
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335063321

Design of point-and-click user interfaces for proof assistants

Preprint · August 2019

CITATIONS

0
READS

116

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Formal-method-in-network View project

Gradual type system View project

Bohua Zhan

30 PUBLICATIONS   91 CITATIONS   

SEE PROFILE

Zhenyan Ji

Beijing Jiaotong University

28 PUBLICATIONS   131 CITATIONS   

SEE PROFILE

Wenhui Sun

Beijing Jiaotong University

12 PUBLICATIONS   37 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Wenhui Sun on 09 August 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/335063321_Design_of_point-and-click_user_interfaces_for_proof_assistants?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/335063321_Design_of_point-and-click_user_interfaces_for_proof_assistants?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Formal-method-in-network?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Gradual-type-system?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bohua-Zhan?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bohua-Zhan?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bohua-Zhan?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenyan-Ji?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenyan-Ji?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Beijing-Jiaotong-University?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenyan-Ji?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wenhui-Sun-3?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wenhui-Sun-3?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Beijing-Jiaotong-University?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wenhui-Sun-3?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wenhui-Sun-3?enrichId=rgreq-31f026a3d33dc78d268d30b679e6cdfd-XXX&enrichSource=Y292ZXJQYWdlOzMzNTA2MzMyMTtBUzo3ODk5NjI2OTgwMTQ3MjBAMTU2NTM1MzE5Mjk1NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Design of point-and-click user interfaces for proof
assistants

Bohua Zhan1(B), Zhenyan Ji2(B), Wenfan Zhou2, Chaozhu Xiang2, Jie Hou2, Wenhui
Sun2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences, Beijing, China
bzhan@ios.ac.cn

2 Beijing Jiaotong University, Beijing, China
{zhyji,zhouwenfan,czxiang,houjie,whsun1}@bjtu.edu.cn

Abstract. In interactive theorem proving, human users interact with proof as-
sistants to construct and verify formal proofs. The most popular proof assistants
today all have user interfaces that are largely text-based. This leads to a steep
learning curve for new users of these tools. In this paper, we propose a framework
for designing user interfaces for proof assistants based on pointing and clicking.
While a main goal of the design is ease of learning for new users, we intend for
the design to be suitable for real verification tasks. The design is also extensible,
allowing custom proof methods and search functionality to be added in a con-
venient way. We implement our ideas in a web interface, with backend provided
by holpy, a new system for interactive theorem proving implemented in Python.
The resulting user interface is tested on theorems in logic, sets, functions, Peano
arithmetic, and lists, demonstrating its applicability in a wide range of areas.

Keywords: Proof assistants · User interface · Tactics

1 Introduction

Interactive theorem proving aims to construct and verify formal proofs via interaction
between the computer and the human user. In recent years, it has seen several major
accomplishments, including formal verification of the seL4 microkernel [13], verifica-
tion of a realistic C compiler [14], and formal proofs of the Feit-Thompson theorem
[11] and Kepler’s conjecture [10]. These works show that interactive theorem proving
can be applied to very complex mathematical theorems and computer systems. How-
ever, verification projects still take considerable human effort. The works on the seL4
project, the Feit-Thompson theorem, and Kepler’s conjecture each have an estimated
cost of over 20 person years. In addition, the proof assistants used – HOL Light [12],
Coq [4], and Isabelle [15], are generally considered to have a steep learning curve for
new users, making it difficult and time consuming to form and train new teams. The
combination of these factors can be seen as a major obstacle to more widespread appli-
cation of interactive theorem proving. Hence, how to design proof assistants to make it
more accessible for users is an important problem for this field.

The most popular proof assistants today have user interfaces that are largely text-
based. The main form of interaction consists of the user editing a text file containing the



2 B. Zhan et al.

proof, either as a sequence of tactics or (as in Isabelle/Isar [17]) written in a structured
proof language. During editing, the user interface displays the state of the proof at the
current location of the proof text. To use the proof assistant, the user needs to be familiar
with names of the major tactics, as well as some of the commonly used theorems.
The Isabelle/Isar language makes the resulting proof text more readable. However, it
requires the user to further understand the use of a number of keywords for structuring
the proof.

Naturally, we may ask whether it is realistic to have user interfaces for proof assis-
tants that is based on pointing and clicking. In an ideal setting, most of the interaction
with the user interface should consist of choosing which facts to consider, and which
actions to take through clicks of the mouse. The user interface performs the selected
actions, and offers suggestions for future actions. Only occasionally will the user need
to enter text using the keyboard, and even then only mathematical expressions rather
than names of tactics or theorems.

While there have been attempts to build point-and-click user interfaces in the past,
they have not gained widespread adoptance for general-purpose theorem proving. Po-
tential problems with existing designs include limited search functionality – the user
still need to find names of theorems to use, and limited extensibility – there is usually a
fixed set of proof methods, with no easy way to grow them for new application domains.
This limits the use of user interfaces to simple examples, or to the special domains for
which they are designed.

In this paper, we propose a new framework for designing user interfaces for proof
assistants that is based on pointing and clicking. In this design, the user interacts with
the interface mainly in three ways. First, at each step of the proof, the user chooses
which goal to consider and which facts in the proof to use. Second, the user chooses an
action from the list of actions suggested by the computer. The suggestion process may
involve (but is not limited to) matching the chosen facts and goal with existing theorems.
Third, the user annotates each proved theorem, to tell the computer which directions
for applying the theorem are the most common, and should be considered during the
suggestion process in future proofs. We give a general definition of proof methods. Any
function satisfying this general definition can be added to the user interface. This makes
the design extensible: new proof methods reflecting domain-specific knowledge can be
added in a convenient way.

We implement our design in a web interface3. The backend for the interface is pro-
vided by holpy, a new system for interactive theorem proving implemented in Python
[18]. There are several aspects in holpy’s design that are different from systems such as
Isabelle and Coq, including a format for explicit representation of proofs and theories
based on JSON [8]. The format for theory files is not designed for direct editing by
the user. This means any user interface must interpret the theory files for display in a
more readable form, and reflect user changes back to the file. While this makes user
interfaces more difficult to implement at first, it has the long-term advantage of allow-
ing more flexibility in its design. The current work can be viewed as a first attempt to
implement a user interface for holpy, justifying its choice of the theory format.

3 code available at https://gitee.com/bhzhan/holpy



Design of point-and-click user interfaces for proof assistants 3

We now give an outline for the rest of this paper. In Section 2, we give an overview
of the holpy system, focusing on those aspects of design that are different from the
major proof assistants, and which are relevant to the current work. In Section 3, we
describe the key concept of proof methods, which forms the connection between the
user interface and the underlying proof automation in holpy. In Section 4, we describe
our implementation of these ideas, and present some statistics from tests of the user
interface on theorems from various domains. In Section 5, we describe in detail a case
study on the Knaster-Tarski fixed point theorem. Finally, we conclude in Section 6 with
a discussion of future work.

Related work There have been a few early attempts to build point-and-click user inter-
faces for proof assistants. The work of Bertot et al. in [5], and extended in [6], intro-
duced the idea of “Proof by Pointing”. In this framework, the user can trigger deduction
rules in logic by pointing to specific parts of the goal formula. The latter work also
studied how to implement script management (including undoing and redoing steps),
and textual explanation of proofs. Another line of work by Abrial et al. [2] developed
an user interface for Atelier B to perform formal proofs in set theory. The work by Bre-
itner in [7] constructed a visual theorem proving interface based on connecting blocks,
albeit also limited to proofs in logic.

In the area of program and system verification, several tools have user interfaces
that allow proofs to be conducted by pointing-and-clicking. These include KeY [3] and
KeYmaera/KeYmaera X [16, 9]. These tools allow users to choose subgoals and select
which actions to take from a menu. There is some similarity in the mode of interaction
between our work and these systems. However, our focus is on general-purpose theorem
proving in higher-order logic, rather than for specific program logics.

2 Overview of holpy

In this section, we give an overview of the holpy system, focusing on aspects that are
different from systems such as Isabelle and Coq, and which are relevant to the current
work. More details on the design of holpy can be found in [18].

holpy is a new system for interactive theorem proving implemented in Python. Its
logical foundation is higher-order logic (also known as simply-typed lambda calcu-
lus), similar to existing proof assistants such as Isabelle/HOL [15], HOL Light [12],
and HOL4 [1]. While holpy does not propose any innovation in logical foundations,
it makes significant changes to how proofs and theories are represented. In particular,
it proposes a pervasive use of macros in proof representation. Macros can be consid-
ered as abbreviations, allowing multiple steps of proof to be represented by a single
step. The use of macros means explicit proofs can be stored and checked by third-party
tools without running into the usual scalability issues. For representing theories, holpy
chooses a JSON-based format. This format is not designed for direct human editing,
but is convenient to read and write by computer programs. Finally, holpy provides an
API in Python for implementing proof automation (as well as other tools). A major goal
of holpy’s design is to show that with export of explicit proofs, the type and memory
safety issues of Python does not pose any problem for soundness of proof-checking.

In the remainder of this section, we discuss various aspects of holpy in more detail.



4 B. Zhan et al.

2.1 Logical foundation

The logical foundation for holpy is higher-order logic (simply-typed lambda calcu-
lus). Proof are conducted in natural deduction style. Intermediate results in proofs are
represented by sequents with a number of antecedents and a single consequent. A se-
quent with antecedent A1, . . . , An and consequent C is written in the usual notation as
A1, . . . , An ` C.

The logical foundation fixes a set of primitive deduction rules, with each rule taking
a number of input sequents and possibly additional arguments, and outputs a sequent
(or raises an exception). Inserting a previously proved theorem into a proof is also a
valid deduction rule. A theorem is provable if it can be obtained by applying these
rules. Our choice of primitive deduction rules largely follows that of existing proof
assistants such as Isabelle/HOL, HOL Light, and HOL4. Examples include introduction
and elimination rules for implication and forall quantification, congruence properties of
equality, and substitution of type and term variables.

2.2 Proof rules and macros

Proof rules can be considered as a generalization of primitive deduction rules. They
are intended to represent a number of more basic steps of proof. In general, a proof
rule takes the current theory environment (list of existing constants, theorems, etc), a
list of input sequents, and possibly additional arguments, and outputs a single sequent
(or raises an exception). Each proof rule defines a precise signature for its additional
arguments.

Primitive deduction rules is a special case of proof rules, that cannot be expanded
into more basic steps. Another fundamental proof rule is theorem, which takes no input
sequents and a theorem name as additional argument. If there exists a theorem with that
name in the current theory environment, it outputs that theorem as a sequent. Otherwise,
it raises an exception.

The other proof rules are called macros. They represent several more basic applica-
tions of proof rules as a single step. Each macro has an associated expansion function
which, given the current theory environment, the input sequents, and the additional ar-
guments, returns the output sequent together with the invocations of proof rules used to
obtain it (or raises an exception). The expanded proof (whose format will be described
later) can be used during proof checking, so that the implementation of the macro does
not need to be trusted. The use of macros means any portion of proof that can be algo-
rithmically generated can be stored as a single step, so that large proofs can be stored
for checking by third-party tools, without encountering the usual scalability issues.

We give some examples of macros for illustration.

– Applying a theorem: simple macros include applying a single theorem, which takes
the name of the theorem as the additional argument. It first looks up the theorem
from the theory environment. Then, it matches the input sequents to the assump-
tions of the theorem, and outputs the conclusion. The expanded proof consists of
inserting the theorem, substitution, and elimination of implication.



Design of point-and-click user interfaces for proof assistants 5

– Arithmetic operations on natural numbers: with natural numbers represented in bi-
nary form, arithmetic operations, such as 99 × 101 = 9999, can be represented as
a single step. The expanded proof consists of rewriting using lemmas about binary
numbers. Likewise, normalization of expressions using (semi)ring identities can be
represented as a single step.

– Automated theorem provers: full automated theorem provers can be implemented
as a single (very complex) macro. It takes the goal to be solved as the additional
argument, and attempts to solve the goal. The expanded proof may be computed
from a trace outputted by the theorem prover. If the trace is not available or cannot
be interpreted properly, the macro needs to be trusted – used without checking the
expanded proof.

2.3 Format for proofs

There are two forms of proof representation used in holpy: linear proofs and proof
terms.

A linear proof consists of an ordered list of proof items. Each proof item consists
of an identifier, the name of a proof rule, additional arguments for the proof rule, and a
list of identifiers of earlier proof items, representing the input sequents. A linear proof
can be checked (within a theory environment) by reading the proof items in order, com-
puting the sequent for each proof item by invoking the corresponding proof rule. The
result of a linear proof is the sequent corresponding to the last proof item.

How to represent identifiers is largely conventional. We choose to represent each
identifier as a tuple of natural numbers, written in dot-separated form (e.g. 0.2.1). This
allows us to express sub-proofs. For example, steps in the main trunk of the proof have
identifiers 0, 1, 2, etc. The conclusion for the proof item with identifier 1 may take
several steps outside the main trunk, which are given identifiers 1.0, 1.1, 1.2, etc. In
practice, we use sub-proofs like these when introducing variables and assumptions, as
will be seen in the examples in the next subsection.

Linear proofs are more convenient for visualization and storage, and so is the form
of proof that the user directly encounters. However, it is clear that linear proofs are
difficult to construct for automatic procedures. Automatic procedures prefer to work
with proof terms: proofs stored as directed acyclic graphs in memory. Each vertex of
the graph is a proof item, and input sequents of the proof item are referred to directly
(so identifiers are not needed). We will not discuss proof terms in detail, since proof
automation is not the focus of this paper. It suffices to know that there is a standard
algorithm for converting proof terms to linear proofs. Hence, the general idea for proof
automation in holpy is to first construct proof terms, then convert them to linear proofs
for storage and viewing by the user.

2.4 Example proofs

For illustration, we give two simple examples of proofs. Consider the proposition A ∧
B −→ B ∧A. A linear proof can be written as follows:

0. A ∧B ` A ∧B by assume A ∧B



6 B. Zhan et al.

1. A ∧B ` A by apply theorem conjD1 from 0
2. A ∧B ` B by apply theorem conjD2 from 0
3. A ∧B ` B ∧A by apply theorem conjI from 2, 1
4. ` A ∧B → B ∧A by implies intr from 3

Each line in the above text represents a proof item. The line starts with the identi-
fier of the proof item. The part before by is the computed sequent. The part after by
displays the proof rule, additional arguments, and identifiers of input sequents. The
proof rules assume and implies intr are primitive deduction rules. The proof rule
apply theorem is the macro for applying a single theorem.

The following example illustrates identifiers when sub-proofs are present. The goal
to be proved is n+ 0 = n.

0. ` 0 + 0 = 0 by rewrite goal plus def 1, 〈goal〉
1.0. ` VAR n by variable n :: nat
1.1. n+ 0 = n ` n+ 0 = n by assume n+ 0 = n
1.2. n+ 0 = n ` Suc (n+ 0) = Suc n by rewrite goal with prev 〈goal〉 from 1.1
1.3. n+ 0 = n ` Suc n+ 0 = Suc n by rewrite goal plus def 2, 〈goal〉 from 1.2

1. ` ∀n. n+ 0 = n −→ Suc n+ 0 = Suc n by intros from 1.0, 1.1, 1.3
2. ` n+ 0 = n by apply theorem for nat induct, {P : λn. n+ 0 = n, x: n} from 0, 1

Note the use of a trivial rule variable to designate new variables, and macro intros

to introduce variables and assumptions. Items 1.1 to 1.3 should be read in the backward
direction: the goal from induction is Suc n+ 0 = Suc n. Rewriting using plus def 2

(inductive definition of +) changes it to Suc (n + 0) = Suc n, which is resolved by
rewriting using the inductive hypothesis. In the arguments for proof rules, 〈goal〉 is an
abbreviation for the goal statement.

This format for displaying linear proofs is still not so easy to read. We choose to
use this format in this and the next section in order to show the workings of tactics and
methods in more clarity. An improved format will be used in Section 4 and for the user
interface.

2.5 Format for theories

In holpy, as in other proof assistants such as Isabelle and Coq, mathematical knowledge
is organized as a collection of theories. Each theory imports a list of other theories, and
may define new types, constants, and theorems. Proof of theorems are also contained
in theories. The format for theories in holpy is based on JSON, hence holpy theory
files have extension .json. They correspond to .thy files for Isabelle and .v files for
Coq. Following the terminology of Isabelle/ML, we also use the word “theory” to mean
the object containing the current state of mathematical knowledge (as in “the theory
environment”). In the text below, which of the two meanings is used should be clear
from context.

The content of a JSON file can be considered as an object made up from dictionar-
ies, ordered lists, numbers, strings, booleans, and null. In our case, a theory is a dictio-
nary with the following keys: name for the name of the theory, imports for the list of
imported theories, description for overall comments on the theory, and contents

which contains the main data. The value for contents is a list of items, where each



Design of point-and-click user interfaces for proof assistants 7

item can be a type, constant, definition, theorem, and so on. The content of each item de-
pends on its type. In particular, theorem items should contain the proof of the theorem,
stored as a linear proof.

Theorem attributes is another important information stored in theories. They are
analogous to attributes in Isabelle. Each theorem is assigned a list of strings, indicating
how the theorem is usually used. For example, the attribute backward means the theo-
rem is usually applied in the backward direction. Attributes in holpy is used during the
search for suggested actions, in order to limit the number of suggestions (Section 3.3).

Storing theories as a JSON file, rather than as a text file to be edited directly, makes
implementation of user interfaces more difficult at first. However, it also creates more
flexibility when designing the user interface. In particular, not all information in the
JSON file has to be displayed. Information that is (currently) irrelevant to the proof
can be hidden. Another advantage is that it is easier to develop other tools to analyze
the theories – for example, to profile the performance of proof automation or search
functionality. A simple application of this is to automatically produce the test results
shown in Table 1.

2.6 Proofs with gaps

For a proof to be valid, all sequents appearing in the proof need to be justified. However,
during the construction of a proof, it is often convenient to permit certain sequents to
be left unproven, expecting it to be proved later. This is realized by the use of sorry in
Isabelle and admitted in Coq. In holpy, we declare a special proof rule called sorry. In
a linear proof, a proof item with rule sorry must contain an expected sequent (similar
rule applies for proof terms). During proof checking, if the no gaps flag is turned off,
the result of a sorry item is its expected sequent, which can be used in subsequent proof
items. Proof checking with no gaps flag turned on (the usual setting when verifying a
theory file) will raise an exception on encountering a sorry proof item.

2.7 Tactics

The notion of tactics in holpy is analogous, but not exactly the same, to tactics in Is-
abelle and Coq. In holpy, a tactic is a function taking a sequent to be proved, a list of
input sequents, and possibly additional arguments (with fixed signature for each tactic),
and returns a proof whose output is the target sequent (or raises an exception). The re-
sulting proof may refer to input sequents or contain sorrys. Intuitively, a tactic converts
the current goal (the sequent to be proved) to a list of subgoals (those proof items with
rule sorry), possibly making use of other known facts (the input sequents).

We now give two representative examples.

Introduction The introduction tactic takes a goal in the forall-implies form, and intro-
duces the variables and assumptions in a sub-proof. It takes as additional arguments the
names of the new variables (and no input sequents). For example, given the goal

` ∀n. n+ 0 = n −→ Suc n+ 0 = Suc n,

and name n for the new variable, the tactic returns the proof



8 B. Zhan et al.

0.0. ` VARn by variable n :: nat
0.1. n+ 0 = n ` n+ 0 = n by assume n+ 0 = n
0.2. n+ 0 = n ` Suc x+ 0 = Suc x by sorry

0. ` ∀n. n+ 0 = n −→ Suc n+ 0 = Suc n by intros from 0.0, 0.1, 0.2

Applying a theorem Applying a theorem in the backward direction can be imple-
mented as a tactic. For example, given the goal A∧B ` B∧A, a theorem name conjI,
and no input sequents, the tactic produces the following proof:

0. A ∧B ` B by sorry
1. A ∧B ` A by sorry
2. A ∧B ` B ∧A by apply theorem conjI from 0, 1

If A ∧B ` B is given as an input sequent, the resulting proof has only one sorry, and
the invocation of apply theorem refers to that input sequent.

3 Methods

The concept of method forms another level of abstraction over macros and tactics. They
provide the direct link between proof automation in holpy and the user interface. Our
definition of methods is analogous to that in Isabelle, but there are also some important
differences.

In our design of the user interface, the proof state at any stage of the proof is simply
a linear proof with gaps – proof items with rule sorry. These gaps can be considered
as the remaining goals. A method defines a transform on the proof state, and the user
conducts a proof by applying a series of methods. More precisely, a method is a function
taking the following input:

– The current proof state.
– One selected goal in the proof state.
– A number of selected facts in the proof state (which must occur before the goal).
– Some additional arguments, with signature fixed by the method.

Given the inputs, a method either returns a new proof state or raises an exception. Unlike
macros and tactics, the additional arguments for methods are always strings indexed by
a set of keys (as determined by the method). Each method is responsible for parsing the
input strings to the right kinds of objects (e.g. types and terms).

The above definition of methods is quite general. A method can literally make any
change to the proof state. In practice, most methods fall into one of two common forms,
corresponding to backward and forward reasoning. We now describe the two kinds of
methods in more detail.

3.1 Backward reasoning

Methods for backward reasoning take the selected goal, and attempt to replace it by a
number of simpler goals. These methods can be easily constructed from tactics. Given
a tactic, the corresponding method performs the following actions:



Design of point-and-click user interfaces for proof assistants 9

1. Lookup the selected goal and facts in the proof state, to obtain the sequent to be
proved and the list of input sequents.

2. Parse the input strings to the right kinds of objects (e.g. types and terms).
3. Apply the tactic on these inputs (and the theory environment of the proof), yielding

a proof (possibly with holes) of the goal.
4. Splice the proof into the proof state. This involves changing the proof item for the

goal so it is no longer a sorry, and possibly inserting proof items before the goal.

The last splicing process is easy to understand intuitively, but can be quite tricky
to implement. Inserting proof items in the middle of a proof involves changing the
identifiers in the output of the tactic, and also in the part of the proof state after the goal
(if we wish to keep the identifiers in order). It also needs to link up references to input
sequents in the output of the tactic.

We give two examples for illustration.

Introduction Consider the proof of n+0 = n by induction. After applying induction,
we have the following proof state:

0. ` 0 + 0 = 0 by sorry
1. ` ∀n. n+ 0 = n −→ Suc n+ 0 = Suc n by sorry
2. ` n+ 0 = n by apply theorem for nat induct, {P : λn. n+ 0 = n, x: n} from 0, 1

We invoke the method corresponding to the introduction tactic, with proof item 1
as the goal, and the string “n” as the additional argument for names (name of the new
variable). The result is:

0. ` 0 + 0 = 0 by sorry
1.0. ` VARn by variable n :: nat
1.1. n+ 0 = n ` n+ 0 = n by assume n+ 0 = n
1.2. n+ 0 = n ` Suc n+ 0 = Suc n by sorry

1. ` ∀n. n+ 0 = n −→ Suc n+ 0 = Suc n by intros from 1.0, 1.1, 1.2
2. ` n+ 0 = n by apply theorem for nat induct, {P : λn. n+ 0 = n, x: n} from 0, 1

Note how the output of the tactic (shown in Section 2.7) is converted to starting with
identifier 1, and spliced into the proof state.

Applying a theorem For this example, we consider the proof of A ∧ B −→ B ∧ A.
Suppose we are at the following intermediate stage of the proof:

0. A ∧B ` A ∧B by assume A ∧B
1. A ∧B ` B by apply theorem conjD2 from 0
2. A ∧B ` B ∧A by sorry
3. ` A ∧B → B ∧A by implies intr from 2

Invoking the method corresponding to backward application of a theorem, with proof
item 2 as the selected goal, proof item 1 as (the only) selected fact, and conjI as
additional argument for theorem, the result is:

0. A ∧B ` A ∧B by assume A ∧B
1. A ∧B ` B by apply theorem conjD2 from 0



10 B. Zhan et al.

2. A ∧B ` A by sorry
3. A ∧B ` B ∧A by apply theorem conjI from 1, 2
4. ` A ∧B → B ∧A by implies intr from 3

Note how proof items 2 and 3 in the original proof state are automatically re-numbered,
along with their references.

3.2 Forward methods

Methods for forward reasoning considers only the selected facts. It can be created di-
rectly from a macro: the selected facts become the input sequents to the macro, and
the input strings are parsed to the arguments for the macro. The output of the macro is
added in a new proof item directly in front of the selected goal.

For example, given the following initial proof state:

0. A ∧B ` A ∧B by assume A ∧B
1. A ∧B ` B ∧A by sorry
2. ` A ∧B → B ∧A by implies intr from 1

We invoke the method corresponding to the macro apply theorem, with selected goal
1, selected fact 0, and argument conjD2 for the theorem name. The resulting proof state
is as follows.

0. A ∧B ` A ∧B by assume A ∧B
1. A ∧B ` B by apply theorem conjD2 from 0
2. A ∧B ` B ∧A by sorry
3. ` A ∧B → B ∧A by implies intr from 2

Again, note the re-numbering of proof items 1 and 2 and their references after adding a
new proof item before 1.

3.3 Search for suggestions

In addition to the function transforming the proof state, each method also provides a
search function. The search function takes as input the current proof state, the selected
goal, and a number of selected facts, and outputs a list of suggested invocations of the
method. Each suggested invocation provides input strings for some (not necessarily all)
of the required arguments.

The search function is an important part of our design. The outputs of search func-
tions for all methods are combined to form the list of suggestions for the user. Hence, the
search function should aim to return a suggestion whenever it is plausible, but should
not return too many suggestions. For methods requiring no input strings, the search
function may simply test whether the method can be applied on the selected goal and
facts. For other methods, there may be more choices in the implementation.

For example, for methods applying a single theorem in the forward or backward
direction, the search function iterates through theorems having the forward (resp.
backward) attribute. For each theorem, it matches the selected facts and goal with
the assumptions and conclusion of the theorem, and returns a suggestion whenever the
match succeeds. Likewise, rewriting a fact (resp. goal) using a theorem can be searched
for by matching the left side of each theorem having the rewrite attribute with parts
of the selected fact (resp. goal).



Design of point-and-click user interfaces for proof assistants 11

4 Implementation

We implemented the above ideas in a web interface. In addition to the functionality for
conducting a proof, the user interface also handles display and editing of theory files
in its JSON format. Hence, it provides all of the necessary functionality for interactive
theorem proving based on holpy. Figure 1 shows a screenshot of the user interface.

Fig. 1. Screenshot showing an intermediate stage in the proof of lfp unfold.

The left side has three tabs displaying the list of theories, the content of the selected
theory, and the list of variables in the current proof. On the right side, the top half
displays the current state of the proof. The user can select goals and facts in the proof
by clicking on the corresponding lines. The selected facts and goal are colored in yellow
and red, respectively. After each change of selection, the user interface queries the holpy
backend for the list of suggestions of method applications, which is displayed in the
bottom half of the right side, one line for each suggestion. The user may perform one of
the suggested actions by clicking on the corresponding line. If the suggestion does not
provide all required arguments, the user is prompted to enter the missing arguments.

Occasionally, the user will want to invoke a method not among the suggestions.
Two common methods that are not in the search are cases and cut. Both take a string
which is parsed into a boolean term A. The cases method reduces the selected goal C
into two goals A −→ C and ¬A −→ C. The cut method inserts A as a new goal right
before the current goal. When A is proved, it can be used in the proof of the original
goal. The user can select invocation of these (and other) methods from the menu, and
then enter the required arguments.

When displaying the proof, the user interface converts the proof to a more readable
form compared to that used in Section 2 and 3. The basic transforms applied include:



12 B. Zhan et al.

– Use fix and assume for variable and assume rules.
– Hide antecedents of sequents (which can be inferred from previous assumes).
– Change invocations of intros to with blocks.
– Add show for the last sequent of a block, and have for other intermediate sequents.
– Indentation according to with blocks.

We tested the user interface on a selection of theorems from logic, sets, functions,
Peano arithmetic, and lists. The results are given in Table 1. In the table, #S is the total
number of steps to prove the theorem, #Y is the number of steps that are among the
suggestions, and #N is the number of steps that must be selected from the menu. The
results show that the current user interface is already applicable to a wide range of
areas, allowing proofs of some basic results to be conducted largely by choosing from
the suggestions.

5 Case study: Knaster-Tarski theorem

In this section, we show a case study on the Knaster-Tarski fixed point theorem, with
the aim to show how user interaction works in practice for a nontrivial result. Roughly
speaking, the theorem states that any bounded monotone function has a (smallest) fix-
point. We state and prove a basic version of the theorem using our user interface.

The definition of bounded monotone functions is given as follows (here h is of type
′a set⇒ ′a set, and we assume the bound on h is given by the type ′a).

bnd monoh←→ (∀W. ∀X. W ⊆ X −→ hW ⊆ hX)

Given a bounded monotone function, its least fixed point is constructed using the fol-
lowing definition:

lfph =
⋂
{X. hX ⊆ X}

Two properties of lfph follow immediately from the definition. The first says that lfph
is contained in any set A satisfying hA ⊆ A. The second says in order to show any set
A is a subset of lfph, it suffices to show A is a subset of any X satisfying hX ⊆ X .
These properties are stated in higher-order logic as follows.

lfp lowerbound : hA ⊆ A −→ lfph ⊆ A
lfp greatest : (∀X. hX ⊆ X −→ A ⊆ X) −→ A ⊆ lfph

The main theorem states that lfph is in fact a fixed point of h:

lfp unfold : bnd monoh −→ h (lfph) = lfph

We now show how to prove this theorem using our user interface. The initial state
of the proof is:

0 assume bnd monoh
1 show h (lfph) = lfph by sorry

First, select 0 as a fact, and apply the suggestion to rewrite the fact using bnd mono def.
Next, select 1 as the goal (without selecting any facts), and use the suggestion to apply
subset antisym, to reduce the goal to two subset relations. The resulting state after
these two operations is:



Design of point-and-click user interfaces for proof assistants 13

Name Proposition #S #Y #N

double neg ¬¬A←→ A 9 8 1
disj conv imp ¬A ∨B ←→ A −→ B 12 11 1
ex conj distrib (∃x. A x ∧B x) −→ (∃x. A x) ∧ (∃x. B x) 6 6 0
all conj distrib (∀x. A x ∧B x) −→ (∀x. A x) ∧ (∀x. B x) 7 7 0

conj disj distribL1 A ∧ (B ∨ C)←→ A ∧B ∨A ∧ C 23 23 0
pierce ((A −→ B) −→ A) −→ A 5 4 1
drinker ∃x. P x −→ (∀x. P x) 11 8 3

subset antisym A ⊆ B −→ B ⊆ A −→ A = B 7 7 0
subset trans A ⊆ B −→ B ⊆ C −→ A ⊆ C 4 4 0

cantor ∃S. ∀x. ¬f x = S 13 12 1
Inter subset A ∈ S −→

⋂
S ⊆ A 4 4 0

subset Inter (∀C. C ∈ S −→ A ⊆ C) −→ A ⊆
⋂
S 6 6 0

Union union
⋃
(A ∪B) =

⋃
A ∪

⋃
B 43 43 0

lfp lowerbound h A ⊆ A −→ lfph ⊆ A 3 3 0
lfp greatest (∀X. h X ⊆ X −→ A ⊆ X) −→ A ⊆ lfph 5 5 0
lfp unfold bnd monoh −→ h (lfph) = lfph 10 9 1

fun upd triv (f)(a := f a) = f 8 7 1
fun upd upd (f)(a := b, a := c) = (f)(a := c) 9 8 1
fun upd twist ¬c = a −→ (f)(a := b, c := d) = (f)(c := d, a := b) 19 17 2

comp fun assoc (f ◦ g) ◦ h = f ◦ g ◦ h 4 4 0
injective comp fun injective f −→ injective g −→ injective(g ◦ f) 5 5 0
surjective comp fun surjective f −→ surjective g −→ surjective(g ◦ f) 11 9 2

add comm x+ y = y + x 7 6 1
add assoc x+ y + z = x+ (y + z) 6 6 0
distrib l x ∗ (y + z) = x ∗ y + x ∗ z 7 7 0

mult assoc x ∗ y ∗ z = x ∗ (y ∗ z) 7 6 1
mult comm x ∗ y = y ∗ x 7 6 1
less eq trans k ≤ m −→ m ≤ n −→ k ≤ n 9 9 0

append right neutral xs @ [] = xs 5 5 0
append assoc (xs @ ys) @ zs = xs @ ys @ zs 6 6 0
length append length(xs @ ys) = lengthxs+ length ys 9 9 0

rev append rev(xs @ ys) = rev ys @ rev xs 9 8 1
rev rev rev(rev xs) = xs 12 12 0

rev length length(rev xs) = lengthxs 10 10 0
Total: 34 theorems 318 300 18
Table 1. Statistics on the test suite.



14 B. Zhan et al.

0 assume bnd monoh
1 have ∀W. ∀X. W ⊆ X −→ hW ⊆ hX by rewrite fact bnd mono def from 0
2 have h (lfph) ⊆ lfph by sorry
3 have lfph ⊆ h (lfph) by sorry
4 show h (lfph) = lfph by apply theorem subset antisym from 2, 3

Next, select item 2 and follow the suggestion to apply lfp greatest. This results
in a forall goal. Select the goal and the introduction method, and enter X for the name
of the new variable, we get the following proof state:

0 assume bnd monoh
1 have ∀W. ∀X. W ⊆ X −→ hW ⊆ hX by rewrite fact bnd mono def from 0
2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with

2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 show h (lfph) ⊆ X by sorry

3 have h (lfph) ⊆ lfph by apply theorem lfp greatest from 2
4 have lfph ⊆ h (lfph) by sorry
5 show h (lfph) = lfph by apply theorem subset antisym from 3, 4

Next, we perform the only manual step in this proof, inserting an intermediate goal
h (lfph) ⊆ hX before h (lfph) ⊆ X . The resulting proof state is (now showing only
the block for proof item 2):

2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with
2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have h (lfph) ⊆ hX by sorry
2.3 show h (lfph) ⊆ X by sorry

Next, select goal 2.2 and fact 1, and follow the suggestion to apply fact 1 to goal
2.2, resulting in new goal lfph ⊆ X . We get:

2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with
2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have lfph ⊆ X by sorry
2.3 have h (lfph) ⊆ hX by apply fact for lfph,X from 1, 2.2
2.4 show h (lfph) ⊆ X by sorry

Select item 2.2, the user interface suggests use of the theorem lfp lowerbound,
reducing to the goal hX ⊆ X , which is already available as a fact. This proves
2.2. Next, select goal 2.4 and fact 2.2, the user interface suggests use of the theorem
subset trans, again reducing to the goal hX ⊆ X . Performing these two steps fin-
ishes the proof of 2. The resulting proof state is:

2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with
2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have lfph ⊆ X by apply theorem for lfp lowerbound, . . . from 2.1
2.3 have h (lfph) ⊆ hX by apply fact for lfph,X from 1, 2.2
2.4 show h (lfph) ⊆ X by apply theorem subset trans from 2.3, 2.1



Design of point-and-click user interfaces for proof assistants 15

Two more steps are needed to finish the overall proof: reducing goal 4 to showing
h (h (lfph)) ⊆ h (lfph) using lfp lowerbound, then using item 1 and 3 to solve the
goal. The user interaction is similar to before. The final state of the proof is:

0 assume bnd monoh
1 have ∀W. ∀X. W ⊆ X −→ hW ⊆ hX by rewrite fact bnd mono def from 0
2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with

2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have lfph ⊆ X by apply theorem for lfp lowerbound, . . . from 2.1
2.3 have h (lfph) ⊆ hX by apply fact for lfph,X from 1, 2.2
2.4 show h (lfph) ⊆ X by apply theorem subset trans from 2.3, 2.1

3 have h (lfph) ⊆ lfph by apply theorem lfp greatest from 2
4 have h (h (lfph)) ⊆ h (lfph) by apply fact for . . . from 1, 3
5 have lfph ⊆ h (lfph) by apply theorem for lfp lowerbound, . . . from 4
6 show h (lfph) = lfph by apply theorem subset antisym from 3, 5

As we can see, the resulting proof is quite readable, similar to a proof using Is-
abelle/Isar. All intermediate conclusions are shown, as well as each theorem and proof
rule used. However, the entire proof is constructed just with a few clicks, occasionally
entering names of variables, instantiations (when it cannot be derived by matching), and
intermediate goals.

6 Conclusion

In this paper, we presented a framework for designing point-and-click user interfaces
in interactive theorem proving. While a major goal of the design is ease of learning for
newcomers to this field, we also intend to produce a fully functional system, able to be
used for general purpose theorem proving. We implemented a prototype user interface
based on this framework, and tested it on theorems about logic, sets, functions, Peano
arithmetic, and lists, showing that these theorems can be proved largely by clicking on
suggestions, and occasionally entering additional information.

We intend the current work to be the beginning of a long-term project to build a
proof assistant that is both easy-to-use and scalable to large formalizations. On the user
interface side, we envision two major next steps. First, we currently lack strong proof
automation in the system. Proof assistants such as Isabelle benefit from powerful tactics
(such as auto and blast), as well as calls to external provers via Sledgehammer. In
the future, we intend to incorporate both powerful internal automation, as well as con-
nections to external provers. They can be easily fit into the current framework: the user
selects the goal and a number of facts to use, and the system invokes proof automation
in the background to check whether the goal can be solved using the selected facts.

Second, we currently make no attempt to order the suggestions. This does not pose
a problem so far, since the test examples are still in the beginning stages of mathemat-
ical development, so there are few options at each step. As we move to formalizing
deeper mathematical theories, it is expected that the number of options at each step will
increase, even as we try to control it by having the user annotate the theorems and se-
lect which facts to use. One potentially promising approach is to use machine learning
models for ordering the suggestions.



16 B. Zhan et al.

References
1. The HOL 4 system. http://hol.sourceforge.net/
2. Abrial, J., Cansell, D.: Click’n prove: Interactive proofs within set theory. In: Theorem

Proving in Higher Order Logics, 16th International Conference, TPHOLs 2003, Rom, Italy,
September 8-12, 2003, Proceedings. pp. 1–24 (2003)

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deductive
Software Verification - The KeY Book - From Theory to Practice, Lecture Notes in Computer
Science, vol. 10001. Springer (2016)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS
Series, Springer (2004)

5. Bertot, Y., Kahn, G., Théry, L.: Proof by pointing. In: Theoretical Aspects of Computer Soft-
ware, International Conference TACS ’94, Sendai, Japan, April 19-22, 1994, Proceedings.
pp. 141–160 (1994)

6. Bertot, Y., Théry, L.: A generic approach to building user interfaces for theorem provers. J.
Symb. Comput. 25(2), 161–194 (1998)

7. Breitner, J.: Visual theorem proving with the incredible proof machine. In: Interactive Theo-
rem Proving - 7th International Conference, ITP 2016, Nancy, France, August 22-25, 2016,
Proceedings. pp. 123–139 (2016)

8. The JSON data interchange syntax. http://ecma-international.org/publications/files/ECMA-
ST/ECMA-404.pdf (12 2017)

9. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: Keymaera X: an axiomatic tactical
theorem prover for hybrid systems. In: Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. pp.
527–538 (2015)

10. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux, S.L., Mah-
boubi, A., O’Connor, R., Biha, S.O., Pasca, I., Rideau, L., Solovyev, A., Tassi, E., Théry,
L.: A machine-checked proof of the odd order theorem. In: Interactive Theorem Proving -
4th International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings. pp.
163–179 (2013)

11. Hales, T., Adams, M., Bauer, G., Dang, T.T., Harrison, J., Hoang, L.T., Kaliszyk, C., Magron,
V., McLaughlin, S., Nguyen, T.T., et al.: A formal proof of the kepler conjecture. Forum of
Mathematics, Pi 5, e2 (2017)

12. Harrison, J.: HOL light: An overview. In: Theorem Proving in Higher Order Logics, 22nd
International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceed-
ings. pp. 60–66 (2009)

13. Klein, G., Andronick, J., Elphinstone, K., Murray, T.C., Sewell, T., Kolanski, R., Heiser, G.:
Comprehensive formal verification of an OS microkernel. ACM Trans. Comput. Syst. 32(1),
2:1–2:70 (2014)

14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)
15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order

Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)
16. Platzer, A., Quesel, J.: Keymaera: A hybrid theorem prover for hybrid systems (system de-

scription). In: Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Syd-
ney, Australia, August 12-15, 2008, Proceedings. pp. 171–178 (2008)

17. Wenzel, M.: Isar - A generic interpretative approach to readable formal proof documents.
In: Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs’99,
Nice, France, September, 1999, Proceedings. pp. 167–184 (1999)

18. Zhan, B.: holpy: Interactive Theorem Proving in Python. arXiv e-prints arXiv:1905.05970
(May 2019)

View publication statsView publication stats

https://www.researchgate.net/publication/335063321

