su
h

that P �lls the \pillow diagram":

(40)

x

//

��

��

�

�

�

�

{�

M

1

y

��

x

0
//

y

0

�

��

)

P

x

//

��

�

�

�

�

{�

M

2

y

��

x

0
//

y

0

where M

2

is the ba
k fa
e of this diagram, and the 2-morphism in Obj at the bottom

is the identity.

An double bi
ategory satis�es the horizontal a
tion 
ondition if for any mor-

phism M

1

2 Mor and obje
t � in 2Mor with s(M

1

) = t(� there is a morphism

M

2

2Mor and morphism P 2 2Mor su
h that P �ll the pillow diagram whi
h is

the same as (40) turned sideways.

Here, M

2

is the square whi
h will eventually be named M

1

?

V

� when we de�ne

an a
tion of 2-
ells on squares.

Remark 10. One 
an easily this 
ondition is analogous to our �ller 
ondition (39)

in a double 
ategory by turning the diagram (40) on its side. What the diagram

says is that when we have a square with two bigons - the top one arbitrary and

the bottom one the identity - there is another square M

2

(the ba
k fa
e of a pillow

diagram) and a �ller 2-morphism P 2 2Mor whi
h �lls the diagram. If one imagines

turning this diagram on its side and viewing it obliquely, one sees pre
isely (39),

as a dimension has been suppressed. What is a square in (39) is a 
ylinder (2-

morphism in 2Mor); the roles of both squares and bigons in (40) are played by

arrows in (39); arrows in (40) be
ome pointlike obje
ts in (39).

However, to get the 
ompatibility between horizontal and verti
al a
tions, we

need something more than this. In parti
ular, sin
e these involve both horizontal

and verti
al 
ylinders (3-dimensional morphisms in the general sense), the 
ompat-

ibility 
ondition must 
orrespond to the 4-dimensional 2-
ells in 2Mor, shown in

the lower right 
orner of Table 2.

To draw ne
essary 
ondition is diÆ
ult, sin
e the ne
essary diagram is four-

dimensional, but we 
an des
ribe it as follows:
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De�nition 12. We say a double bi
ategory satis�es the a
tion 
ompatibility


ondition if the following holds. Suppose we are given

� a morphism F 2Mor

� an obje
t � 2 2Mor whose target in Mor is a sour
e of F

� a 2-
ell � 2 Obj whose target morphism is a sour
e of F

� an invertible morphism P

1

2 2Mor with F as sour
e, and the obje
ts �

and id in 2Mor as sour
e and target

� an invertible 2-
ell P

2

2Mor with F as sour
e, and the 2-
ells � and id in

Mor as sour
e and target

where P

1

and P

2

have, as targets, morphisms in Mor we 
all � ? F and � ? F

respe
tively. Then there is a unique morphism

^

F in Mor and 2-
ell T in 2Mor

having all of the above as sour
es and targets.

Geometri
ally, we 
an think of the unique 2-
ell in 2Mor as resembling the

stru
ture in the bottom right 
orner of Table 2. This 
an be seen as taking one

horizontal 
ylinder to another in a way that �xes the (verti
al) bigons on its sides,

by means of a translation whi
h a
ts on the front and ba
k fa
es with a pair of

verti
al 
ylinders (whi
h share the top and bottom bigonal fa
es). Alternatively, it


an be seen as taking one verti
al 
ylinder to another, a
ting on the fa
es with a

pair of horizontal 
ylinders. In either 
ase, the 
ylinders involved in the translation

a
t on the fa
es, but the four-dimensional interior, T , a
ts on the original 
ylinder

to give another. The simplest interpretation of this 
ondition is that it is pre
isely

the 
ondition needed to give the 
ompatibilty 
ondition (29).

Remark 11. Noti
e that the two 
onditions given imply the existen
e of unique

data of three di�erent sorts in our double bi
ategory. If these are the only data

of these kinds, we 
an e�e
tively omit them (sin
e it suÆ
es to know information

about their sour
es and targets. This omission is part of a de
ategori�
ation of the

same kind we saw for the double 
ategory DC.

In parti
ular, we use the above 
onditions to show the following:

Lemma 4. Suppose IB is a double bi
ategorywhi
h has at most a unique morphism

or 2-morphisms in 2Mor, and at most a unique 2-morphism in Mor, having any

spe
i�ed sour
es and targets; and IB satis�es the horizontal and verti
al a
tion


onditions and the a
tion 
ompatibility 
ondition; then IB gives a Verity double

bi
ategory in the sense of Verity.

Proof. To begin with, we des
ribe how the elements of a Verity double bi
ategory

DB (de�nition 4) arise, given su
h an IB, 
onsisting of bi
ategories (Obj;Mor;2Mor)

together with all required maps (three kinds of sour
e and target maps, two kinds

of identity, three partially-de�ned 
ompositions, left and right unitors, and the

asso
iator).

The horizontal bi
ategory Hor of DB is simply Obj. The verti
al bi
ategory

Ver 
onsists of the obje
ts of ea
h of Obj, Mor, and 2Mor, where the required

sour
e, target and 
omposition maps for Ver are just the obje
t maps from those

for IB, whi
h are all fun
tors. We next 
he
k that this is a bi
ategory.

The sour
e and target maps for Ver satisfy all the usual rules for a bi
ategory

sin
e the 
orresponding fun
tors in IB do. Similarly, the 
omposition maps satisfy

(5), (6) and (7) up to natural isomorphisms: they are just obje
t maps of fun
tors

whi
h satisfy 
orresponding 
onditions. We nextillustrate this for 
omposition.
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In IB, there is an asso
iator 2-natural transformation. That is, a partially

de�ned bifun
tor � : Mor

3

! 2Mor satisfying the pentagon identity (stri
tly,

sin
e we are 
onsidering a stri
t model of the theory of bi
ategories). Among the

data for � are the obje
t maps, whi
h give the maps for the asso
iator inVer. Sin
e

the asso
iator 2-natural transformation satis�es the pentagon identity, so do these

obje
t maps. The other properties are shown similarly, so that Ver is a bi
ategory.

Next, we de
lare that the squares of DB are the morphisms of Mor. Their

verti
al sour
e and target maps are the morphism maps from the sour
e and target

fun
tors fromMor toObj. Their horizontal sour
e and target maps are the internal

ones in Mor. These satisfy equations (21) be
ause the sour
e and target maps of

IB are fun
tors (in our spe
ial example of spans, this amounts to the fa
t that (35)


ommutes).

The horizontal 
omposition of squares (23) is just the 
omposition of mor-

phisms in Mor. Now, by assumption, Mor is a bi
ategory with at most unique

2-morphisms having any given sour
e and target. If we de
lare these are identi-

ties (that is, identify their sour
e and target morphisms), we get that horizontal


omposition is exa
tly asso
iative and has exa
t identities.

The verti
al 
omposition of squares (22) is given by the morphism maps for the

partially de�ned fun
tor Æ for Mor, and so 
omposition here satis�es the axioms

for a bi
ategory. In parti
ular, it has an asso
iator and a unitor: but these must

be morphisms in 2Mor sin
e we take the morphism maps from the asso
iator and

unitor fun
tors (and the theory of bi
atories says that these give 2-morphisms).

But again, we 
an de
lare that there are only identity morphisms in 2Mor, and

this 
omposition is exa
tly asso
iative.

The inter
hange rule (24) follows again from fun
toriality of the 
omposition

fun
tors.

The a
tion of the 2-morphisms (bigons) on squares is guaranteed by the hori-

zontal and verti
al a
tion 
onditions. In parti
ular, by 
omposition of in Mor or

2Mor, we guarantee the existen
e of the 
ategories of horizontal and verti
al 
ylin-

ders Cyl

H

and Cyl

V

, respe
tively. These 
ome from the 2-morphisms in Mor or

morphisms in 2Mor respe
tively whi
h those 
onditions demand must exist. Tak-

ing these to be identities, the 
ylinders 
onsist of 
ommuting 
ylindri
al diagrams

with two bigons and two squares.

In the 
ase where one bigon is the identity, and the other is any bigon �, the


onditions guarantee the existen
e of a 
ylinder, whi
h we have de
lared to be the

identity. This de�nes the e�e
t of the a
tion of � on the square whose sour
e is the

target of �. If this square is F , we denote the other square � ?

H

F or � ?

V

F as

appropriate.

The 
ondition (27) guaranteeing independen
e of the horizontal and verti
al

a
tions follows from the a
tion 
ompatibility 
onditon. For suppose we have a

square F whose horizontal and verti
al sour
e arrows are the targets of 2-
ells �

and �, and atta
h to its opposite fa
es two identity 2-
ells. Then the horizontal

and verti
al a
tion 
onditions mean that there will be a square �?

H

F and a square

� ?

V

F ). Then the a
tion 
ompatibility 
ondition applies (the P

i

are the identities

we get from the a
tion 
ondition), and there is a morphism in Mor - that is, a

square in DB we 
an 
all and a 2-
ell T 2 2Mor. Consider the remaining fa
e,

whi
h the a
tion 
ondition suggests we 
all �?

H

(�?

V

F ) or �?

V

(�?

H

F ), depending
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on the order in whi
h we apply them. The 
ompatibility 
ondition says that there

is a unique square whi
h �lls this spot so the two must be equal.

So from any su
h double bi
ategory we get a Verity double bi
ategory.

�

Remark 12. It is interesting to note how these arguments apply to the 
ase when

we are looking at 
onstru
tions in 2Span(C), as will be the 
ase in nCob.

In parti
ular, the inter
hange rules hold be
ause the middle obje
ts in the four

squares being 
omposed form the verti
es of a new square. The pullba
ks in the

verti
al and horizontal dire
tion form the middle obje
ts of verti
al and horizontal

spans over these. The inter
hange law means that the pullba
k (in the horizontal

dire
tion) of the obje
ts from the verti
al spans is in the same isomorphism 
lass

as the pullba
k (in the verti
al dire
tion) of the obje
ts from the horizontal spans.

This is true be
ause of the universal property of the pullba
k.

The horizontal and verti
al 2-morphisms are maps of spans, and a
t on the

squares by 
omposition of morphisms in C: given a square M with four maps

P

i

and �

i

to the edges as in (35); and a morphism of spans on any edge (for

de�niteness, say the top), where the C-morphism in the middle is S

f

!

~

S. Then the


omposite f ÆP

1

:M !

~

S is a sour
e (or target) map to the span X

�

1

 

~

S

�

2

!Y . The

result is again a square. In parti
ular, 
omposition of internal maps in horizontal

and verti
al morphism of spans with the proje
tions in a square are independent.

7. A Low Dimensional Example

Lauda and Pfei�er [LP℄ des
ribe an extended topologi
al quantum �eld theory

de�ned on \open-
losed strings". These 
an be des
ribed in terms of the sort of


obordisms between 
obordisms we have des
ribed in this paper. They des
ribe a


ategory of 
obordisms in whi
h the obje
ts are 
ompa
t one-dimensional manifolds,

possibly with boundary: that is, either line segments, or 
ir
les. The morphisms

joining these are generated by: all those for 2Cob as shown in �gure 2; an analogous

set of generators with line segments instead of 
ir
les for obje
ts; and generators

passing from line segment to 
ir
le, and vi
e versa.

They des
ribe the boundary edges as labelled by 
olourings, but in a fashion

whi
h is equivalent to identifying them as horizontal and verti
al morphisms in

a double (bi)
ategory, as we have done here. In parti
ular, the obje
ts will be


olle
tions of zero or more points, the horizontal and verti
al morphisms between

su
h obje
ts will be 
olle
tions of 
ir
les or lines with endpoints in the sets. The

2-morphisms of these will be di�eomorphisms. The squares of the Verity double

bi
ategorywill be the di�eomorphism 
lasses of 
obordisms with 
orners.

What ([LP℄, se
. 3.1.3), following [Laur℄ des
ribes as a h2i-diagram of in
lusions

in Top:

(41)

�

0

M \ �

1

M

//

��

�

0

M

��

�

1

M

//

M


an be re
overed from a diagram of the form (35). This is done by taking ea
h


ospan in Man and repla
ing the two in
lusions into the middle obje
t by a single
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in
lusion from the disjoint union of the sour
e and target. This re
overs the fa
es

of the 
obordism seen as a h2i-manifold.

So in parti
ular, given the Verity double bi
ategory of 
obordisms 2Cob

2

as

des
ribed here, it is possible to re
over the stru
ture of the 
ategory 2Cob

ext

of

open-
losed 
obordisms in the following way:

The obje
ts of 2Cob

ext

are di�eomorphism 
lasses of horizontal morphisms

in 2Cob

2

. A horizontal morphism in 2Cob

2


onsists of a 
obordism between

two 0-manifolds X and Y . This is a 1-manifold S with boundary, �S = X

`

Y :

up to di�eomorphism (that is, horizontal 2-isomorphism in frm�eCob

2

) this just

amounts to a 
olle
tion of 
ir
les and line segments. (One di�eren
e between our

framework and that of Lauda and Pfei�er is that they 
onsider obje
ts to be su
h


olle
tions with a de�nite order, by treating them as �nite sequen
es with entries

in 0; 1, together with maps taking 0 to a 
ir
le, and 1 to a line segment, embedded

in R

2

in order along a line.)

One should note that the obje
ts in 2Cob

ext


ontain less information than the

horizontal morphisms in nCob

2

. In parti
ular, there are several ways to get a line

segment as the di�eomorphism 
lass of a 
obordism between points, as shown in

�gure 5. The line segment 
an appear as a 
obordism from two points to zero, or

from zero to two, or from one to one.

Figure 5. Three Cobordisms Di�eomorphi
 to a Line Segment

The 
ategory 2Cob

ext

makes no use of the verti
al bi
ategory in 2Cob

2

, but it

has the same stru
ture as the horizontal.

Se
tion 4 of [LP℄ de�nes an open-
losed TQFT as a symmetri
 monoidal fun
tor

from 2Cob

ext

into a symmetri
 monoidal 
ategory C. It is a matter for future

resear
h to see how to develop su
h a 
onstru
tion in the 
ase of the Verity double

bi
ategory nCob

2

.

8. Con
lusions and Further Dire
tions

8.1. Presentation of nCob

2

. The key example in this paper has been nCob

2

, the

Verity double bi
ategory of n-dimensional 
obordisms between (n� 1)-dimensional


obordisms between (n� 2)-dimensional manifolds. This was seen as a generaliza-

tion of nCob, the 
ategory of n-dimensional 
obordisms between (n�1)-dimensonal

manifolds. In se
tion 2.1 we re
alled how to present the symmetri
 monoidal 
ate-

gory 2Cob as equivalent to the free su
h 
ategory on a 
olle
tion generating obje
ts

and morphisms satisfying 
ertain relations. That is, des
ribed a minimal, suÆ
ient

set of generators and relations for that 
ategory. This naturally raises the ques-

tion of whether we 
an similarly present a minimal, suÆ
ient set of generators and

relations for nCob

2

.

To do this we would need generators for the obje
ts, horizontal and verti
al mor-

phisms and 2-morphisms, and squares. This is a harder problem than we intend
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to deal with here, but we 
an make a few preliminary remarks. We have already

des
ribed in se
tion 7 how the 
ategory 2Cob

ext

of open-
losed strings des
ribed

by Lauda and Pfei�er in [LP℄, extended only slightly, is just 2Cob

2

. In proposition

3.10 of that paper, they dis
uss a presentation of that 
ategory in terms of genera-

tors whi
h is readily extended to a presentation for 2Cob

2

. The only di�eren
e is

that one would need to des
ribe a larger set of generators for a full Verity double

bi
ategory.

The obje
ts in 2Cob

ext

are (equivalen
e 
lasses of) horizontal morphisms in

2Cob

2

, so one needs in addition to des
ribe the 2-morphisms as all di�eomor-

phisms of the open and 
losed \strings". Its morphisms be
ome squares, and have

the presentation des
ribed there. The verti
al morphisms 
an be dedu
ed as the

boundaries of these.

In the 
ase where n = 3, the problem of giving a presentation for nCob

2

is

signi�
antly more diÆ
ult, although we 
an noti
e that the horizontal and verti
al

bi
ategories are just the extended form of 2Cob, so the generators for obje
ts and

morphisms are already known. The 2-morphisms are all di�eomorphisms. It is

also not too diÆ
ult to des
ribe a set of generators for the squares by the use of

Morse theory (and its generalization, Cerf theory) to �nd 3-dimensional 
obordisms

with 
orners having only one topology 
hange. However, �nding a ne
essary and

suÆ
ient set of relations for these is beyond the s
ope of this paper.

8.2. n-tuple Biategories. Des
ribing a Verity double bi
ategory is a spe
ial 
ase

of des
ribing a weak form of higher dimensional 
ategories, or a weak n-
ategory.

This broader problem is dis
ussed in more detail by Tom Leinster [Lei℄, and by

Eugenia Cheng and Aaron Lauda [CL℄. In light of this more general problem, we


an suggest some dire
tions in whi
h to extend this 
on
ept further. One is to

generalize the 
on
ept of a Verity double bi
ategory to a n-tuple bi
ategory.

We have seen how to 
onstru
t 2Span(C) for a general 
ategory C with limits

(or CCosp

2

for a C with 
olimits), and how we take a restri
ted form of this


onstru
tion to yield a Verity double bi
ategory of 
obordisms. We have 
hosen

to stop the pro
ess of taking spans in a 
ategory of spans after two steps, but we


ould 
ontinue this 
onstru
tion. Taking spans in this new 
ategory gives 
ubes of

obje
ts with maps from 
orners to the middles of edges, from middles of edges to

middles of fa
es, and from middlse of fa
es to the middle of the 
ube. Similarly, for

any �nite n, we 
an iterate the pro
ess of taking spans to yield an n-dimensional


ube.

In parti
ular, we note that \Verity double bi
ategories" are restri
ted 
ases of bi-


ategories internal to Bi
at. There is a 
ategory of all su
h stru
tures, namely the

fun
tor 
ategory of all maps F : Th(Bi
at)! Bi
at, denoted [Th(Bi
at);Bi
at℄.

There will be an analogous 
on
ept of \triple bi
ategories", namely bi
ategories in-

ternal to [Th(Bi
at);Bi
at℄. In general, a \k-tuple bi
ategory" will be a bi
ategory

internal to the 
ategory of weak (k � 1)-tuple 
ategories.

We 
onje
ture here that for all k, a k-tuply iterated pro
ess of taking spans of

spans (or 
ospons) will yield examples of these stru
ture. If this is true, 
obordisms

with 
odimension k between obje
ts and the highest-dimensional 
obordism will

naturally form a weak k-tuple 
ategory. To do this, one would naturally des
ribe

the 
obordisms as hki-manifolds.
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A further dire
tion of generalization would be to substitute tri
ategories, tetra-


ategories, and so forth in pla
e of bi
ategories in the pre
eding 
onstru
tion, per-

haps making di�erent 
hoi
es ea
h stage. The question then arises what sort of

stru
tures it would be possible to de�ne by sele
tively de
ategorifying, and what

sorts of \�ller" 
onditions this would need.
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