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Abstrat. Interest in obordism ategories arises for various reasons, in ar-

eas from topology to theoretial physis. These ategories have manifolds as

objets, and as morphisms, have obordisms between them - that is, manifolds

of one dimension higher whose boundary deomposes into the soure and tar-

get. The priniple that the boundary of a boundary is the empty set means

that this formulation annot aount for obordisms between manifolds with

boundary, as required, for instane, to desribe evolution of open strings in

string theory. We desribe a ategory-theoreti framework in whih this an

be expressed, in the form of a Verity double biategory. This is similar to a

double ategory (a ategory objet in Cat), but with properties holding only

up to ertain 2-morphisms.. We sketh how this is a speial ase of a more

general \n-tuple biategory". Then we show how a broad general lass of ex-

amples arise from a onstrution involving spans (or ospans) in any hosen

ategory, and how this gives obordisms between obordisms when we start

with a ategory of suitable smooth spaes.

1. Introdution

The purpose of this paper is to desribe a double biategory of obordisms with

orners.

A obordism between manifolds S and S

0

is a manifold with boundary M suh

that �M is the disjoint union of S and S

0

, whih we think of as an arrowM : S ! S

0

.

One an de�ne omposition of obordisms, by gluing along omponents of the

boundary, leading to the de�nition of a ategory nCob of n-dimensional obordisms

between (n�1)-dimensional manifolds. It is natural to onsider the possibility that

S and S

0

themselves have boundary, and ask if one an similarly desribe obordisms

between them. In partiular, we are interested in the ase where S : X ! Y and

S

0

: X

0

! Y

0

are already themselves obordisms. Suh obordisms are always

manifolds with orners. Here we shall desribe a formalism for desribing the ways

suh obordisms an be glued together. Louis Crane has written a number of papers

on this issue, inluding one with David Yetter [CY℄ whih desribes a biategory of

suh obordisms. Here, we onstrut a double biategory, nCob

2

.

One motivation for doing this omes from the fat that interest in nCob has

been enouraged by Mihael Atiyah's axiomati desription of topologial quantum

�eld theories, or TQFTs ([Ati1, Ati2℄). A TQFT assigns a spae of states to eah

manifold, and a linear transformation between states to obordisms. Ruth Lawrene

[Law℄ desribed the notion of an extended TQFT. These are theories similar to

TQFT's, for whih the theory is de�ned not on obordisms, but on manifolds

with orners. Crane and Yetter [CY℄, desribe the algebrai struture of TQFT's

and extended TQFT's. Baez and Dolan [BaDo℄ summarize the onnetion between

TQFT's and higher ategory theory, in the form of the Extended TQFT Hypothesis,

1
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suggesting that all extended TQFT's an be viewed as representations of a ertain

kind of \free n-ategory".

The kind of n-ategory we are interested in here is a ommon generalization of

a double ategory and a biategory. Double ategories, introdued by Ehresmann

([Eh1, Eh2℄), may be seen as an \internal" ategory in Cat - that is, a struture

with a ategory of objets and a ategory of morphisms. Less abstratly, it has

objets, horizontal and vertial morphisms (edges in an underlying 2-graph), and

squares (ells in the underlying 2-graph):

(1)

x

�

//

f

��

~

~

~

~

{�

F

x

0

f

0

��

y

^

�

//

y

0

These an be omposed in geometrially obvious ways to give diagrams analogous

to those in ordinary ategory theory. Moskaliuk and Vlassov [MV℄ disuss the

appliation of double ategories to mathematial physis, partiularly TQFT's, and

dynamial systems with hanging boundary onditions - that is, with inputs and

outputs.

Double ategories are too strit to be really natural for our purpose, however.

In partiular, desribing obordisms as ategories or double ategories requires us

to take di�eomorphism lasses of obordisms, not obordisms themselves, as mor-

phisms. So we will onsider a weakening of this struture, in the sense that axioms

for a double ategory giving equations (suh as assoiativity) will be true only up

to a ertain 2-morphism. This is analogous to the way in whih a biategory is a

weakening of the idea of a ategory. These are like ategories with an extra level

of 2-morphism between morphisms, and suh that equations in the axioms for a

ategory are replaed by 2-isomorphisms, whih look like:

(2)

x

f

  

g

>>

y
�

��

Biategories, however, are not really what we want to desribe nCob

2

, either,

sine we want to desribe systems with hanging boundary onditions, and the most

natural way to do this is by allowing both initial and �nal states, and these hanging

onditions, as part of the boundary. On the other hand, we show in theorem 1 that

double biategories satisfying ertain onditions are equivalent to biategories - and

in fat nCob

2

is an example of this.

In �gure 1 we see a manifold with orners whih illustrates these points and

provides some motivating intuition. This an be seen a obordism from the pair of

annuli at the top to the two-puntured dis at the bottom. These in turn an be

thought of as obordisms - respetively - from one pair of irles to another, and

from one irle to two irles. The large obordism has other boundary omponents:

the outside boundary is itself a obordism from two irles to one irle; the inside

boundary (in dotted lines) is a obordism from one pair of irles to another pair.

We ould \ompose" this with another suh obordism with orners by gluing

along any of the four boundary omponents: top or bottom, inside or outside.
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Figure 1. A Cobordism With Corners

This involves attahing another suh obordism having a boundary omponent

di�eomorphi to any of these.

The struture we use is a Verity double biategory. There is some ambiguity here

sine the onept this appears to desribe is an internal biategory in Biat (the

ategory of all biategories). This is analogous to the de�nition of double ategory.

Indeed, it is what we will mean by a double biategory, and we disuss these in

setion 6. However, the term double biategory seems to have been originally intro-

dued by Domini Verity [Ver℄, and uses it to refer to a somewhat di�erent struture

- whih is, in fat, the one we want to use. We all these Verity double biategories.

In setion 3 we desribe some of the neessary mathematial bakground of biate-

gories and double ategories, and briey desribe standard examples of these from

homotopy theory, whih provide some topologial motivation for these ategorial

onepts.

In setion 4 we desribe double biategories in the sense of Verity (whih we all

Verity double biategories to distinguish them from internal biategories in Biat).

These go further than many e�orts to weaken the onept of a double ategory,

suh as the \weak double ategories" disussed by Maro Grandis and Robert Par�e

([GP1℄, [GP2℄), or the \pseudo-ategories" disussed by Martins-Ferreira [Mar℄.

Thomas Fiore in [Fio℄ desribes how these arise by \ategori�ation" of the theory

of ategories, and desribes examples motivated by onformal �eld theory. In these

examples, the omposition in double ategories are weakened in only one diretion.

That is, the assoiativity of omposition, and unit laws, apply only up to ertain

higher morphisms, alled assoiators and unitors - but only in the horizontal di-

retion (equivalently, only in the vertial diretion). In double biategories, this is

true in both diretions. In setion 5.3 we prove the main theorem of the paper,

that suh nCob

2

indeed forms a Verity double biategory. This uses a tehnial
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lemma involving double biategories. In setion 4.3 we prove that a Verity double

biategory gives a biategory, just as any double ategory orresponds to a strit

2-ategory.

To �nish setion 4, we desribe a general lass of examples of double biate-

gories, analogous to the result that Span(C) is a biategory. This was shown by

Jean B�enabou in [Ben℄, who introdued both the onept of a span, and of biat-

egories. The \double spans" we desribe here give a broad lass of examples, and

in partiular, we an use them to derive the fat that there is a double biategory

of obordisms with orners.

We desribe the bakground for suh obordisms in setion 5. Gerd Laures

[Laur℄ disusses the general theory of obordisms of manifolds with orners. In the

terminology used there, introdued by J�anih [Jan℄, what we primarily disuss in

this paper are h2i-manifolds: in partiular, the odimension of the manifold is 2.

That is, the manifold M (whose dimension is dim(M) = n) will have a boundary

�M , whih will in turn be omposed of faes whih are manifolds with boundary, of

dimension (n� 1). However, the boundaries of these faes will be losed manifolds:

they are manifolds of dimension (n � 2). This separates into faes. For us, the

faes deompose into omponents, whih are the soure and the target in both

horizontal and vertial diretions. The orners, faes of odimension 2, are the

soure and target of these. We all the Verity double biategory obtained this way

nCob

2

.

Having done this, we ontinue, in setion 7 by briey examining a low-dimensional

example, studied in a \deategori�ed" setting, without using Verity double biate-

gories in [LP℄. This is the ase of \open-losed strings", on whih Lauda and Pfei�er

desribe a ertain kind of TQFT. We see how their ategory of \open-losed strings"

is related to the Verity double biategory 2Cob

2

.

In setion 8, we suggest some further diretions to expand on this work. We on-

sider the program of desribing nCob

2

in terms of generators and relations. Also,

we disuss the problem of extending the idea of double biategories to obordisms

of higher odimension than 2. We suggest a way in whih this ould be approahed.

Finally, we should note here that there are at least two audienes for this paper.

Cobordisms are of interest to topologists and, through TQFT's to those interested

in mathematial physis. On the other hand, the notion of a double biategory

may appeal to those interested in ategory theory, and n-ategories in partiular.

The aim here is to provide something of interest to eah. Readers mainly interested

in ategory theory, may �nd setion 6 of most interest, while topologially-inlined

readers may onsider it merely a repository of two tehnial lemmas and skip it.

Likewise, most disussion of obordisms with orners is in setion 5, and in par-

tiular setion 5.1 desribes a \ollaring" ondition essential to make sure that

omposition of obordisms gives a smooth obordism. This is important from a

topologial point of view and has an important impliation for what we take our

obordisms to be. Categorially inlined readers may �nd this less interesting sine

obordisms are, from that point of view, only a speial ase of a very general lass

of examples of Verity double biategories. Readers should feel free to skip to the

setions of most interest, whih should be relatively self-ontained.
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2. The Category nCob

In this setion, we review the struture of the symmetri monoidal ategory

2Cob whih we generalize in this paper. Cobordism theory goes bak to the work of

Ren�e Thom [Tho℄, and is losely related to homotopy theory. A good introdutory

disussion suitable for our needs is found, e.g. in Hirsh [Hir℄. There is substantial

researh on many questions in obordism theory, suh as referenes. Two manifolds

S

1

; S

2

are obordant if there is a ompat manifold with boundary, M , suh that

�M is isomorphi to the disjoint union of S

1

and S

2

. This M is alled a obordism

between S

1

and S

2

. We note that there is some similarity between this onept

and that of homotopy of paths, exept that suh homotopies are understood as

embedded in an ambient spae. We will return to this in setion 3.5. Our aim

here is to desribe a generalization of ategories of obordisms. To begin with, we

reall some of the struture of nCob, and partiularly 2Cob, to reall why this is

of interest.

2Cob is the ategory whose objets are one-dimensional ompat oriented mani-

folds, and whose morphisms are di�eomorphism lasses of two-dimensional ompat

oriented obordisms between suh objets. That is, the objets are olletions of

irles, and the morphisms are (di�eomorphism lasses of) manifolds with bound-

ary, whose boundaries are broken into two parts, whih we onsider their soure and

target. We think of the obordism as \joining" two manifolds, rather as a relation

joins two sets, in the ategory of sets and relations. More generally, nCob is the

ategory whose objets are (ompat, oriented) (n� 1)-dimensional manifolds, and

whose morphisms are di�eomorphism lasses of ompat oriented n-dimensional

obordisms.

2.1. Presentation. It was shown by Abrams [Abr℄ that 2Cob an be seen as the

free symmetri monoidal ategory on a Frobenius objet. (Another good exposi-

tion of this was developed by Joahim Kok [Ko℄.) This amounts to saying that

2Cob is generated from �ve generators, alled the unit, ounit, multipliation,

omultipliation. They inlude obordisms: taking the empty set to the irle

(the unit); taking two irles to one irle (the multipliation); adjoints of eah of

these (ounit and omultipliation repsetively). The \Frobenius objet" appears

here as the irle, equipped with these morphisms, whih are illustrated in �gure 2.

Figure 2. Generators of 2Cob

The ategory 2Cob also inludes identity obordism, taking the irle to itself

by S

1

� I ; and the swith obordism, exhanging the order of two irles by two

ylinders (this gives the symmetry for the monoidal operation). These are required

to exist by the assumption that 2Cob is a free symmetri monoidal ategory. They

are illustrated in �gure 3.

Two proofs an be given for the fat than 2Cob is generated by these obordisms,

and eah relies on some speial onditions satis�ed by 2D obordisms. The �rst
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Figure 3. Morphisms Required for 2Cob to be a Symmetri

Monoidal Category

is that 2-dimensional manifolds with boundary an be ompletely lassi�ed up to

di�eomorphism lass by genus and number of puntures. The seond is that we an

use the results of Morse theory to deompose any suh surfae with a smooth Morse

funtion into [0; 1℄ into a omposite (in the sense of omposition of morphisms in

2Cob) of piees. In eah piee, there is just one \topology hange" (a value in

[0; 1℄ where the preimage hanges topology). We will return to this point when we

disuss the question of how to present nCob

2

in terms of generators.

So far, we have desribed the generators for the ategory 2Cob, but not yet how

the omposition operation for morphisms works. The main idea is that we ompose

obordisms by identifying their boundaries - however, sine the morphisms in 2Cob

are di�eomorphism lasses of manifolds with boundary, some extra onsiderations

are needed to ensure that the omposite is equipped with a di�erentiable struture.

In partiular, the ollaring theorem means that any manifold with boundary,

M an be equipped with a \ollar": an injetion � : �M � [0; 1℄ ! M suh that

�(x; 0) = x;8x 2 �M . The idea is that, while we an ompose topologial obor-

disms along their boundaries, we should ompose smooth obordisms M

1

and M

2

along ollars. This ensures that every point - inluding points on the boundary

of M

i

- will have a neighborhood with a smooth oordinate hart. Setion 5.1

desribes this in detail for a more general setting.

Moreover, as a monoidal ategory, 2Cob must have a tensor produt operation.

For objets, this is just the disjoint union: given objets m;n 2 2Cob, onsisting

of olletions of m and n irles respetively, the objet m
n is the disjoint union

of m and n - a olletion of m+ n irles. The tensor produt of two obordisms

C

1

: m

1

! n

1

and C

2

: m

2

! n

2

is likewise the disjoint union of the two

obordisms, giving C

1


C

2

:m

1


m

2

! n

1


 n

2

.

2.2. Appliations. The ategory 2Cob is partiularly interesting in the study

of topologial quantum �eld theories (TQFT's), as formalized by Mihael Atiyah

([Ati1, Ati2℄). Eah TQFT is a funtor F : 2Cob ! Vet. The presentation of

2Cob in terms of its generators means that this immediately de�nes an algebrai

struture with a unit, ounit, multipliation, omultipliation, and identity (a bial-

gebra). The fat that 2Cob is a symmetri monoidal ategory means that this

struture satis�es the axioms of a Frobenius algebra.

One may wish to desribe an \extended topologial quantum �eld theory" in

the same format. These are topologial �eld theories whih are de�ned not just on

manifolds with boundary, but also on manifolds with orners. This idea is desribed

by Ruth Lawrene in [Law℄. In partiular, what we are interested in here is that,

instead of using a ategory of obordisms between manifolds, we would want to

use some struture of obordisms between obordisms between manifolds, whih we
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tentatively all nCob

2

. However, to do this, we must use a struture with more

elaborate than a mere ategory.

So next we desribe suh a struture, a Verity double biategory, and show how

the putative nCob

2

is an example, and indeed a speial ase of a broad lass of

examples.

3. Biategories and Double Categories

We want to give a desription of a Verity double biategory. Weakening a onept

X in ategory theory generally involves reating a new onept in whih equations

in the original onept are replaed by isomorphisms. Thus, we say that the old

equations hold only \up to" isomorphism in the weak version of X , and say that

when they hold with equality, we have a \strit X". Thus, before desribing our

newly weakened onept, it makes sense to reall how this proess works, and

examine the strit form of the onept we want to weaken. So we begin by reviewing

biategories and double ategories.

3.1. 2-Categories. A ategory E is enrihed over a ategory C (whih must

have produts) when for x; y 2 E we have hom(x; y) 2 C. A speial ase of this

ours in \losed" ategories, whih are enrihed over themselves - examples inlude

Set (sine there is a set of maps between any two sets) and Vet (sine the linear

operators between two vetor spaes form a vetor spae).

A 2-ategory is a ategory enrihed overCat. That is, if C

2

is a 2-ategory, and

x; y 2 C

2

), then hom(x; y) 2 Cat. Thus, there are sets of objets and morphisms in

hom(x; y) itself, with the usual ategory axioms. We desribe a 2-ategory as having

objets, morphisms between objets, and 2-morphisms between morphisms.

The morphisms of C

2

are the objets of the hom-ategories, and the 2-morphisms

of C

2

are the morphisms of the hom-ategories. We depit these as in diagram (2).

These have a omposition operation between morphisms, and also a \horizontal"

omposition, whih we denote Æ, and a \vertial" omposition, denoted �, between

2-morphisms.

Furthermore, for all x; y; z 2 C

2

, the omposition operation

(3) Æ : hom(x; y)� hom(y; z)! hom(x; z)

must be a funtor between hom-ategories. This requirement means that the in-

terhange law holds:

(4) (� Æ �) � (�

0

Æ �

0

) = (� � �

0

) Æ (� � �

0

)

Now, in a 2-ategory, the assoiative law holds stritly: that is, for morphisms

f 2 hom(w; x), g 2 hom(x; y), and h 2 hom(y; z), we have the two possible triple-

ompositions in hom(w; z) the same, namely f Æ (g Æ h) = (f Æ g) Æ h. This is

one of the axioms for a ategory - that is, a ategory enrihed over Set. Sine a

2-ategory is enrihed over Cat, however, a weaker version of this rule is possible,

sine hom(w; z) is no longer a set in whih elements an only be equal or unequal:

it is a ategory, where it is possible to speak of isomorphi objets. This fat leads

to the notion of biategories.

3.2. Biategories. One we have the onept of a 2-ategory, we an weaken this

onept, giving the idea of a biategory. The de�nition is similar to that for a 2-

ategory, but we only insist that the usual equations should be natural isomorphisms
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(satisfying some equations). That is, the following diagrams should ommute up to

natural isomorphisms:

(5) hom(w; x) � hom(x; y)� hom(y; z)

Æ�1

��

1�Æ

//

hom(w; x) � hom(x; z)

Æ

��

hom(w; y)� hom(y; z)

Æ

//

hom(w; z)

and

(6) hom(x; y)� 1

�

1

))

R

R

R

R

R

R

R

R

R

R

R

R

R

id� !

��

hom(x; y)� hom(x; x)

Æ

//

hom(x; y)

and

(7) 1� hom(x; y)

�

2

))

R

R

R

R

R

R

R

R

R

R

R

R

R

!� id

��

hom(y; y)� hom(x; y)

Æ

//

hom(x; y)

That is: given (f; g; h) 2 hom(w; x) � hom(x; y) � hom(y; z), there should be

an isomorphism a

f;g;h

2 hom(w; z) with a

f;g;h

: (f Æ g) Æ h ! f Æ (g Æ h); and

isomorphisms r

f

: f Æ 1

x

, l

f

: 1

y

Æ f . The equations these satisfy are oherene

laws. MaLane's Coherene Theorem shows that all suh equations follow from

two generating equations: the pentagon identity, and the unitor law:

In a ategory, the assoiativity property stated that two omposition operations

an be performed in either order and the results should be equal - equality is the only

sensible relation between a pair of morphisms in a ategory. There is an analogous

statement for the assoiator 2-morphism: two di�erent ways of omposing it should

yield equal results (sine equality is the only sensible relation between a pair of 2-

morphisms in a biategory). This property is the pentagon identity:

(8)

(f Æ g) Æ (h Æ j)

f Æ (g Æ (h Æ j))

f Æ ((g Æ h) Æ j)(f Æ (g Æ h)) Æ j

((f Æ g) Æ h) Æ j

a

f;g;hÆj

((

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

1

f

Æa

g;h;j

GG

�

�

�

�

�

�

�

�

�

�

�

�

a

f;gÆh;j

//

a

f;g;h

Æ1

j

��

/

/

/

/

/

/

/

/

/

/

/

/

a

fÆg;h;j

66

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Similarly, the unit laws satisfy the property that the following ommutes:

(9)
(g Æ 1

y

) Æ f

a

g;1

y

;f

//

r

g

�1

f

��

g Æ (1 Æ f)

1

g

�l

f

wwp

p

p

p

p

p

p

p

p

p

p

g Æ f
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This last hange is the sort of weakening we want to apply to the onept of a

double ategory. Following the same pattern, we will �rst desribe (in setion 3.4)

the strit notion before desribing how to weaken it in setion 4. First, however,

we will desribe a standard, quite general, example of biategory, whih we will

generalize to give examples of double biategories in setion 4.4.

3.3. Biategories of Spans. Jean B�enabou [Ben℄ introdued biategories in a

1967 paper, and one broad lass of examples introdued there omes from the

notion of a span.

De�nition 1. Given any ategory C, a span (S; �

1

; �

2

) between objets X

1

; X

2

2 C

is a diagram in C of the form

(10)
P

1

S

�

1

oo

�

2

//

P

2

Given two spans (S; s; t) and (S

0

; s

0

; t

0

) between X

1

and X

2

between a morphism

of spans is a morphism g : S ! S

0

making the following diagram ommute:

(11)

S

�

1

~~|

|

|

|

|

|

|

|

�

2

  

B

B

B

B

B

B

B

B

g

��

X

1

S

0

�

0

1

oo

�

0

2

//

X

2

De�nition 2. Composition of spans S from X

1

to X

2

and S

0

from X

2

to X

3

is

given by a pullbak: that is, an objet R with maps f

1

and f

2

making the following

diagram ommute:

(12)

R

f

1

~~}

}

}

}

}

}

}

}

f

2

!!

B

B

B

B

B

B

B

B

S

�

1

~~
~

~

~

~

~

~

~

~

�

2

  

�

�

�

�

�

�

�

�

S

0

�

0

2

~~
}

}

}

}

}

}

}

}

�

0

3

  

B

B

B

B

B

B

B

B

X

1

X

2

X

3

whih is terminal among all suh objets. That is, given any other Q with maps g

1

and g

2

whih make the analogous diagram ommute, these maps fator through a

unique map Q ! R. R beomes a span from X

1

to X

3

with the maps �

1

Æ f

1

and

�

2

Æ f

2

.

The span onstrution has a dual onept:

De�nition 3. A ospan in C is a span in C

op

, morphisms of ospans are mor-

phisms of spans in C

op

, and omposition of ospans is given by pullbak in C

op

.

That is, by a pushout in C.

One fat about (o)spans whih is important for our purposes is that any ategory

C with limits (olimits, respetively) gives rise to a biategory of spans (or ospans).

This relies in part on the fat that the pullbak is a universal onstrution (universal

properties of Span(C) are disussed by Dawson, Par�e and Pronk [DPP℄).

Remark 1. [Ben℄, ex. 2.6 Given any ategory C with all limits, there is a biat-

egory Span(C), whose objets are the objets of C, whose hom-sets of morphisms
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Span(C)(X

1

; X

2

) onsist of all spans (ospans) between X

1

and X

2

, with om-

position as de�ned above, and whose bigons are morphisms of spans (ospans).

Span(C) (or Cosp(C)) as de�ned above forms a biategory.

This is a standard result, �rst shown by Jean Benabou in [Ben℄, as one of the

�rst examples of a biategory. We briey desribe the proof:

The identity for X is X

id

 X

id

!X , whih is easy to hek.

The assoiator arises from the fat that the pullbak is a universal onstrution.

Given morphisms in Span(C) f : X ! Y , g : Y ! Z, h : Z ! W , the omposites

((f Æ g) Æ h) and (f Æ (g Æ h)) are pullbaks onsisting of objets O

1

and O

2

with

maps into X and W . The universal property of pullbaks gives an isomorphism

between O

1

and O

2

. These isomorphisms satisfy the pentagon identity sine they

are unique (in partiular, both sides of the pentagon give the same isomorphism).

It is easy to hek that hom(X

1

; X

2

) is a ategory, sine it inherits all the usual

properties from C.

3.4. Double Categories. A (strit) double ategory an be thought of as an in-

ternal ategory in Cat. That is, it is a model of the theory of ategories, denoted

Th(Cat), in Cat. This Th(Cat) onsists of a ategory with two objets, Obj and

Mor with morphisms of the form:

(13)

Mor

s

++

t

33

Obj

subjet to some axioms. In partiular, the omposition operation is a partially

de�ned operation on pairs of morphisms. In partiular, there is a olletion of

omposable pairs of morphisms, namely the �bre produt Pairs = Mor�

Obj

Mor,

whih is a pullbak of the two arrows from Mor to Obj. That is, Pairs is an

equalizer in the following diagram:

(14)

Mor

t

""

F

F

F

F

F

F

F

F

Pairs

i

//

Mor

2

�

1

;;

w

w

w

w

w

w

w

w

�

2

##

G

G

G

G

G

G

G

G

Obj

Mor

s

<<

y

y

y

y

y

y

y

y

(Note that we assume the existene of pullbaks, here - in fat, Th(Cat) is a �nite

limit theory.) The omposition map Æ : Pairs! Mor satis�es the usual properties

for omposition.

There is also an identity for eah objet: there is a map Obj

1

!Mor, suh that

for any morphism f 2 Mor, we have 1

s(f)

and 1

t(f)

are omposable with f , and the

omposite is f itself.

A model of Th(Cat) in Cat is a (limit-preserving) funtor

F : Th(Cat)! Cat

This gives a struture having a ategoryOb of objets and a ategoryMor of mor-

phisms, with two funtors s (\soure") and t (\target") satisfying the usual ategory

axioms. In partiular, we an desribe omposition as a pullbak onstrution in
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this ategory, whih makes sense sine the funtor preserves �nite limits (inluding

pullbaks):

(15) F (Mor)



1

yys

s

s

s

s

s

s

s

s

s



2

%%

K

K

K

K

K

K

K

K

K

K

�� ��

F (Mor)

s

yys

s

s

s

s

s

s

s

s

t

%%

K

K

K

K

K

K

K

K

K

K

F (Mor)

s

yys

s

s

s

s

s

s

s

s

s

t

%%

K

K

K

K

K

K

K

K

K

F (Obj) F (Obj) F (Obj)

A ategory is a model of the theory Th(Cat) in Set, and we understand this to

mean that when two morphisms f and g have the target of f the same as the soure

of g, there is a omposite morphism from the soure of f to the target of g. In the

ase of a double ategory, we have a model of Th(Cat) in Cat, so that F (Obj) and

F (Mor) are ategories and F (s) and F (t) are funtors, we have the same ondition

for both objets and morphisms - subjet to the ompatibility onditions for these

two maps whih any funtor must satisfy.

We thus have sets of objets and morphisms in Ob, whih of ourse must satisfy

the usual axioms. The same is true for Mor. The ategory axioms for the double

ategory are imposed on top of these properties, with ompatibility onditions

between the two. The result is that we an think of both the objets in Mor and

the morphisms in Ob as ating like morphisms between the objets in Ob, in a way

ompatible with the soure and target maps. A double ategory an be thought of

as inluding within it the morphisms of two potentially di�erent ategories on the

same olletion of objets. These are ustomarily alled the horizontal and vertial

morphisms, intuitively apturing the piture:

(16)

x

�

//

f

��

x

0

f

0

��

y

^

�

//

y

0

Here, the objets in the diagram an be thought of as objets in F (Obj), the

vertial morphisms f and f

0

an be thought of as morphisms in F (Obj) and the

horizontal morphisms � and

^

� as objets in F (Mor). In fat, there is enough

symmetry in the axioms for an internal ategory in Cat that we an adopt either

onvention. However, we also have morphisms in Mor. We represent these as

two-ells, or squares , like the square S represented in this diagram:

(17)

x

�

//

f

��

~

~

~

~

{�

S

x

0

f

0

��

y

^

�

//

y

0

The fat that the omposition map Æ is a funtor means that horizontal and

vertial omposition of squares ommutes.
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3.5. Topologial Examples. We an illustrate biategories and double ategories

in an elementary topologial setting, namely from homotopy theory. This was the

soure of muh of the original motivation for higher-dimensional ategory theory.

Moreover, as we have already remarked in 2, there are lose onnetions between

obordism and homotopy. These examples will turn out to suggest how to desribe

Verity double biategories of obordisms.

Our �rst example is perhaps the original motivating example of a biategory.

Example 1. Given a spae S in the ategory Top of topologial spaes, we might

wish to de�ne a ategory Path(S) whose objets are points of X , and whose mor-

phisms are paths in S. That is, a morphism in Path(S) from a to b is a map

 : [0; 1℄ ! X suh that (0) = a and (1) = b. The obvious omposition rule for



1

2 hom(a; b) and 

2

2 hom(b; ) is that

(18) 

1

; 

2

(x) =

(



1

(2x) if x 2 [0;

1

2

)



2

(2x� 1) if x 2 [

1

2

; 1℄

However, this omposition rule is not assoiative, and resolving this involves, either

impliitly or expliitly, use of a biategory. We get this biategory Path

2

(S), by

�rst de�ning, for a; b 2 S, a ategory hom(a; b) with:

� objets: paths from a to b

� morphisms: homotopies between paths, namely a homotopy from 

1

to



2

is H : [0; 1℄ � [0; 1℄ ! S suh that H(x; 0) = 

1

(x), H(x; 1) = (x),

H(0; y) = a, H(1; y) = b for all (x; y) 2 [0; 1℄� [0; 1℄.

Then we have a unit law for the identity morphism (the onstant path) at eah

point, and an assoiator for omposition. Both of these are homotopies whih

reparametrize omposite paths.

Finally, we note that, if we de�ne horizontal and vertial omposition of homo-

topies in the same way as above (in eah omponent), then this omposition is

again not assoiative. So to get around this, we say that the biategory we want

has its hom-ategories hom(a; b), where the morphisms are isomorphism lasses of

homotopies. The isomorphisms in question will not be homotopies themselves (to

avoid an in�nite regress), but rather smooth maps whih �x the boundary of the

homotopy square.

We all the resulting biategory Path

2

(S).

A similar onstrution is possible for a double ategory.

Example 2. A double ategory is a model of Th(Cat) in Cat, and we have seen

that it is analogous to a biategory. So we would like to onstrut one analogous

to the biategory in Example 1, we onstrut a model having the following:

� A ategory Obj of objets: we take this to be Path(S), the path ategory

of S.

� A ategory Mor of morphisms: we take this to have the following data:

{ objets: paths  : [m;n℄ in S

{ morphisms: homotopies H : [p; q℄ � [m;n℄ between paths (these have

soure and target maps whih are just s : H(�;�) ! H(�;m) and

t : H(�;�)! H(�; n).

These ategories have soure and target maps s and t whih are funtors

from Mor to Obj. The objet map for s is just evaluation at 0, and for t it is
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evaluation at 1. The morphism maps for these funtors are s : H(�;�)!

H(p;�) and t : H(�;�)! H(q;�).

We all the result the double ategory of homotopies, H(S).

We observe here that the double ategory H(S) is similar to the biategory

Path

2

(S) in one sense. Both give a piture in whih objets are points in a topo-

logial spae, morphisms are 1-dimensional objets (paths), and higher morphisms

involve 2-dimensional objets (homotopies). There are some obvious di�erenes,

however. The most obvious is that Path

2

(S) involves only homotopies with �xed

endpoints: its 2D objets are bigons , whereas in H(S) the 2D objets are \squares"

(or images of retangles under smooth maps).

A more subtle di�erene, however, is that, in order to make omposition stritly

assoiative inH(S), it was neessary to hange how we parametrize the homotopies.

There are no assoiators here, and so we make sure omposition is strit by not

resaling our soure objet (the produt of two intervals) as we did in Path

2

(S).

This is rather unsatisfatory, and in fat improving it leads to a general de�nition

of a double biategory , whih has a large lass of examples - namely, double spans,

inluding as a speial, restrited ase, the double biategory of obordisms with

orners we want.

4. Double Biategories

4.1. Weak Double Categories, Double Biategories, and Internal Biate-

gories. We wish to desribe a struture whih is suÆient to apture the possible

ompositions of obordisms with orners just as 2Cob does for obordisms. These

not only have omposition along the manifolds with boundary whih form their

soure and target, but also along the boundaries of those manifolds (and along the

boundaries of the obordisms, whih join these). However, to allow the boundaries

to vary, we do not want to onsider them as di�eomorphism lasses of obordisms,

but simply as obordisms. However, omposition is then not stritly assoiative,

but only up to di�eomorphism.

Thus, we want something like a double ategory, but we must weaken the axioms

for a double ategory, just as biategories were de�ned by weakening those for a

ategory. The onept of a \weak double ategory" has been de�ned (for instane,

see [GP1℄ and [Fio℄, where these are seen as \Pseudo Double Categories"), but the

weakening only ours in only one diretion - either horizontal or vertial. In the

other diretion, the ategory axioms hold stritly. In a sense, this is beause the

weakening uses the squares of the double ategory as 2-morphisms - in partiular,

squares with two sides equal to the identity. Trying to do this in both diretions

leads to diÆultly.

In partiular, if we have assoiators for horizontal morphisms given by squares

of the form:

(19)

a

f ;g

//

��

Æ

Æ

Æ

Æ

��

a

f;g;h



h

//

d

��

a

f

//

b

g;h

//

d

then unless omposition of vertial morphisms is strit, then to make a equation

(for instane, the pentagon equation) involving this square, we would need to use
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unit laws (or assoiators) in the vertial diretion to perform this omposition. This

would again be a square with identities on two sides, and the problem arises again.

In fat, there is no onsistent way to do this. Instead, we need to introdue a new

kind of 2-morphism separate from the squares, as we shall see in setion 4.2. The

result is what Domini Verity has termed a double biategory [Ver℄.

The problem of weakening the onept of a double ategory so that the unit and

assoiativity properties hold up to higher-dimensional morphisms an be ontrasted

with a di�erent approah. One might instead try to ombine the notions of biat-

egory and double ategory in a di�erent way. This is by \doubling" the notion of

biategory, in the same way that double ategories did with the notion of ategory.

Just as a double ategory is an internal ategory in Cat, the result would be an

internal biategory in Biat.

We would like to all this a double biategory : however, this term has already

been used by Domini Verity to desribe the struture we will mainly be interested

in. Sine the former onept is also important for us in ertain lemmas, and is most

naturally alled a double biategory, we will refer to the latter as a Verity double

biategory. For more disussion of the relation between these, see setion 6.

4.2. De�nition of a Double Biategory. The following de�nition of a Verity

double biategory is due to Domini Verity ([Ver℄), and is readily seen as a natural

weakening of the de�nition of a double ategory. Just as the onept of biate-

gory weakens that of 2-ategory by weakening the assoiative and unit laws, Verity

double biategories will do the same for double ategories.

De�nition 4. A Verity double biategory C is a struture onsisting of the

following data:

� a lass of objets Obj,

� horizontal and vertial biategories Hor and Ver having Obj as their

objets

� for every square of horizontal and vertial morphisms of the form

(20)

a

h

//

v

��

b

v

0

��



h

0

//

d

a lass of squares Squ, with maps s

h

; t

h

: Squ ! Mor(Hor) and s

v

; t

v

:

Squ! Mor(Ver), satisfying an equation for eah orner, namely:

s(s

h

) = s(s

v

)(21)

t(s

h

) = s(t

v

)

s(t

h

) = t(s

v

)

t(t

h

) = t(t

v

)
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The squares should have horizontal and vertial omposition operations, de�ning

the vertial omposite F 


V

G

(22)

x

//

��

~

~

~

~

{�

F

x

0

��

y

//

��

~

~

~

~

{�

G

y

0

��

z

//

z

0

=

x

//

��

�

�

�

�

{�

F


V

G

x

0

��

z

//

z

0

and horizontal omposite F 


H

G:

(23)

x

//

��

�

�

�

�

{�

F

y

��

//

�

�

�

�

{�

G

z

��

x

0
//

y

0

//

z

0

=

x

//

��

�

�

�

�

|�

F


H

G

z

��

x

0
//

z

0

These have the usual relation to soure and target maps, satisfy the interhange law

(24) (F 


V

F

0

)


H

(G


V

G

0

) = (F 


H

G)


V

(F

0




H

G

0

)

and have a left and right ation by the horizontal and vertial 2-morphisms on Squ,

giving F ?

H

�,

(25)

x

//

��

�

�

�

�

{�

F

y

��

vv

x

0
//

y

0

�

ks

=

x

//

��

�

�

�

�

{�

F?

V

�

y

��

x

0
//

y

0

(and similarly on the left) and F ?

V

�,

(26)

x

//

��

��

�

�

�

�

{�

F

y

��

x

0
//

y

0

�

��

=

x

//

��

�

�

�

�

{�

�?

H

F

y

��

x

0
//

y

0

The ations are ompatible with omposition:

(27) (F 


H

G) ?

V

� = F 


H

(G ?

V

�)

(and analogously for vertial omposition). They also satisfy additional ompatibil-

ity onditions: the left and right ations of both vertial and horizontal 2-morphisms

satisfy the \assoiativity" property

(28) � ? (S ? �) = (� ? S) ? �



16 JEFFREY MORTON

for both ?

H

or ?

V

in either position. Moreover, horizontal and vertial ations are

independent:

(29) � ?

H

(� ?

V

S) = � ?

V

(� ?

H

S)

and similarly for the right ation.

We note that, although this de�nition is fairly elaborate, it is simpler than would

be a similarly elementary desription of a double biategory. Indeed, in setion 5.3

we that a Verity double biategory is a speial ase of a double biategory, satisfying

some extra properties.

In partiular, where there are ombatibility onditions involving equations in this

de�nition, suh a struture would have only isomorphisms, themselves satisfying

additional oherene laws. In partiular, in double biategories, the ation of 2-

morphisms on squares is desribed by strit equations, rather than being given by

a de�nite isomorphism.

Similarly, it is possible (see [Ver℄ se. 1.4) to de�ne ategories Cyl

H

and Cyl

V

of ylinders whose objets are squares, and maps are pairs of vertial (respetively,

horizontal) 2-morphisms joining the vertial (resp. horizontal) soure and targets

of pairs of squares whih share the other two sides. These are plain ategories, with

strit assoiativity and unit laws. These onditions would be weakened in a double

biategory (in whih maps would inlude not just pairs of 2-morphisms, but also

a 3-dimensional interior of the ylinder - a morphism in 2Mor, or 2-morphism in

Mor, satisfying properties only up to a 4-dimensional 2-morphism in 2Mor).

However, the de�nition given above, despite being a more speial ase, having

no (nontrivial) morphisms of more than 2 dimensions, ontains as muh struture

as we need to desribe our intended examples.

4.3. An Equivalene Theorem. There are numerous onnetions between dou-

ble ategories and biategories (or their strit form, 2-ategories). One is Ehres-

mann's double ategory of quintets, relating double ategories to 2-ategories: a

double ategory by taking the squares to be 2-morphisms between omposite pairs

of morphisms, suh as � : g

0

Æ f ! f

0

Æ g.

Furthermore, it is well known that double ategories an be made equivalent to

2-ategories in three di�erent ways. Two obvious ases are when there are only

identity horizontal and vertial morphisms, respetively, so that squares simply

ollapse into bigons.Notie that it is also true that a double biategory in whih

Hor is trivial (equivalently, if Ver is trivial) is again a biategory. The squares

beome 2-morphisms in the obvious way, the ation of 2-morphisms on squares then

is just omposition, and the omposition rules for squares and bigons are the same.

The result is learly a biategory.

The other, less obvious, ase, is when the horizontal and vertial morphisms are

identi�ed - that is, when the horizontal and vertial ategories on the objets are

the same. Then we again an interpret squares as bigons by omposing the top and

right edges, and the left and bottom edges. Introduing identity bigons ompletes

the struture. These new bigons have a natural omposition inherited from that

for squares. It turns out that this yields a struture satisfying the de�nition of a

2-ategory. Here, our goal will be to show an analogous result, that a Verity double

biategory similarly gives rise to a biategory when the horizontal and vertial

biategories are equal. We expet that the onverse holds as well - but we show

one diretion only.
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Our ondition that Hor = Ver holds in our general example of double spans:

both horizontal and vertial biategories in any 2Span(C)

0

are just Span(C). In

partiular, this result will also apply to our example of obordisms.

Theorem 1. Any Verity double biategory (Obj;Hor;Ver;Squ;


H

;


V

; ?

H

; ?

V

)

for whih Hor = Ver produes a biategory by taking squares to be 2-ells.

Proof. We begin by de�ning the data of this biategory, whih we allB. Its objets

and morphisms are the same as those of Ver (equivalently, Hor). We desribe the

2-morphisms by observing thatBmust ontain all those inVer (equivalently,Hor),

but also some others, whih orrespond to the squares in Squ.

In partiular, given a square

(30)

a

f

//

g

��

~

~

~

~

{�

S

b

g

0

��



f

0

//

d

there should be a 2-morphism

(31)

a

g

0

Æf

%%

f

0

Æg

99

d

S

��

The omposition of squares orresponds to either horizontal or vertial ompo-

sition of 2-morphisms in B, and the equivalene of these is given in terms of the

interhange law in a biategory:

Given a omposite of squares,

(32)

x

f

//

�

x

��

�

�

�

�

{�

F

y

�

y

��

g

//

�

�

�

�

{�

G

z

�

z

��

x

0

f

0

//

y

0

g

0

//

z

0

there will be a orresponding diagram in B:

(33)

x

f

//

�

x

Æf

0

��

y

�

y

//

�

z

Æg

��

y

0

g

0

//

z

0

F

��

G

��

Using horizontal omposition with identity 2-morphisms, we an write this as a

vertial omposition:

(34)

x

�

z

ÆgÆf

!!

g

0

Æ�

y

Æf

//

g

0

Æf

0

Æ�

x

==

z

0

GÆ1

f

��

1

g

0

ÆF

��
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So the square F 


H

G orresponds to (1 ÆG) � (F Æ 1) for appropriate identities

1. Similarly, the vertial omposite of F

0




V

G

0

must be the same as (1 ÆF ) � (G Æ

1). Thus, every omposite of squares, whih an all be built from horizontal and

vertial omposition, gives a orresponding omposite of 2-morphisms in B, whih

are generated by those orrepsonding to squares in Squ, subjet to the relations

imposed by the omposition rules in a biategory.

To show the Verity double biategory gives a biategory, it now suÆes to show

that all suh 2-morphisms not already in Ver arise as squares (that is, the stru-

ture is losed under omposition). So suppose we have any omposable pair of

2-morphisms whih arise from squares. If the squares have an edge in ommon,

then we have the situation depited above (or possibly the equivalent in the verti-

al diretion). In this ase, the omposite 2-morphism orresponds exatly to the

omposite of squares, and the axioms for omposition of squares ensure that all

2-morphisms generated this way are already in our biategory.

If there is no edge in ommon, the 2-morphisms in B must be made omposable

by omposition with identities. In this ase, all the identities an be derived from

2-morphisms in Ver, or from identity squares in Squ (inside ommuting diagrams).

Clearly, any identity 2-morphism an be fatored this way. Then, again, the om-

posite 2-morphisms in B will orrespond to the omposite of all suh squares and

2-morphisms in Squ and Ver. �

4.4. Double Spans. Now we onstrut a lass of examples. These examples are

analogous to the example of biategories of spans, disussed in setion 3.3. These

span-ish examples of Verity double biategories are losely related to a topologial

example similar in avour to the topologial examples of biategories and double

ategories in setion 3.5.

We remarked in setion 3.4 that a double ategory is a ategory internal to Cat.

In 4 we observed that Verity double biategories an similarly be understood in

terms of double biategories (with suitable restrition to isomorphism lasses at

the top-dimensional level). The onstrution we will make here uses this idea in

the partiular ase where all the biategories involved are realized as Span(C) for

some C. These examples are also analogous to the \profuntor-based examples"

of pseudo-double ategories desribed by Grandis and Par�e [GP2℄. The important

example for us here is 2Span(C)

0

(we will see the reason for this notation shortly).

In Remark 1 we desribed B�enabou's demonstration that Obj = Span(C) is a

biategory. There is an analogous fat about double spans, whih an be desribed

in terms of double biategories. These are desribed expliitly in setion 6. We

begin by desribing 2Span(C). The Verity double biategory desribed above is

derived from this, as we shall show shortly.

De�nition 5. 2Span(C) is a double biategoryof double spans in C, onsisting

of the following:

� the biategory of objets is Obj = Span(C)
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� the biategory of morphisms Mor has spans in C as objets, as morphisms

ommuting diagrams of the form:

(35)

X S

�

1

oo

�

2

//

Y

T

X

p

1

OO

p

2

��

M

P

1

OO

P

2

��

�

1

oo

�

2

//

T

Y

p

1

OO

p

2

��

X

0

S

0

�

1

oo

�

2

//

Y

0

� as 2-morphisms ommuting diagrams of the form:

(36)

X S

�

1

oo

�

2

//

Y

T

0

X

p

0

1

aaC

C

C

C

C

C

C

C

p

0

2

		�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

M

0

P

0

1

``B

B

B

B

B

B

B

B

P

0

2

		�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

1

oo

�

0

2

//

T

0

Y

p

0

1

aaB

B

B

B

B

B

B

B

p

0

2

		�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

T

X

f

X

==

|

|

|

|

|

|

|

|

p

1

OO

p

2

��

M

f

M

>>

}

}

}

}

}

}

}

}

P

1

OO

P

2

��

�

1

oo

�

2

//

T

Y

f

Y

>>

|

|

|

|

|

|

|

|

p

1

OO

p

2

��

X

0

S

0

�

1

oo

�

2

//

Y

0

� the biategory of 2-morphisms has as objets span maps in C as in (11), as

morphisms spans of span maps (as in (36), but with span maps horizontal),

and as 2-morphisms span maps of span maps

All omposition operations are by pullbak; soure and target operations follow those

for spans.

De�ne 2Cosp(C) as 2Span(C

op

).

In setion 6 we show (lemma 3) that for any ategoryC with pullbaks, 2Span(C)

forms a double biategory.

Remark 2. Just as 2-morphisms in Mor and morphisms in 2Mor an be seen

as diagrams whih are \produts" of a span with a map of spans, 2-morphisms in

2Mor are given by diagrams whih are \produts" of horizontal and vertial span

maps. These have, in either diretion, four maps of spans, with objets joined by

maps of spans. Composition again is by pullbak in omposable pairs of diagrams.

In fat, there is more struture here than we really need to desribe our example

of obordisms with orners. There is another Verity double biategory whih we

an derive from 2Span(C) by onsidering it only up to a ertain kind of equivalene:

De�nition 6. For a ategory C with �nite limits, the Verity double biategory

2Span(C)

0

, has:

� the objets are objets of C

� the horizontal and vertial biategories Hor = Ver are equal to a sub-

biategory of Span(C), whih inludes only invertible span maps
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� the squares are isomorphism lasses of ommuting diagrams of the form

(35)

where two diagrams of the form (35) are isomorphi if they di�er only in the middle

objets, say M and M

0

, and their maps to the edges, and if there is an isomorphism

f :M !M

0

making the ombined diagram ommute.

The ation of 2-morphisms � in Hor and Ver on squares is by omposition in

diagrams of the form:

(37)
S

2

�

1

~~|

|

|

|

|

|

|

|

�

2

  

B

B

B

B

B

B

B

B

X

S

1

�

1

oo

�

2

//

�

OO

Y

T

X

p

1

OO

p

2

��

M

P

1

OO

P

2

��

�

1

oo

�

2

//

T

Y

p

1

OO

p

2

��

X

0

S

0

�

1

oo

�

2

//

Y

0

(where the resulting square is as in 35, with S

2

in plae of S and � ÆP

1

in plae of

P

1

).

Composition (horizontal or vertial) of squares of spans is, as in 2Span(C), given

by omposition (by pullbak) of the three spans of whih the square is omposed. The

omposition operators for diagrams of span maps are by the usual ones in Span(C).

De�ne 2Cosp

0

(C) as 2Span(C)

0

(C

op

).

Remark 3. Notie that Hor and Ver as de�ned are indeed biategories: elimi-

nating all but the invertible 2-morphisms leaves a olletion whih is losed under

omposition by pullbaks.

We show more fully that this is a Verity double biategory in theorem 2, but for

now we note that the de�nition of horizontal and vertial omposition of squares

is de�ned on equivalene lasses. One must show that this is well de�ned. We will

get this result indiretly as a result of lemmas 3 and 4, but it is instrutive to see

diretly how this works in Span(C).

Lemma 1. The omposition of squares in De�nition 6 is well-de�ned.

Proof. Suppose we have two representatives of a square, bounded by horizontal

spans (S; �

1

; �

2

) from X to Y and (S

0

; �

1

; �

2

) from X

0

to Y

0

, and vertial spans

(T

X

; p

1

; p

2

) from X to X

0

and (T

Y

; p

1

; p

2

) from Y to Y

0

. The middle objets M

1

and M

2

as in the diagram (35). If we also have a omposable diagram - one whih

oinides along an edge (morphism in Hor or Ver) with the �rst, then we need to

know that the pullbaks are also isomorphi (that is, represent the same omposite

square).

In the horizontal and vertial omposition of these squares, the maps from the

middle objet M of the new square to the middle objets of the new sides (given

by omposition of spans) arise from the universal property of the pullbaks on the

sides being omposed (and the indued maps from M to the orners, via the maps

in the spans on the other sides). Sine the middle objets are de�ned only up to
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isomorphism lass, so is the pullbak: so the omposition is well de�ned, sine the

result is again a square of the form (35). �

In setion 5.3 we show that 2Span(C)

0

is a Verity double biategory. For now,

we will examine how obordisms form a speial topologial example of this sort of

Verity double biategory.

5. Cobordisms

One of our motivations for studying Verity double biategories is to provide the

right formal struture for some speial examples. The examples we have in mind

are higher ategories of obordisms. The objets in these ategories are manifolds

of some dimension, say k. In this ase, the morphisms are (k + 1)-dimensional

obordisms between these manifolds: that is, manifolds with boundary, suh that

the boundary deomposes into two omponents, with one omponent as the soure,

and one as the target. The 2-ells are (k + 2)-dimensional obordisms between

(k+1)-dimensional obordisms: these an be seen as manifolds with orners, where

the orners are the k-dimensional objets.

We ould ontinue building a ladder in whih the j + 1-ells are obordisms

between the j-ells, whih are obordisms between the (j � 1)-ells, but two levels

is enough to give a Verity double biategory. We will see that these an be onstrued

using the double span onstrution of setion 4.4.

5.1. Collars on Manifolds with Corners. Here we will use our onstrution of a

Verity double biategory 2Span(C) from setion 4.4 in order to show an example of

a double biategory of obordisms with orners, starting with C, a ertain ategory

of smooth spaes. To begin with, we reall that a smooth manifold with orners is a

topologial manifold with boundary, together with a ertain kind of C

1

struture.

In partiular, we need a maximal ompatible set of oordinate harts � : 
 !

[0;1)

n

(where �

1

, �

2

are ompatible if �

2

Æ �

�1

1

is a di�eomorphism). The fat

that the maps are into the positive setor of R

n

distinguishes a manifold with

orners from a manifold.

J�anih [Jan℄ introdues the notion of hni-manifold, reviewed by Laures [Laur℄.

This is build on a manifold with faes:

De�nition 7. A fae of a manifold with orners is the losure of some on-

neted omponent of the set of points with just one zero omponent in any o-

ordinate hart). An hni-manifold is a manifold with faes together with an n-tuple

(�

0

M; : : : ; �

n�1

M) of faes of M , suh that

� �

0

M [ : : : �

n�1

M = �M

� �

i

M \ �

j

M is a fae of �

i

M and �

j

M

The ase we will be interested in here is the ase of h2i-manifolds. In this nota-

tion, a h0i-manifold is just a manifold without boundary, a h1i-manifold is a mani-

fold with boundary, and a h2i-manifold is a manifold with orners whose boundary

deomposes into two omponents (of odimension 1), whose intersetions form the

orners (of odimension 2). We an think of �

0

M and �

1

M as the \horizontal" and

\vertial" part of the boundary of M .

Example 3. Let M be the solid 3-dimensional illustrated in �gure 1. The bound-

ary deomposes into 2-dimensional manifolds with boundary. Denote by �

0

M the
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boundary omponent onsisting of the top and bottom surfaes, and �

1

M be the

remaining boundary omponent (a topologial annulus).

In this ase, �

0

M is the disjoint union of the manifolds with orners S (two

annuli) and S

0

(topologially a three puntured sphere); �

1

M is the disjoint union

of two omponents, T

X

(whih is topologially a three-puntured sphere) and T

Y

(topologially a four-puntured torus).

Then we have �

0

M [�

1

M = �M . Also, �

0

M \�

1

M is a 1-dimensional manifold

without boundary, whih is a fae of both �

0

M and �

1

M (in fat, the shared

boundary). In partiular, it is the disjoint union X [ Y [X

0

[ Y

0

.

We have desribed a Verity double biategory formed from all obordisms with

orners in a ategory obtained by o-ompleting that of all suh obordisms, so that

all pushouts exist. The problem with this is that the pushout of two obordismsM

1

and M

2

over a submanifold S inluded in both by maps S

i

1

!M

1

and S

i

2

!M

2

may

not be a obordism. If the submanifolds are not on the boundaries, ertainly the

result may not even be a manifold: for instane, two line segments with a ommon

point in the interior. So to get a Verity double biategory in whih the morphisms

are smooth manifolds with boundary, ertainly we an only onsider the ase where

we ompose two obordisms by a pushout along shared submanifolds S whih are

omponents of the boundary of both M

1

and M

2

.

However, even if the ommon submanifold is at the boundary, there is no guar-

antee that the result of the pushout will be a smooth manifold. In partiular, for

a point x 2 S, there will be a neighborhood U of x whih restrits to U

1

� M

1

and U

2

�M

2

with smooth maps �

i

: U

i

! [0;1)

n

with �

i

(x) on the boundary of

[0;1)

n

with exatly one oordinate equal to 0. One an easily ombine these to give

a homeomorphism � : U ! R

n

, but this will not neessarily be a di�eomorphism

along the boundary S.

To solve this problem, we use the ollaring theorem: For any smooth manifold

with boundary M , �M has a ollar : an embedding f : �M � [0;1) ! M , with

(x; 0) 7! x for x 2 �M . This is a well-known result (for a proof, see e.g. [Hir℄,

se. 4.6). It is an easy orrolary of this usual form that we an hoose to use the

interval [0; 1℄ in plae of [0;1) here.

In ([Laur℄, Lemma 2.1.6), Gerd Laures desribes a generalization of this theorem

to hni-manifolds, so that for any hni-manifoldM , there is an n-dimensional ubial

diagram (hni-diagram) of embeddings of ornered neighborhoods of the faes. It is

then standard that one an ompose two smooth obordisms with orners, equipped

with suh smooth ollars, by gluing along S. The omposite is then the topologial

pushout of the two inlusions. Along the ollars of S inM

1

andM

2

, harts �

i

: U

i

!

[0;1)

n

are equivalent to harts into R

n�1

� [0;1), and sine the the omposite

has a smooth struture de�ned up to a di�eomorphism

1

whih is the identity along

S.

1

Note that the preise smooth struture on this obordism depends on the ollar whih is

hosen - but that there is always suh a hoie, and the resulting omposites are all equivalent up

to di�eomorphism. That is, they are equivalent up to a 2-morphism in the biategory. So stritly

speaking, the omposition map is not a funtor but an anafuntor. It is ommon to disregard this

issue, sine one an always de�ne a funtor from an anafuntor by using the axiom of hoie. This

is somewhat unsatisfatory, sine it does not generalize to the ase where our ategories are over

a base in whih the axiom of hoie does not hold, but this is not a problem in our example.
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5.2. Cobordisms with Corners. Suppose we take the ategory Man whose ob-

jets are smooth manifolds with orners and whose morphisms are smooth maps.

Naively, would would like to use the ospan onstrution from setion 4.4, we obtain

a Verity double biategory 2Cosp(Man). While this approah will work with the

ategory Top, however, it will not work with Man sine this does not have all ol-

imits. In partiular, given two smooth manifolds with boundary, we an glue them

along their boundaries in non-smooth ways, so to ensure that the pushout exists in

Man we need to speify a smoothness ondition. We desribe in setion 5.1 how to

�nd a subategory with �nite olimits in whih all objets, morphisms, and squares

are indeed manifolds with (possibly empty) orners. This requires using ollars on

the boundaries and orners.

For eah n, we de�ne a Verity double biategory within Man, whih we will all

nCob

2

:

De�nition 8. The Verity double biategory nCob

2

is given by the following data:

� The objets of nCob

2

are of the form P =

^

P � I

2

where

^

P may be any

(n� 2) manifolds without boundary and I = [0; 1℄.

� The horizontal and vertial biategories of nCob

2

have

{ objets: as above

{ morphisms: ospans P

1

i

1

!S

i

2

 P

2

where S =

^

S � I and

^

S may be

any of those ospans of (n � 1)-dimensional manifolds-with-boundary

whih are obordisms with ollars suh that the

^

P

i

� I are objets,

the maps are injetions into S, a manifold with boundary, suh that

i

1

(P

1

) [ i

2

(P

2

) = �S � I, i

1

(P

1

) \ i

2

(P

2

) = ;,

{ 2-morphisms: ospan maps whih are di�eomorphisms of the form f�

id : T � [0; 1℄! T

0

� [0; 1℄ where T and T

0

have a ommon boundary,

and f is a di�eomorphismT ! T

0

ompatible with the soure and target

maps - i.e. �xing the ollar.

where the soure of a obordism S onsists of the olletion of omponents

of �S � I for whih the image of (x; 0) lies on the boundary for x 2 �S,

and the target has the image of (x; 1) on the boundary

� squares: di�eomorphism lasses of n-dimensional manifolds M with or-

ners satisfying the properties of M in the diagram of equation (35), where

isomorphisms are di�eomorphisms preserving the boundary

� the ation of the di�eomorphisms on the \squares" (lasses of manifolds

M) is given by omposition of di�eomorphisms of the boundary obordisms

with the injetion maps of the boundary M

The soure and target objets of any obordism are the ollars, embedded in the

obordism in suh a way that the soure objet P =

^

P � I

2

is embedded in the

obordism S =

^

S � I by a map whih is the identity on I taking the �rst interval

in the objet to the interval for a horizontal morphism, and the seond to the inter-

val for a vertial morphism. The same ondition distinguishing soure and target

applies as above.

Composition of squares works as in 2Span(C)

0

.

We will see that nCob

2

is a Verity double biategory in setion 5.3, but for

now it suÆes to note that sine it is omposed of double ospans, we an hope to

de�ne omposition to be just that in the Verity double biategory2Span(C)

0

where
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C is the ategory of manifolds with orners. The proof that this is a Verity double

biategory will entail showing that nCob

2

is losed under this omposition.

Lemma 2. Composing horizontal morphisms in nCob

2

this way produes another

horizontal morphism in nCob

2

. Similarly, omposition of vertial morphisms pro-

dues a vertial morphism, and omposition of squares produes another square.

Proof. The horizontal and vertial morphisms are produts of the interval I with

h1i-manifolds, whose boundary is �

0

S), equipped with ollars. Suppose we are

given two suh obordisms S

1

and S

2

, and an identi�ation of the soure of S

2

with

the target of S

1

(say this is P =

^

P �I). Then the omposite S

2

ÆS

1

is topologially

the pushout of S

1

and S

2

over P . Now, P is smoothly embedded in S

1

and S

2

,

and any point in the pushout will be in the interior of either S

1

or S

2

sine for any

point on

^

P eah end of the interval I ours as the boundary of only one of the two

obordisms. So the result is smooth. Thus, 2Cob is losed under suh omposition

of morphisms.

The same argument holds for squares, sine it holds for any representative of

the equivalene lass of some manifold with orners, M , and the di�erentiable

struture will be the same, sine we onsider equivalene up to di�eomorphisms

whih preserve the ollar exatly. �

This establishes that omposition in nCob

2

is well de�ned, and omposites are

again obordisms in nCob

2

. We show that it is a Verity double biategoryin setion

5.3.

Example 4. We an represent a typial manifestation of the diagram (35) as in

�gure 1.

Consider how this piture is related to (35). In the �gure, we have n = 3, so

the objets are (ompat, oriented) 1-dimensional manifolds, thikened by taking a

produt with I

2

. X (top, solid lines) and Y (top, dotted lines) are both isomorphi

to (S

1

[S

1

)� I

2

, while X

0

and Y

0

(bottom, solid and dotted respetively) are both

isomorphi to S

1

� I

2

.

The horizontal morphisms are (thikened) obordisms S, and S

0

, whih are a pair

of thikened annuli and a two-holed disk, respetively, with the evident injetion

maps from the objets X;Y;X

0

; Y

0

. The vertial morphisms are the thikened

obordisms T

X

and T

Y

. In this example, T

X

happens to be of the same form as S

0

(a two-holed disk), and has inlusion maps from X and X

0

, the two omponents

of its boundary, as the \soure" and \target" maps. T

Y

is homotopy equivalent

to a four-puntured torus, where the four puntures are the omponents of its

boundary - two irles in Y and two in Y

0

, whih again have the obvious inlusion

maps. Reading from top to bottom, we an desribe T

Y

as the story of two (thik)

irles whih join into one irle, then split apart, then rejoin, and �nally split apart

again.

Finally, the \square" in this piture is the manifold with orners, M , whose

boundary has four omponents, S; S

0

; T

X

; andT

Y

, and whih has orners preisely

along the boundaries of these manifolds - whose omponents are divided between the

objets X;Y;X

0

; Y

0

. The embeddings of these thikened manifolds and obordisms

gives a spei� way to equip M with ollars.

Given any of the horizontal or vertial morphisms (thikened obordisms S, S

0

,

T

X

and T

Y

), a 2-morphism would be a di�eomorphism to some other obordism
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Figure 4. A Square in nCob

2

(Thikened Lines Denote Collars)

equipped with maps from the same objets (boundary omponents), whih �xes the

ollar on that obordism - that is, �xes the embedded objet. Suh a di�eomorphism

is neessarily a homeomorphism, so topologially the piture will be similar after

the ation of suh a 2-morphism - but we would onsider two suh obordisms as

separate morphisms in Hor or Ver.

Remark 4. We note the resemblane between this example and Path(S)

2

and

H(S) de�ned previously. In those ases, we are onsidering manifolds embedded in a

topologial spae S, and only a low-dimensional speial ase (the square [0; 1℄�[0; 1℄

is a manifold with orners). Instead of homotopies, whih make sense only for

embedded spaes, nCob

2

has di�eomorphisms. However, in both ases, we onsider

the squares to be isomorphism lasses of a ertain kind of top-dimensional objet

(homotopies or obordisms). This eliminates the need to de�ne morphisms or ells

in our ategory of dimension higher than 2. We may omit this restrition if we

move to a more general de�nition of double biategory, as desribed in setion 6.

5.3. Main Theorem. Now we want to show that obordisms of obordisms form

a Verity double biategory under the omposition operations we have desribed.

We will do this by �rst showing a more general result, inluding 2Span(C)

0

for

any ategory C with �nite limits, and showing how a Verity double biategory is

an internal biategory in Biat, and of a speial kind whih an be obtained by

preisely the redution to isomorphism lasses and restrition to partiular spans

whih we perform in de�ning nCob

2

.

We use lemmas 3 and 4, proved in setion 6 to show the following:



26 JEFFREY MORTON

Theorem 2. If C is a ategory with �nite limits, then 2Span(C)

0

is a Verity double

biategory. If C has �nite olimits, then 2Cosp

0

(C) is a Verity double biategory.

Proof. For any oomplete ategory C, 2Span(C) as de�ned above forms a double

biategory (Lemma 3). Then in the onstrution of 2Span(C)

0

, we take isomor-

phism lasses of double spans as the squares - that is, 2-isomorphism lasses of

morphisms in Mor in the double biategory, where the 2-isomorphisms are in-

vertible span maps, in both horizontal and vertial diretions. We also restrit to

invertible span maps in the horizontal and vertial biategories.

We are then e�etively disarding all morphisms and 2-morphisms in 2Mor,

and the 2-morphisms in Mor exept for the invertible ones. In partiular, there

may be \squares" of the form (35) in 2Span(C) with non-invertible maps joining

their middle objets M - but we have ignored these, and also ignore non-invertible

span maps in the biategories on the edges. Thus, we onsider no diagrams of the

form (36) exept for invertible ones - in whih ase, the middle objets M and M

0

are representatives of the same isomorphism lass. Similar reasoning applies to the

2-morphisms in 2Mor.

The resulting struture we get from disarding these will again be a double

biategory. In partiular, the new Mor and 2Mor will be biategories, sine they

are, respetively, just a ategory and a set made into a disrete biategory by adding

identities. On the other hand, for the omposition, soure and target maps to be

bifuntors amounts to saying that the strutures built from the objets, morphisms,

and 2-ells respetively are again biategories, sine the omposition, soure, and

target maps satisfy the usual axioms. But the same argument applies to those built

from the morphisms and 2-ells as within Mor and 2Mor. So we have a double

biategory.

Next we show that the horizontal and vertial ation onditions (de�nition 11)

hold in 2Span(C). A square in 2Span(C) is a diagram of the form (35), and a

2-ell is a map of spans. Given a square M

1

and 2-ell � with ompatible soure

and targets as in the ation onditions, we have a diagram of the form shown in

(37). Here, M

1

is the square diagram at the bottom, whose top row is the span

ontaining S

1

. The 2-ell � is the span map inluding the arrow � : S

1

! S

2

.

There is a unique square built using the same objets as M

1

exept using the span

ontaining S

2

as the top row. The map to S

2

from M is then � Æ P

1

.

To satisfy the ation ondition, we want this square M

2

, whih is the andidate

for M

1

?

V

�, to be unique. But suppose there were another M

0

2

with a map to S

2

.

Sine we are in 2Span(C)

0

, � must be invertible, whih would give a map from M

0

2

to S

1

. We then �nd that M

0

2

and M

2

are representatives of the same isomorphism

lass - so in fat this is the same square. That is, there is a unique morphism

in 2Mor taking M

1

to M

2

(a diagram of the form 36, oriented vertially) with

invertible span maps in the middle and bottom rows. This is the unique �ller for

the pillow diagram required by de�nition 11.

The argument that 2Span(C)

0

satis�es the ation ompatibility ondition is

similar.

So 2Span(C)

0

is a double biategory in whih, there there is at most one unique

morphism in Mor, and at most unique morphisms and 2-morphisms in 2Mor, for

any spei�ed soure and target, and the horizontal and vertial ation onditions

hold. So 2Span(C)

0

an be interpreted as a Verity double biategory (Lemma 4).
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The ase where we begin with a ategory C with �nite olimits and use ospans

an be redued to this ase, by taking C

op

. �

The argument that double spans or double ospans form a Verity double biate-

gory an be slightly modi�ed to show the same about obordisms with orners. We

note that there are two di�erenes. First, the ategory of manifolds with orners

does not have all �nite olimits. Seond, we are not dealing with all double ospans

of manifolds with orners, so nCob

2

is not 2Span(C)

0

for any C. In fat, the

seond di�erene is what allows us to deal with the �rst.

Theorem 3. nCob

2

is a Verity double biategory.

Proof. First, reall that objets in nCob

2

are manifolds with orners of the form

P =

^

P � I

2

for some manifold

^

P , and notie that both horizontal and vertial

morphisms are ospans. In general, if we have two ospans in the ategory of

manifolds with orners sharing a ommon objet, we annot take a pullbak and

get a manifold with orners. However, we are only onsidering a subset of all

possible spans of smooth manifolds with orners, all all those we onsider have

pullbaks whih are again smooth manifolds with orners (lemma 2).

In partiular, sine omposition of squares is as in 2Span(C)

0

, before taking

di�eomorphism lasses of manifolds M in nCob

2

, we would again get a double

biategory made from obordisms with orners, together with the embeddings used

in its ospans, and ollar-�xing di�eomorphisms. This is shown by arguments

idential to those of lemma 3.

When we redue to di�eomorphism lasses of these manifolds, then just as in the

proof of 2, we an ut down this double biategory to a struture, and the result

will satisfy the horizontal and vertial ation onditions, giving a Verity double

biategory, sine it satis�es the onditions of lemma 4.

So in fat, by the same arguments as in these other ases, nCob

2

is a Verity

double biategory. �

6. Internal Biategories in Biat

6.1. Introdution. We rely on the notion of a biategory internal to Biat at

several points in this paper. Here we present a more preise de�nition of this

onept, and in lemmas 3 and 4 we use it to show that examples having properties

like those of 2Span(C)

0

(de�nition 6) give double biategories in the sense of Verity.

These lemmas were used in the proofs Theorems 2 and 3.

To begin with, we remark that the theory of biategories, Th(Biat) is more

ompliated than that for ategories. However as with Th(Cat), it will be a

ategory with objets Obj, Mor and 2Mor, and having all equalizers, pullbaks.

To our knowledge, a model of Th(Biat) in Biat has not been expliitly desribed

before. We ould treat Obj as a horizontal biategory, and the objets of Obj,

Mor and 2Mor as forming a vertial biategory, but we note that diagrammati

representation of, for instane, 2-morphisms in 2Mor would require a 4-dimensional

diagram element. The omparison an be seen by ontrasting tables 1 and 2.

The axioms satis�ed by suh a struture are rather more unwieldy than either a

biategory or a double ategory, but they provide some oherene to the axioms for

a Verity double biategory, as shown in de�nition 4, as we shall see in setion 6.4.

We start by desribing how to obtain a double biategory.



28 JEFFREY MORTON

6.2. The Theory of Biategories. We desribed in setion 3.4 how a double

ategory may be seen as a ategory internal to Cat. To put it another way, it a

model of Th(Cat), the theory of ategories, in Cat, whih is a limit-preserving

funtor from Th(Cat) into Cat. We did not make a speial point of the fat, but

this is a strit model. A weak model would satisfy the ategory axioms suh as

omposition only up to a 2-morphism in Cat - that is, up to natural transformation.

So, for instane, the pullbak (15) would be a weak pullbak, so that instead of

satisfying tÆ 

1

= sÆ 

2

, there would only be a natural transformation relating tÆ 

1

and s Æ 

2

. Suh a weak model is the most general kind of model available in Cat,

but double ategories arise as strit models.

So here we note that we are thinking ofBiat as a mere ategory, and that we are

speaking of strit internanl biategories. In partiular, the most natural struture

for Biat is that of a triategory: it has objets whih are biategories, morphisms

whih are bifuntors between biategories, 2-morphisms whih are natural trans-

formations between bifuntors, and 3-morphisms whih are \modi�ations" of suh

transformations. Indeed, Biat is the standard example of a triategory, just as

Cat is the standard example of a biategory. But we ignore the triategorial

struture for our purposes.

Similarly, we only onsider strit models of the theory of biategories,Th(Biat)

in Biat. That is, a strit funtor from the ategory Th(Biat) into Biat (a

triategory). Thus, equations in the model are mapped to equations (not isomor-

phisms) in Biat. This is what we will all a double biategory.

Before we an say expliitly what this means, we must expliitly desribeTh(Biat)

as we did for Th(Cat) in setion 3.4.

De�nition 9. The theory of biategories is the ategory (with �nite limits) Th(Biat)

given by the following data:

� Objets Ob, Mor, 2Mor

� Morphisms s; t : Ob! Mor and s; t : Mor! 2Mor

� omposition maps Æ : MPairs!Mor and � : BPairs! 2Mor, satisfying

the interhange law (4), where MPairs = Mor�

Ob

Mor and BPairs =

2Mor�

Mor

2Mor are equalizers of diagrams of the form:

(38)

Mor

t

""

E

E

E

E

E

E

E

E

MPairs

i

//

Mor

2

�

1

;;

w

w

w

w

w

w

w

w

�

2

##

G

G

G

G

G

G

G

G

Ob

Mor

s

<<

z

z

z

z

z

z

z

z

and similarly for opnameBPairs.

� the assoiator map a : Triples! 2Mor, where Triples = �

Ob

Mor�

Ob

Mor

is the equalizer of a similar diagram for involving Mor

3

, suh that a satis�es

s(a(f; g; h)) = (f Æ g) Æ h and t(a(f; g; h)) = f Æ (g Æ h)

� unitors l; r : Ob! Mor with s Æ l = t Æ l = id

Ob

and s Æ r = t Æ r = id

Ob

This data is subjet to the onditions that the assoiator is subjet to the Pentagon

identity, and the unitors obey ertain unitor laws.
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Remark 5. The Pentagon identity is shown in (8) and for a model of Th(Biat)

in Sets), where we an speify elements of Mor, but the general relations - that

the omposites on eah side of the diagram are equal - hold in general. These are

built from omposable quadruples of morphisms and omposition as indiated in

the labels. Similar remarks apply to the unitor laws shown in (9).

So we have the following:

De�nition 10. A double biategory onsists of:

� biategories Obj of objets,Mor ofmorphisms, 2Mor of 2-morphisms

� soure and target maps s; t :Mor! Obj and s; t : 2Mor!Mor

� partially de�ned omposition funtors Æ :Mor

2

!Mor and � : 2Mor

2

!

2Mor, satisfying the interhange law (4)

� partially de�ned assoiator a : Mor

3

! 2Mor with s(a(f; g; h)) = (f Æ

g) Æ h and t(a(f; g; h)) = f Æ (g Æ h)

� partially de�ned unitors l; r : Obj!Mor with s(l(x)) = t(l(x)) = x and

s(r(x)) = t(r(x)) = x

All the partially de�ned funtors are de�ned for omposable pairs or triples, for

whih sore and target maps oinide in the obvious ways. The assoiator should

satisfy the pentagon identity (8), and the unitors should satisfy the unitor laws (9).

With this de�nition in mind, we an remember B�enabou's lassi example of

a biategory, that of spans. There is an analogous example here, namely double

spans.

6.3. The Double Span Example. Setion 4.4 desribes a struture of double

spans in a ategory C with pullbaks, whih we denoted 2Span(C). The next

lemma shows how this is the example we want:

Lemma 3. For any ategory C with pullbaks, 2Span(C) forms a double biategory.

Proof. Mor and 2Mor are biategories sine the omposition funtors at just like

omposition in Span(C) in eah olumn, and therefore satis�es the same axioms.

Sine the horizontal and vertial diretions are symmetri, we an onstrut

funtors between Obj, Mor, and 2Mor with the properties of a biategory sim-

ply by using the same onstrutions that turn eah into a biategory. In par-

tiular, the soure and target maps from Mor to Obj and from 2Mor to Mor

are the obvious maps giving the ranges of the projetion maps in the diagrams

(35). The partially de�ned (horizontal) omposition maps Æ : Mor

2

! Mor and




H

: 2Mor

2

! 2Mor are de�ned by taking pullbaks of diagrams in C, whih

exist for any omposable pairs of diagrams beause C has �nite limits. They are

funtorial sine they are independent of omposition in the horizontal diretion.

The assoiator for omposition of morphisms is given in the pullbak onstrution.

To see that this onstrution gives a double biategory, we note that Obj, Mor,

and 2Mor as de�ned above are indeed biategories. Obj, beause Span(C) is a

biategory. Mor and 2Mor beause the morphism and 2-morphism maps from the

omposition, assoiator, and other funtors required for an double biategory give

these the struture of biategories as well.

Moreover, the omposition funtors satisfy the properties of a biategory for

just the same reason that omposition of spans does (sine eah of the three maps

involved are given by this kind of onstrution). Thus, we have a double biategory.

�
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Remark 6. Lemma 3 suggests one diretion of generalization for double biate-

gories, to \n-tuple biategories" for any n. We an extend the notion of double

spans to arbitrarily high dimension. In setion 8.2, we disuss in more detail how

this possibility might work.

6.4. Deategori�ation. Our motivation for showing lemma 3 is to get a Verity

double biategory of obordisms as a speial example of a Verity double biategory

of double spans in suitable ategories C. To get this, we need to de�ne onditions

whih allow the ation of 2-ells upon squares. It is helpful, in trying to understand

what these are, to onsider a \lower dimensional" example of a similar proess.

In a double ategory, thought of as an internal ategory in Cat, we have data of

four sorts, as shown in Table 1.

Obj Mor

Objets

�

x

�

f

//

�

Morphisms

�

g

��

�

�

//

��

�

�

�

�

|�

F

�

��

�

//

�

Table 1. Data of a Double Category

That is, a double ategory DC has ategories Obj of objets and Mor of mor-

phisms. The �rst olumn of the table shows the data of Obj: its objets are the

objets ofDC; its morphisms are the vertial morphisms. The seond olumn shows

the data of Mor: its objets are the horizontal morphisms of DC; its morphisms

are the squares of DC.

Remark 7. The kind of \deategori�ation" we will want to do to obtain Verity

double biategories has an analog in the ase of double ategories. Namely, there

is a ondition we an impose whih e�etively turns the double ategory into a

ategory, where the horizontal and vertial morphisms are omposable, and the

squares an be ignored. The sort of ondition involved is similar to the horn-�lling

onditions introdued by Ross Street [Str℄ in his �rst introdution of the idea of

weak !-ategories. In that ase, all morphisms orrespond to simpliial sets, and a

horn �lling ondition is one whih says that, for a given hollow simplex with just

one fae (morphism) missing from the boundary, there will be a morphism to �ll

that fae, and a \�ller" for the inside of the simplex, making the whole ommute.

A restrited horn-�lling ondition demands that this is possible for some lass of

andidate simplies.

For a double ategory, morphisms an be edges or squares, rather than n-

simplies, but we an de�ne the following \�ller" ondition: given any pair (f; g) of

a horizontal and vertial morphism where the target objet of f is the soure objet

of g, there will be a unique pair (h; ?) onsisting of a unique horizontal morphism
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h and unique invertible square ? making the following diagram ommute:

(39)

x

h

��

�

�

�

f

//

�

�

�

�

{�

?

y

g

��

z

1

z

//

z

and similarly when the soure of f is the target of g. Notie that taking f or g to

be the identity in these ases implies F is the identity.

If, furthermore, there are no other interesting squares, then this double ategory

an be seen as just a ategory. In that ase, the unique h an just be interpreted

as the omposite of f and g and ? as the proess of omposition. So we will use

the notation g Æ f instead of h in this situation.

To see that this de�nes a omposition operation, we need to observe that ompo-

sition de�ned using these �llers agrees with the usual omposition in the horizontal

or vertial ategories, is assoiative, et. For example, given morphisms as in the

diagram:

w

f

//

x

f

0

//

y

g

��

z

1

z

//

z

1

z

//

z

there are two ways to use the unique-�ller priniple to �ll this retangle. One way

is to �rst ompose the pairs of horizontal morphisms on the top and bottom, then

�ll the resulting square. The square we get is unique, and the morphism is denoted

g Æ (f

0

Æ f). The seond way is to �rst �ll the right-hand square, and then using

the unique morphism we all g Æ f

0

, we get another square on the left hand side,

whih our priniple allows us to �ll as well. The square is unique, and the resulting

morphism is alled (g Æ f

0

) Æ f . Composing the two squares obtained this way must

give the square obtained the other way, sine both make the diagram ommute,

and both are unique. So we have:

w

(gÆf

0

)Æf

��

�

�

�

f

//

�

�

�

�

|�

?

x

gÆf

0

��

�

�

�

�

�

�

�

{�

?

f

0

//

y

g

��

z

1

z

//

z

1

z

//

z

=

w

gÆ(f

0

Æf)

��

�

�

�

f

0

Æf

//

�

�

�

�

|�

?

y

g

��

z

1

z

//

z

So in fat we an \deategorify" a double ategory satisfying the unique �ller

ondition, and treat it as if it were a mere ategory with horizontal and vertial

morphisms equivalent. The omposition between horizontal and vertial morphisms

is given by the �ller: given one of eah, we an �nd a square of the required kind,

by taking the third side to be an identity.

Remark 8. Note that our ondition does not give a square for every possible

ombination of morphisms whih might form its soures and targets. In partiular,

there must be an identity morphism - on the bottom in the example shown. If that

identity ould be any morphism h, then by hoosing f and g to be identities, this

would imply that every morphism must be invertible (at least weakly), sine there

must then be an h

�1

with h

�1

Æ h isomorphi to the identity. When a �ller square

does exist, and we onsider DB as a ategory C, the �ller square indiates there
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is a ommuting square in C: we think of it as the identity between the omposites

along the upper right and lower left.

The deategori�ation of a double biategory to give a Verity double biategory

is similar, exept that whereas with a double ategory we were utting down only

the squares (the lower-right quadrant of Table 1. We need to do more with a

double biategory, sine there are more sorts of data, but they fall into a similar

arrangement, as shown in Table 2.

Obj Mor 2Mor

Objets

�

x

�

f

//

�

�

��

??

�

�

��

Morphisms

�

g

��

�

�

//

��

�

�

�

�

|�

F

�

��

�

//

�

�

�

�

�

�

|�

P

1

��

��

??

�

��

�

��

��

u

_

I

??

�

��

�

�

�

�

2-Cells

�

~~  

�

�

ks

�

�

�

�

�

|�

P

2

~~  

//

�

~~  

	

�

5

�

//

�

ks ks

_ _

_ _

�

����

''

77

�

����

�

�

�

�

$

)

/

W

T

�

''

m

h

d

_

Z

V

Q

77

�

ks

��

ks

_ _

_ _

��

�

�

�

�

Table 2. The data of a double biategory

Remark 9. This shows the data of the biategories Obj, Mor, and 2Mor, eah

of whih has objets, morphisms, and 2-ells. Note that the morphisms in the three

entries in the lower right hand orner - 2-ells in Mor, and morphisms and 2-ells

in 2Mor - are not 2-dimensional. The 2-ells in Mor and morphisms in 2Mor are

the three-dimensional \�lling" inside the illustrated ylinders, whih eah have two

square faes and two bigonal faes.

The 2-ells in 2Mor should be drawn 4-dimensionally. The piture illustrated

an be thought of as taking both square faes of one ylinder P

1

to those of another,

P

2

, by means of two other ylinders (S

1

and S

2

, say), in suh a way that P

1

and

P

2

share their bigonal faes. This desription works whether we onsider the P

i

to be horizontal and the S

j

vertial, or vie versa. These desribe the \frame" of

this sort of morphism: the \�lling" is the 4-dimensional trak taking P

1

to P

2

, or

equivalently, S

1

to S

2

(just as a square in a double ategory an be read horizontally
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or vertially). Not all relevant parts of the diagram have been labelled here, for

larity.

Next we want to desribe a ondition similar to that we gave whih made it

possible to think of a double ategory as a ategory. In that ase, we got a ondition

whih e�etively allowed us to treat any square as an identity, so that we only had

objets and morphisms. Here, we want a ondition whih lets us throw away the

three entries of table 2 in the bottom right. This ondition, when satis�ed, should

allow us to treat a double biategory as a Verity double biategory. It omes in two

parts:

De�nition 11. We say that a double biategory satis�es the vertial ation on-

dition if, for any morphism M

1

2 Mor and 2-morphism � 2 Obj suh that

s(M

1

) = t(�), there is a morphism M

2

2 Mor and 2-morphism P 2 Mor suh

that P �lls the \pillow diagram":

(40)

x

//

��

��

�

�

�

�

{�

M

1

y

��

x

0
//

y

0

�

��

)

P

x

//

��

�

�

�

�

{�

M

2

y

��

x

0
//

y

0

where M

2

is the bak fae of this diagram, and the 2-morphism in Obj at the bottom

is the identity.

An double biategory satis�es the horizontal ation ondition if for any mor-

phism M

1

2 Mor and objet � in 2Mor with s(M

1

) = t(� there is a morphism

M

2

2Mor and morphism P 2 2Mor suh that P �ll the pillow diagram whih is

the same as (40) turned sideways.

Here, M

2

is the square whih will eventually be named M

1

?

V

� when we de�ne

an ation of 2-ells on squares.

Remark 10. One an easily this ondition is analogous to our �ller ondition (39)

in a double ategory by turning the diagram (40) on its side. What the diagram

says is that when we have a square with two bigons - the top one arbitrary and

the bottom one the identity - there is another square M

2

(the bak fae of a pillow

diagram) and a �ller 2-morphism P 2 2Mor whih �lls the diagram. If one imagines

turning this diagram on its side and viewing it obliquely, one sees preisely (39),

as a dimension has been suppressed. What is a square in (39) is a ylinder (2-

morphism in 2Mor); the roles of both squares and bigons in (40) are played by

arrows in (39); arrows in (40) beome pointlike objets in (39).

However, to get the ompatibility between horizontal and vertial ations, we

need something more than this. In partiular, sine these involve both horizontal

and vertial ylinders (3-dimensional morphisms in the general sense), the ompat-

ibility ondition must orrespond to the 4-dimensional 2-ells in 2Mor, shown in

the lower right orner of Table 2.

To draw neessary ondition is diÆult, sine the neessary diagram is four-

dimensional, but we an desribe it as follows:
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De�nition 12. We say a double biategory satis�es the ation ompatibility

ondition if the following holds. Suppose we are given

� a morphism F 2Mor

� an objet � 2 2Mor whose target in Mor is a soure of F

� a 2-ell � 2 Obj whose target morphism is a soure of F

� an invertible morphism P

1

2 2Mor with F as soure, and the objets �

and id in 2Mor as soure and target

� an invertible 2-ell P

2

2Mor with F as soure, and the 2-ells � and id in

Mor as soure and target

where P

1

and P

2

have, as targets, morphisms in Mor we all � ? F and � ? F

respetively. Then there is a unique morphism

^

F in Mor and 2-ell T in 2Mor

having all of the above as soures and targets.

Geometrially, we an think of the unique 2-ell in 2Mor as resembling the

struture in the bottom right orner of Table 2. This an be seen as taking one

horizontal ylinder to another in a way that �xes the (vertial) bigons on its sides,

by means of a translation whih ats on the front and bak faes with a pair of

vertial ylinders (whih share the top and bottom bigonal faes). Alternatively, it

an be seen as taking one vertial ylinder to another, ating on the faes with a

pair of horizontal ylinders. In either ase, the ylinders involved in the translation

at on the faes, but the four-dimensional interior, T , ats on the original ylinder

to give another. The simplest interpretation of this ondition is that it is preisely

the ondition needed to give the ompatibilty ondition (29).

Remark 11. Notie that the two onditions given imply the existene of unique

data of three di�erent sorts in our double biategory. If these are the only data

of these kinds, we an e�etively omit them (sine it suÆes to know information

about their soures and targets. This omission is part of a deategori�ation of the

same kind we saw for the double ategory DC.

In partiular, we use the above onditions to show the following:

Lemma 4. Suppose IB is a double biategorywhih has at most a unique morphism

or 2-morphisms in 2Mor, and at most a unique 2-morphism in Mor, having any

spei�ed soures and targets; and IB satis�es the horizontal and vertial ation

onditions and the ation ompatibility ondition; then IB gives a Verity double

biategory in the sense of Verity.

Proof. To begin with, we desribe how the elements of a Verity double biategory

DB (de�nition 4) arise, given suh an IB, onsisting of biategories (Obj;Mor;2Mor)

together with all required maps (three kinds of soure and target maps, two kinds

of identity, three partially-de�ned ompositions, left and right unitors, and the

assoiator).

The horizontal biategory Hor of DB is simply Obj. The vertial biategory

Ver onsists of the objets of eah of Obj, Mor, and 2Mor, where the required

soure, target and omposition maps for Ver are just the objet maps from those

for IB, whih are all funtors. We next hek that this is a biategory.

The soure and target maps for Ver satisfy all the usual rules for a biategory

sine the orresponding funtors in IB do. Similarly, the omposition maps satisfy

(5), (6) and (7) up to natural isomorphisms: they are just objet maps of funtors

whih satisfy orresponding onditions. We nextillustrate this for omposition.
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In IB, there is an assoiator 2-natural transformation. That is, a partially

de�ned bifuntor � : Mor

3

! 2Mor satisfying the pentagon identity (stritly,

sine we are onsidering a strit model of the theory of biategories). Among the

data for � are the objet maps, whih give the maps for the assoiator inVer. Sine

the assoiator 2-natural transformation satis�es the pentagon identity, so do these

objet maps. The other properties are shown similarly, so that Ver is a biategory.

Next, we delare that the squares of DB are the morphisms of Mor. Their

vertial soure and target maps are the morphism maps from the soure and target

funtors fromMor toObj. Their horizontal soure and target maps are the internal

ones in Mor. These satisfy equations (21) beause the soure and target maps of

IB are funtors (in our speial example of spans, this amounts to the fat that (35)

ommutes).

The horizontal omposition of squares (23) is just the omposition of mor-

phisms in Mor. Now, by assumption, Mor is a biategory with at most unique

2-morphisms having any given soure and target. If we delare these are identi-

ties (that is, identify their soure and target morphisms), we get that horizontal

omposition is exatly assoiative and has exat identities.

The vertial omposition of squares (22) is given by the morphism maps for the

partially de�ned funtor Æ for Mor, and so omposition here satis�es the axioms

for a biategory. In partiular, it has an assoiator and a unitor: but these must

be morphisms in 2Mor sine we take the morphism maps from the assoiator and

unitor funtors (and the theory of biatories says that these give 2-morphisms).

But again, we an delare that there are only identity morphisms in 2Mor, and

this omposition is exatly assoiative.

The interhange rule (24) follows again from funtoriality of the omposition

funtors.

The ation of the 2-morphisms (bigons) on squares is guaranteed by the hori-

zontal and vertial ation onditions. In partiular, by omposition of in Mor or

2Mor, we guarantee the existene of the ategories of horizontal and vertial ylin-

ders Cyl

H

and Cyl

V

, respetively. These ome from the 2-morphisms in Mor or

morphisms in 2Mor respetively whih those onditions demand must exist. Tak-

ing these to be identities, the ylinders onsist of ommuting ylindrial diagrams

with two bigons and two squares.

In the ase where one bigon is the identity, and the other is any bigon �, the

onditions guarantee the existene of a ylinder, whih we have delared to be the

identity. This de�nes the e�et of the ation of � on the square whose soure is the

target of �. If this square is F , we denote the other square � ?

H

F or � ?

V

F as

appropriate.

The ondition (27) guaranteeing independene of the horizontal and vertial

ations follows from the ation ompatibility onditon. For suppose we have a

square F whose horizontal and vertial soure arrows are the targets of 2-ells �

and �, and attah to its opposite faes two identity 2-ells. Then the horizontal

and vertial ation onditions mean that there will be a square �?

H

F and a square

� ?

V

F ). Then the ation ompatibility ondition applies (the P

i

are the identities

we get from the ation ondition), and there is a morphism in Mor - that is, a

square in DB we an all and a 2-ell T 2 2Mor. Consider the remaining fae,

whih the ation ondition suggests we all �?

H

(�?

V

F ) or �?

V

(�?

H

F ), depending
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on the order in whih we apply them. The ompatibility ondition says that there

is a unique square whih �lls this spot so the two must be equal.

So from any suh double biategory we get a Verity double biategory.

�

Remark 12. It is interesting to note how these arguments apply to the ase when

we are looking at onstrutions in 2Span(C), as will be the ase in nCob.

In partiular, the interhange rules hold beause the middle objets in the four

squares being omposed form the verties of a new square. The pullbaks in the

vertial and horizontal diretion form the middle objets of vertial and horizontal

spans over these. The interhange law means that the pullbak (in the horizontal

diretion) of the objets from the vertial spans is in the same isomorphism lass

as the pullbak (in the vertial diretion) of the objets from the horizontal spans.

This is true beause of the universal property of the pullbak.

The horizontal and vertial 2-morphisms are maps of spans, and at on the

squares by omposition of morphisms in C: given a square M with four maps

P

i

and �

i

to the edges as in (35); and a morphism of spans on any edge (for

de�niteness, say the top), where the C-morphism in the middle is S

f

!

~

S. Then the

omposite f ÆP

1

:M !

~

S is a soure (or target) map to the span X

�

1

 

~

S

�

2

!Y . The

result is again a square. In partiular, omposition of internal maps in horizontal

and vertial morphism of spans with the projetions in a square are independent.

7. A Low Dimensional Example

Lauda and Pfei�er [LP℄ desribe an extended topologial quantum �eld theory

de�ned on \open-losed strings". These an be desribed in terms of the sort of

obordisms between obordisms we have desribed in this paper. They desribe a

ategory of obordisms in whih the objets are ompat one-dimensional manifolds,

possibly with boundary: that is, either line segments, or irles. The morphisms

joining these are generated by: all those for 2Cob as shown in �gure 2; an analogous

set of generators with line segments instead of irles for objets; and generators

passing from line segment to irle, and vie versa.

They desribe the boundary edges as labelled by olourings, but in a fashion

whih is equivalent to identifying them as horizontal and vertial morphisms in

a double (bi)ategory, as we have done here. In partiular, the objets will be

olletions of zero or more points, the horizontal and vertial morphisms between

suh objets will be olletions of irles or lines with endpoints in the sets. The

2-morphisms of these will be di�eomorphisms. The squares of the Verity double

biategorywill be the di�eomorphism lasses of obordisms with orners.

What ([LP℄, se. 3.1.3), following [Laur℄ desribes as a h2i-diagram of inlusions

in Top:

(41)

�

0

M \ �

1

M

//

��

�

0

M

��

�

1

M

//

M

an be reovered from a diagram of the form (35). This is done by taking eah

ospan in Man and replaing the two inlusions into the middle objet by a single
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inlusion from the disjoint union of the soure and target. This reovers the faes

of the obordism seen as a h2i-manifold.

So in partiular, given the Verity double biategory of obordisms 2Cob

2

as

desribed here, it is possible to reover the struture of the ategory 2Cob

ext

of

open-losed obordisms in the following way:

The objets of 2Cob

ext

are di�eomorphism lasses of horizontal morphisms

in 2Cob

2

. A horizontal morphism in 2Cob

2

onsists of a obordism between

two 0-manifolds X and Y . This is a 1-manifold S with boundary, �S = X

`

Y :

up to di�eomorphism (that is, horizontal 2-isomorphism in frm�eCob

2

) this just

amounts to a olletion of irles and line segments. (One di�erene between our

framework and that of Lauda and Pfei�er is that they onsider objets to be suh

olletions with a de�nite order, by treating them as �nite sequenes with entries

in 0; 1, together with maps taking 0 to a irle, and 1 to a line segment, embedded

in R

2

in order along a line.)

One should note that the objets in 2Cob

ext

ontain less information than the

horizontal morphisms in nCob

2

. In partiular, there are several ways to get a line

segment as the di�eomorphism lass of a obordism between points, as shown in

�gure 5. The line segment an appear as a obordism from two points to zero, or

from zero to two, or from one to one.

Figure 5. Three Cobordisms Di�eomorphi to a Line Segment

The ategory 2Cob

ext

makes no use of the vertial biategory in 2Cob

2

, but it

has the same struture as the horizontal.

Setion 4 of [LP℄ de�nes an open-losed TQFT as a symmetri monoidal funtor

from 2Cob

ext

into a symmetri monoidal ategory C. It is a matter for future

researh to see how to develop suh a onstrution in the ase of the Verity double

biategory nCob

2

.

8. Conlusions and Further Diretions

8.1. Presentation of nCob

2

. The key example in this paper has been nCob

2

, the

Verity double biategory of n-dimensional obordisms between (n� 1)-dimensional

obordisms between (n� 2)-dimensional manifolds. This was seen as a generaliza-

tion of nCob, the ategory of n-dimensional obordisms between (n�1)-dimensonal

manifolds. In setion 2.1 we realled how to present the symmetri monoidal ate-

gory 2Cob as equivalent to the free suh ategory on a olletion generating objets

and morphisms satisfying ertain relations. That is, desribed a minimal, suÆient

set of generators and relations for that ategory. This naturally raises the ques-

tion of whether we an similarly present a minimal, suÆient set of generators and

relations for nCob

2

.

To do this we would need generators for the objets, horizontal and vertial mor-

phisms and 2-morphisms, and squares. This is a harder problem than we intend
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to deal with here, but we an make a few preliminary remarks. We have already

desribed in setion 7 how the ategory 2Cob

ext

of open-losed strings desribed

by Lauda and Pfei�er in [LP℄, extended only slightly, is just 2Cob

2

. In proposition

3.10 of that paper, they disuss a presentation of that ategory in terms of genera-

tors whih is readily extended to a presentation for 2Cob

2

. The only di�erene is

that one would need to desribe a larger set of generators for a full Verity double

biategory.

The objets in 2Cob

ext

are (equivalene lasses of) horizontal morphisms in

2Cob

2

, so one needs in addition to desribe the 2-morphisms as all di�eomor-

phisms of the open and losed \strings". Its morphisms beome squares, and have

the presentation desribed there. The vertial morphisms an be dedued as the

boundaries of these.

In the ase where n = 3, the problem of giving a presentation for nCob

2

is

signi�antly more diÆult, although we an notie that the horizontal and vertial

biategories are just the extended form of 2Cob, so the generators for objets and

morphisms are already known. The 2-morphisms are all di�eomorphisms. It is

also not too diÆult to desribe a set of generators for the squares by the use of

Morse theory (and its generalization, Cerf theory) to �nd 3-dimensional obordisms

with orners having only one topology hange. However, �nding a neessary and

suÆient set of relations for these is beyond the sope of this paper.

8.2. n-tuple Biategories. Desribing a Verity double biategory is a speial ase

of desribing a weak form of higher dimensional ategories, or a weak n-ategory.

This broader problem is disussed in more detail by Tom Leinster [Lei℄, and by

Eugenia Cheng and Aaron Lauda [CL℄. In light of this more general problem, we

an suggest some diretions in whih to extend this onept further. One is to

generalize the onept of a Verity double biategory to a n-tuple biategory.

We have seen how to onstrut 2Span(C) for a general ategory C with limits

(or CCosp

2

for a C with olimits), and how we take a restrited form of this

onstrution to yield a Verity double biategory of obordisms. We have hosen

to stop the proess of taking spans in a ategory of spans after two steps, but we

ould ontinue this onstrution. Taking spans in this new ategory gives ubes of

objets with maps from orners to the middles of edges, from middles of edges to

middles of faes, and from middlse of faes to the middle of the ube. Similarly, for

any �nite n, we an iterate the proess of taking spans to yield an n-dimensional

ube.

In partiular, we note that \Verity double biategories" are restrited ases of bi-

ategories internal to Biat. There is a ategory of all suh strutures, namely the

funtor ategory of all maps F : Th(Biat)! Biat, denoted [Th(Biat);Biat℄.

There will be an analogous onept of \triple biategories", namely biategories in-

ternal to [Th(Biat);Biat℄. In general, a \k-tuple biategory" will be a biategory

internal to the ategory of weak (k � 1)-tuple ategories.

We onjeture here that for all k, a k-tuply iterated proess of taking spans of

spans (or ospons) will yield examples of these struture. If this is true, obordisms

with odimension k between objets and the highest-dimensional obordism will

naturally form a weak k-tuple ategory. To do this, one would naturally desribe

the obordisms as hki-manifolds.
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A further diretion of generalization would be to substitute triategories, tetra-

ategories, and so forth in plae of biategories in the preeding onstrution, per-

haps making di�erent hoies eah stage. The question then arises what sort of

strutures it would be possible to de�ne by seletively deategorifying, and what

sorts of \�ller" onditions this would need.
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